RadiSys . PL/M 386
Programmer’s Guide

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0710-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Chapter 1. Introduction

Chapter 2. Language Elements

Chapter 3. Data Declarations, Types, and Based Variables

Chapter 4. Arrays and Structures

Chapter 5. Expressions and Assignments

Chapter 6. Flow Control Statements

Chapter 7. Block Structure and Scope

Chapter 8. Procedures

Chapter 9. Built-In Procedures, Functions, and Variables

Chapter 10. Features Involving the Target CPU and Numeric
Coprocessor

Chapter 11. Compiler Invocations and Controls

Chapter 12. Sample Program

Chapter 13. Extended Segmentation Models

Chapter 14. Error and Warning Messages

Appendix A. PL/M Reserved Words and Predeclared Identifiers

Appendix B. PL/M Program Limits

Appendix C. Grammar of the PL/M Language
Appendix D. Differences Between PL/M Compilers
Character Set

Linking to Modules Written in Other Languages

Appendix E.
Appendix F.
Appendix G. Run-time Interrupt Processing
Appendix H. Run-time Support for PL/M Applications

Index

PL/M-386 Programmer's Guide iii

Notational Conventions
The following notational conventions are used throughout this manual.

Monospace Type indicatesliteral command syntax, and other actual

input/output.

italics indicate variable expressions and filenames. Substitute avalue
or asymbol.

directory refersto a user-created directory. A forward slash (/) is used
for IRMX directory paths. A backward dash (\) isused for
DOS directory paths.

pat hnane represents a fully-qualified reference to afile.

All numbers are decimal unless otherwise stated. Hexadecimal numbers include the
Hradix character (for example, 0FFH). Binary numbersinclude the B radix character
(for example, 11011000B).

Contents

1 Introduction
Product DEfINITIONccoiieiere e e b 1
Compatible Assemblers, Debuggers, and Utilities.........coocooerereieieinccnenene 2
Advantages of Using the PL/M Language..........cccoeerererenenenene e 4
The Structure of @PL/M Program ..o 5
Overview of PL/M SEEtEMENESccceoieieiee e e 6
Declaration StAtEMENES.cooeeieieriee e 6
EXecutable StAEMENES.coieieiieeeieee e e 6
Built-in Procedures and Variabl€s..........ccoeiereririnieeeee e 7
Overview Of PL/M EXPreSSIONS.........ccereeieereriene et eieeee e see e s 7
INPUL QN OULPUL ...t e seen 8
2 Language Elements
CharaCter SELot 9
Tokens, Separators, and the Use of Blanks..........ccccvvvveievenieescse e 11
Identifiers and Reserved WOrdS...........coovereeenenenenense e 12
CONSLANES ...ttt ettt e b et n e e b sne b sneene e 12
Whole-numbBer CONSLANEScvierieirie e 13
Floating-point CONSLANES.........cceouerierierererese e seseeresseeee e seesesre e seesnens 13
CharaCter StriNGS......uecveiererere s se et se e et sre e e e aesee e s 15
COMMENES. ...ttt n bbbt eb et eae e e e e renn e ne e 15
3 Data Declarations, Types, and Based Variables
Variable Declaration StatemMentscoevererenenenereees e 18
Sample DECLARE SEEEMENES.......cooeieeeeie et 18
Results of Variable Declarations............ccooevererieeieeienee e 19
Combining DECLARE Statementscoceveeerenenenieeeeeseese e 20
TN 2= (o TSP 21
The Implicit Dimension SPECIfier ..o i 23
Names for Execution Constants: the Use of DATA ... ieieiieiencienens 25
Types of Declaration SatemMENtS.........ccooverererereneseee e 26

PL/M-386 Programmer’s Guide Contents %

Compilation Constants (Text Substitution): The Use of LITERALLY 26
Declarations of Names for LabelS.......cocooereieiiiinie s 28
Results of Label Declarations...........ccccieeereereierene e 28
Declaration for ProCeAUIES...........cooiieieieeeeeeee e 29
DALA TYPES. ... cueeeeeteeiee ettt ettt ettt s sae e s ae e sbe e ae st e saeesaeenbeaneeas 30
Unsigned Binary Number Variables: Unsigned Arithmetic 32
INTEGER Variables: Signed Arithmeticcooooviiiinninineces 33
SIgNed AFtNIMELIC ...cveeeee s 33
REAL Variables: Floating-point Arithmeticcc.coooeveniiencnencceee 33
Examples of Binary Scientific Notation.............ccocoveiiieninienicniecens 34
POINTER Variables and Location References...........ccooevvveeenenccecnnenns 36
THE @ OPEIaLON.......cieeeeieeeiie sttt se e 37
Storing Strings and Constants via Location References.................... 38
OFFSET Data Type and the Dot Operatorccooeveeereriererieeseeeeseeneas 39
SELECTOR Variables.......cccoiiiirieiiriiesrieer e 39
Based VariabIes.o e 40
Location References and Based Variablesccocoooeiiieninencniecces a2
The AT ALDULE......cceeiee e e e e 43
WORD32 | WORD16 Type Mapping.......cccceeeeeeereereenieseeniesieseeseseeeeseesee s 46
Choosing WORD32 0r WORDLGcccooimireeieiineeeeeeeeee s 47
4 Arrays and Structures
N £ = Y S 49
Subscripted Variabl€S.........coeviieieiicese e 50
SITUCIUIES......oeieie ettt 51
ATTAYS Of SETUCLUIES ...ttt 51
ArrayS Within StrUCIUFES........ccovvieiececesece e 51
Arrays of Structures With Arrays Inside the Structures...........ccccceevneee. 52
NESIEA STUCLUNES.......eeeeeeereeirereeee et 53
References to Arrays and StTUCLUFES........c..vveeeeeeeeerere et seeee e 54
Fully Qualified Variable REFEreNCES.cvvvvveeereiesesese s 54
Unqualified and Partially Qualified Variable References..........ccccccveueens 55
5 Expressions and Assignments
L0 07 =00 PSSR 57
(001015 =0 K TP 58
Whole-number Constantsin Unsigned Context...........cccveeereeeieeneneeneene 58
Whole-number Constantsin Signed Context...........ccocoveveeerienieeieneenies 58
SEING CONSEANESc.veeveeieeeeieseee ettt se e et see b e eae e e eneeseeneas 58
Variable and Location REfFErenCes..........cooveereeieierenese e 60
ST 01T 055 o] TR 60
Vi Contents

ComMPOUNT OPEIaANAS.......coueeieieieieeeeee st seeieseesee e seeseeseeseeseesbeseeseeseeseeseeseeens 60

ATIthMELiC OPEIatOrS.c.ceeeeee e 61
The+, -, *, N0/ OPEraLOrS......cceie et eaea 61
THE MOD OPEIELOLeeueeueeeeeeie et eteeee e e et sre e seeeeseeseeseesneas 64

REIEtioNal OPEraLOrS. ... ccueiueeieie ettt see s 65

(oo Yoz I @] /< = (o= JN ST 67

EXPression EVAlUBLTONcccoouiiiiiieeie e 69
Precedence of Operators. Analyzing an EXpression..........coeveveeeneenens 69
Compound Operands Have TYPEScceiererererienieneneeseeeseee e 71
Relational Operators Are ReStricted........cooveririerieeeeeeee e 72
Order of Evaluation of Operands.............cccoererenenesenieneeeereee e 72

Choice of Arithmetic: Summary of RUIESccccoviiiiiiiieeee e 73
Special Case: Constant EXPreSSIONSc.coevereererienierieeeeeeseeneeseeseesee s 76

ASSIGNMENE SEAEEMENES.......eoeiieieieierie e e b e nes 78
IMplicit TYPe CONVEISIONScoueiueieiieiieeienieee e seen 78
CONSLANT EXPrESSIONecvieiieieie ettt see e e b ene e e e e seesae e 81
MUItIPIE ASSIGNMENT ... 81
Embedded ASSIgNMENESooiiiiieieeee e 82

6 Flow Control Statements

DO and END Statements: DO BIOCKS.......ccoereernrrinenreineneeneseeeesesneenenas 85
SIMPIE DO BIOCKS......cecieieiesie et 87
DO CASE BIOCKS.....cvcreiirereinesrei st 88
DO WHILE BIOCKS ..ottt 0
[terative DO BIOCKS.covurerirrereirie e 91

END SEBEMENT ..o 94

[F SEBEEIMENL ... 94
Nested |F SEELEMENES........ccvrrreiereereseee e 96
Sequential |F StateMENtS........cccveeeeeeererese e 98

GOTO SHBEMENES ...t 99

The CALL and RETURN SEAtEMENESc.covvviirenreirenreeerreeresrereesesreeesesneeene 100

7 Block Structure and Scope

Names Recognized Within BIOCKSccooiririiineerereeeeeeeee e 104
Restrictions on Multiple Declarations...........ccooveeererenenenene s 106

Extended Scope: The PUBLIC and EXTERNAL Attributes...........cccccoceeun.e. 107

Scope of Labels and Restrictions 0N GOTOScoceereereeieneeiesee e 110

PL/M-386 Programmer’s Guide Contents Vii

8 Procedures
Procedure DECIAratioNS...........cuvuireeerieieierieeee e 115
PArAMELEIS.....eeeceeceee e e e 116
Typed Versus Untyped ProCedUrEScccvcveeeeerereenesee st seenee s 118
Activating a Procedure: Function References and CALL Statements............ 119
Indirect Procedure ACHIVELION............uoeereieiree e 120
(0010] - 1 o)== TS 122
Exit from a Procedure: The RETURN Statement.........cccoceevvrecerinecnenenne 123
The ProCedure BOGYccoieiuereeieesiese e st see e s ste e sne e ense e s 125
EXGMPIES. ...t nnen 125
The Attributes: PUBLIC and EXTERNAL, INTERRUPT, REENTRANT.... 127
Interrupts and the INTERRUPT Attribute.........cccccvveve s 128
Reentrancy and the REENTRANT Attribute ... vvvvveceeeeecens 129
9 Built-in Procedures, Functions, and Variables
Obtaining Information About Variables..........cccviiiiinini i 135
The LENGTH FUNCLON........cciieiieeee et 135
The LAST FUNCHION ...ttt 136
The SIZE FUNCLION........ocieeececece ettt 136
Explicit Type and Value CONVErSIONS.........coeruiriereriereeneenee e e esese e 137
The PL/M-386 LOW, HIGH, and DOUBLE Functions............c.ccccevuee.. 145
The FLOAT FUNCHION........coiiie ettt 146
The FIX FUNCHONiciicece ettt 146
The INT FUNCLION......cciiiice et 147
The SIGNED FUNCLION.......ccciieiiiiece ettt 147
The UNSIGN FUNCLION ..ottt 148
The Unsigned Binary Data Type Built-in Functions.............ccccccoeereneene 149
Signed Integer Data Type Built-in FUNCHION.ccccovoiiiieniiinecceceeens 149
REAL BUIlt-in FUNCLIONScciiiiicieceeeee et 150
The SELECTOR Built-in FUNCLIONcceeiiiieieeceee e, 150
The POINTER Built-in FUNCLIONcccoviiiciieececeee e 150
The OFFSET BUilt-in FUNCLION........c.cccuiiieececeeeeee e 151
The ABSand IABS FUNCLIONS..........cociieiiiecece e 151
Shift and Rotate FUNCLIONS..........ccveiuieiecieceecece e s 152
ROtation FUNCLIONScc.eciiciiciececce et s 152
Logical-Shift FUNCLIONS.........cccoiiiiieie e 153
Algebraic-shift FUNCHIONS........ccoiiiiieieeeeeeeee e 154
Concatenate FUNCLIONS..........ccveciieiecie e stee et s e e st sreeneens 155
String Manipulation Procedures and FUNCLIONS...........ccocooereienicnienieeee e 156
The Copy String in Ascending Order Procedure...........ccocoeeeeeeicicneenne 157
The Copy String in Descending Order Procedure...........cocceeeeeereneseeneene 157

viii

Contents

The Compare String FUNCLIONccooeiiiiie e
The Find Element FUNCLIONS..........cccoiiieiriceseseees e
The Find String Mismatch FUNCLION ...
The Trandate String ProCeaUre ..o
The Set String to Value Procedure ...
PL/M-386 Bit Manipulation Built-iNS...........c.cooeriiiiiniinieeee e
The Copy Bit String ProCeUIe..........coiereeiieiee e

The Find Set Bit Function ..
Miscellaneous Built-ins.............
The Move Bytes Procedure
The Time Delay Procedure.
The Lock Set Function
The Lock Bit Functions......

POINTER and SELECTOR-related FUNCLIONS.........ccocoviriiieeee e

The Return POINTER Valu

€ FUNCEION......eeiei e

The Return Segment Portion of POINTER Functioncccccvceeeveaens
The Return Offset Portion of POINTER FUNCLIONccoviiiiiieneiene

The Set POINTER Bytesto
WORD16 Built-in Mapping

ZeroVariable........ccooeeveeeiiccieiiceee e

158
159
160
161
162
163
163
163
165
165
166
166
168
169
169
169
169
170
170

10 Features Involving th
Coprocessor

e Target CPU and Numeric

Microprocessor Hardware-dependent Statements.........occoceeeeeveereneneneneseeees
The ENABLE and DISABLE Statements.........ccccoveeeerneeieneneesesesieens

The CAUSE$INTERRUPT
The HALT Statement..........
Microprocessor Hardware Flags

Statement......ccceeeveiiieee e

Optimization and the Hardware Flags.........ccooeveienencnieeeceee
The CARRY, SIGN, ZERO, and PARITY FUNCtions..........ccceoeeererieuenene
The PLUS and MINUS OpErators.......c.cceovereerieriereesieseeieeeeseeeeseesee e

Carry-rotation Functions.....

The Decimal Adjust FUNCLION..........ooeieeieieere e
Microprocessor Hardware REQISLErS.coveeereerere e
The Flags Register Access Variable.......cocooeeeeieieneniieneeeeeee e
The STACKPTR and STACKBASE Variables........ccoveenvncccnniccenn

Microprocessor Hardware 1/0...

The Find Vauein Input Port FUNCLION ...
The AccesS OULPUL POIt ATTaYcoiieieeeieeeeee s
The Read and Store String Procedure............coooovieeeiieninieree e

The Write String Procedure
The Hardware Protection Model
The Task Regigter...............

PL/M-386 Programmer’s Guide

Contents

171
171
172
172
173
173
174
174
174
175
175
175
176
177
177
177
178
179
179
179

The TASKSREGISTER Variable ..o 179
The Global Descriptor Table RegIStErccceeererieeeee e 180
The SAVESGLOBALSTABLE Procedure..........occoeeveeeenericienenennnne 181
The RESTORE$GLOBALSTABLE Procedure..........occoveevieeeneinee. 181
The Interrupt Descriptor Table RegiSter.......cooveeierene e 182
The SAVESINTERRUPTSTABLE Procedure..........ccccveecicveenene. 182
The RESTORES$SINTERRUPTS$TABLE Procedure.........c.cocceeenene. 183
The Local Descriptor Table REgISter......c.ooieieieeeee e 183
The LOCALSTABLE Variable.........ccccoeiinnciinneieece e 183
The Maching StatuS REGISLENooi i 184
The MACHINESSTATUS Variable........cccoveinncincinecee 184
The CONTROLS$REGISTER, DEBUGS$REGISTER, and
TESTSREGISTER BUIlt-iN AITAYSceiereeeierieeneseeee e 184
The CLEAR$TASK$SWITCHEDS$FLAG Procedure..........coeene.. 186
Segment INfFOrMELION.coouiiieie e 186
The GETSACCESSSRIGHTS FUNCLONocveeeevcveecievceeee e 186
The GET$SEGMENTSLIMIT FUNCHON......ccciveieiciiericeeseie e 187
Segment ACCESSIDITITYooueiiiiiee e 188
The SEGMENTS$READABLE FUNCEONcocvcirieiieicceee e 188
The SEGMENTSWRITABLE FUNCLION......ccveiiicieeeiceise e 188
Adjusting the Requested Privilege Level...........ccooiiiininieeeee 189
The ADJUSTSRPL FUNCHONc.cvveveeictceecceeeee e 189
The REAL Math FCHlItYccerririerieiee e 190
Built-ins Supporting the REAL Math Unit.........cccocioiiiiiiinieeeeeeeeee 193
The INITSREALSMATHSUNIT Procedure............coeevvvvveeeeeereresisieiennas 193
The SETSREALSMODE ProCedureccoveveveeeiereeieseesesereessieennas 193
The GETSREALSERROR FUNCLIONc.cvevieiiiccietevcee s 194
Saving and Restoring REAL SEaUS..........cocerereieereneseseeeeee e 194
The SAVESREALSSTATUS Procedure.........ccoeveenereeeneninienerennene 195
The RESTORE$SREALS$STATUS Procedurecccoveeenerieeenerennene 196
INEEITUPE PrOCESSING. . ..cueeteieeeteiieeteeee et ereeee e e e seesbeseesaesaeeneeneeneans 196
The WAITSFORSINTERRUPT Procedure..........ocoeeveeeenerinienerennne 196
WORD16 Mapping for BUilt-iNS...........ccooeiiiirieeeee e 197
INtel486 Processor BUilT-iNScoiiiiiirieieeee e 197
11 Compiler Invocation and Controls

Invocation Syntax 0N IRMX SYStEMS.......ccccevveriierereereereseese e 199

Invocation Examples and Sign-on/Sign-off Messages under the iRMX OS
Invocation Syntax 0N DOS SYSIEIMS.....c.ecviiveeereceeee e sees e 202
Invocation Examples and Sign-on/Sign-off Messages under DOS........... 202
File Usage under DOS and the IRMX OS......ccccovviiriniirene s 203
g oL L T S 203

Contents

201

Work Files.....cccoovenieiennns
Print Files.....ccccooeieeen.
Object Files.......c.ccceeuee
Executable Programs.....

Introduction to Compiler CONLIolS........ccooeiiieieee e

Input Format Contral.............
Code Generation and Object
Segmentation Controls..........

File Controls.........ccooeeevceeeeeie e

Listing Selection and Content CoNtrolS.cceeeeoeeeereeienerese e

Listing Format Contrals........
Source Inclusion Controls.....

Conditional Compilation CONtrolS.........cccceeerieerieneeeereee e
Language Compatibility CONtrolccocoieieieneeeeceeeeee e

Predefined Switches.............
Compiler Control Encyclopedia ...
CODE | NOCODE................
COND | NOCOND...............
DEBUG | NODEBUG..........
BIECT .o
IF| ELSE | ELSEIF | ENDIF
INCLUDEccoveiiiine.

OBJECT | NOOBJECT
OPTIMIZE.......ccooviirine.

OVERFLOW | NOOVERFLOWccotiiiriirieinienieesieseeesie s

PAGELENGTHccooeern.
PAGEWIDTHoooveeeenns
PAGING | NOPAGING........
PRINT | NOPRINT
RAM | ROMoooooeeccerer
SAVE | RESTORE...............
SET | RESET ..coooorrrreresn.

SMALL | COMPACT | MEDIUM | LARGE | FLAT ..ot

SMALL .o

PL/M-386 Programmer’s Guide

Contents

203
204
204
206
207
212
212
212
213
213
213
214
217
217
218
218
218
219
219
219
221
222
227
227
228
228
229
244
244
245
245
245
246
246
247
248
248
249
251
251
251
252
252

Xi

TITLE oo 253

TYPE | NOTYPE ..ottt e 253
WORD32 | WORDILG.......cciuiuiierieiererieienesieie e ses e sasse e sessenesens 253
XREF | NOXREF ...ttt et 256
Program LiStiNG.......ooieeieiieeeeee et s s neen 257
Sample Program LiSting........coeeeieeerieieerese e 257
Symbol and Cross-reference LiStingcccoeoererenenenenieneeeeseeee e 261
Compilation SUMMENYccooiiiieerese e 263

12 Sample Program

11U oo (8T 1o o SRRSO 265
FREQ MOUUIE ..ottt ettt sttt ere e s reenne s 265
OPEN MOUUIE........uoiitieceiceeceecte ettt ettt e ae et e et eaaesreesbeebesanesreas 269
o L I Yo o LU TR 274
INCIUAE IS ...ttt s be bbb e ebeens 280

13 Extended Segmentation Models

OVEIVIBIW ...ttt ettt et b e et b et b et b 283
INEFOTUCTION ...ttt 284
Segmentation Controls Architecture OVErVIeWccoceeeverenieeieeieeee e 285
USING SUDSYSIEIMS.....ceiiiiiiie e e 289
OPEN SUDSYSLEIMS ...t s 294
Closed SUDSYSIEMS......ccuiiieeiieeeieie et s 295
Communication Between SUbSystems...........ccoco e, 295
Y = G USRS 296
Placement of Segmentation CONtrols...........ccooeereneneienieneeeeeeeeee s 299
EXPOrting PrOCEAUIESc.eeeeieeeiieeee et 300
Large MatrixX EXAMPIEc.ooiiiieeee e 302

14 Error and Warning Messages

PL/M Program Error and Warning MESSagES..........cccerererereseresesesseeseeneens 307
Fatal Command Tail and Control Error MEeSSagES.........cccvvevvrreresesresieesennaens 321
Fatal Input/Output Error MESSAgES.......cceevereereeereeeeiesieseeseseestessessessesneeeensens 322
Fatal Insufficient Memory Error MESSAgES......ccveeereereresesesiesessessesseeseeneens 322
Fatal Compiler Failure Error MESSAQES.......cccevvereerereriesieseseeseeseeseeseessesensnens 323
Insufficient Memory Warning MESSAgES.........ccvreereereresesesesesesseeseeneeseens 323

Xii Contents

A PL/M Reserved Words and Predeclared Identifiers
g0 [ox 1) U OO 325

B PL/M Program LimitS ..., 331

C Grammar of the PL/M Language

LEXiCal EIEMENTS.......ccveeveectiecreccie ettt ettt re e et ebe et be b e saeas 336
CRArBCLEr SELS......ccveiieitieitee ittt ettt ettt et e e be s tesaeesbeesreeresnnas 336
TOKENS....vectectteiteecee st e et ettt e et e et e e be e be e beeabestaesbeesbeesbeebeensesneesaeeeneenseenns 336
DEIMITEIS....vi ettt ettt et te e st s beesbeseesaeesaeesbeeteenreens 336
LAENEFIES ottt st e re s 336
NUMENC CONSEANESc.veevieieciee ettt ste et sre e st e re e e eaeeereenns 337
S] 0 S 337
PL/M Text Structure: Tokens, Blanks, and Comments.............ccecveneee. 337

Modules and the Main Program..........cccceeeveieneniesesiesesesesieseeseseseesseseeseens 338

DECIAIAiONS.eeetietieteciectee st cte et et sttt et e e e et eebe e beesbesatesaeesbeesbeenresnnas 339
DECLARE SEAEMENL.......ccviiiicieeciecre ettt st re e 339
Variabl@ EIEBMENESocviceiecreectecece ettt e 339
Label EIEBMENLoocvieieeiece ettt ettt et s ere e re e ns 340
Literal EIEMENESc.eoieeceeeee ettt ettt e re s 340
Factored Variable EIemMentccuecveerieiecie e 340
Factored Label EIEMENT.........c.ocoviiieeiecececeeceeeteee et 340
THE SETUCIUIE TYPE... it cteee ettt s sa et nne 340
Procedure DEFINITIONcovevvieeiciecreccte ettt 341
ATITDULES. ...t be et e eae e b 341

AT e e be et e e ae e bt e abe e be e beeaaeaarens 341
INTERRUPT ...ttt ettt ettt st st sre e 341
LU= 1= o o R 341

UNITS ..ottt sttt et et be e et e et e et e e besaeesbeesbeesbeenteenseeaeeereebeenns 342

BaSiC SEAEMENES......eoitiiiriiiecee ettt ettt et re e e e b 342
ASSIGNMENE SEALEMENEeeeeeeeieeeere e e 342
CALL StAEMENE ...cviiiecieecteecte ettt ere e 342
GOTO SEALEMENL.......eecieeireeeiee e see e srre e see e e e saaeerees 342
NUI SEAEEMENT......cveiiiieieeie ettt st 342
RETURN SEALEMENL.......cccviieiieieecte ettt ettt re e 342
Microprocessor-dependent Statements...........ccevveeeereererieresesiesennnns 343

SCOPING SEALEMENES ..ot e e et ee e e e e e e e 344
SIMpPle DO SEAEMENL......ceeveeere e 344
DO-CASE StatEMENT.......ccviciietieereecrecre ettt ettt 344
DO-WHILE SatEMENLcceiiriectiereereetrecree sttt 344
Iterative DO StAEMENE........ccueeeeereecreere ettt sre e 344

PL/M-386 Programmer’s Guide Contents Xiii

END SEa@mMentc.coiiiecie ettt st 344
Procedure Statement..........ccveiiiie et 344
Conditional ClaUSE........cceovieeeciecece et re s 345
DO BIOCKS.....tietieiecie ettt ettt et ettt st s sre e sreenneenreenns 345
SIMPlEe DO BIOCKS......coueiieieeeee e 345
DO-CASE BIOCKScooiueieiiiieiee et 345
DO-WHILE BIOCKS......cocoiiiiieieie ettt 345
[terative DO BIOCKS.......ccvciiieieciecee ettt 345
0= 0] USRS 346
PIIMAITES ... s s e s re s 346
CONSLANES. ... eeiiieecie et re e e e e e e e s ta e e sseeesaaeennneenes 346
Variable REFEIENCES.....couveei e e 346
LoCation REFEIENCES.........cccviiiicieceece e 346
(0012 = (0] £ TN USRS 346
SErUCIUre Of EXPrESSIONS.....cuveiviieieeetesieeieeieeieeieseesee st seesee e seeseeseeseeseeeeas 347
D Differences Between PL/M Compilers
Differences between PL/M-86 and PL/M-80cccocurueerennereenineeneenienes 349
Compatibility of PL/M-80 Programs and the PL/M-86 Compiler 350
Differences between PL/M-286 and PL/M-86cccvvvreerereerineeneenes 350
Compatibility of PL/M-86 Programs and the PL/M-286 Compiler 351
Differences between PL/M-386 and PL/M-286ccccovvrrereienineerenenes 351
Compatibility of PL/M-286 Programs and the PL/M-386 Compiler 352
E Character Set
F Linking to Modules Written in Other Languages
INEFOTUCTION ..uite ettt sttt seene 361
CalliNg SEQUENCE........ceeeiereese ettt sttt st re e sre e enaenes 363
Procedure ProlOQUEceeeeeuieeeeeeeeeee e see e seesae e st sre et 365
Procedure EPIlOQUEc..cveieiee ettt 367
S0 S 1 g U1 S 368
Segment Name CONVENLIONS.........ccoieieriereresesesese e seesie e seesse e seeseeseessenees 371
C Language Compatibility.........cccoueiriieiirierieeiseeceseees s 372
(D= o g I €T T (= L 1= 373
(0010] - 1 o) - S 373
Compiling C and PL/M MOAUIES.........cccceverirniesese et 377

Xiv

Contents

G Run-time Interrupt Processing

General INfOrMELIONcceiirieiiiee e e 379
The Interrupt Descriptor Tabl.......ccvcvveeeeresere e 380
Procedures and TasKS ..o 380
Interrupt Procedure Prologue and EpilOgUE..........ccocveeeerevierieeeeeeee e 381
INEEITUPE TASKS. ...t cueeueeiestesie et et e e st te st e e e e et st sre e e e enaese e aesaenrenns 384
Exception Conditionsin REAL ArithmetiC.......ccoveveivieecieieiecsereserie s, 386
Invalid Operation EXCEPLION........ccevererere et seee e 388
Denormal Operand EXCEPLIONccvevveverere e 389
A= (o BIAVITo (] =Yoo (0] o [389
OVEIflOW EXCEPLION......ccveeeieciectesie et 389
UNEerflow EXCEPLION.......ccveieriieecie e see et nas 390
PreciSion EXCEPLIONccv ittt enea 390
Writing a Procedure to Handle REAL INterrupts........cccveveveveerereseseseeseenen 391

H Run-time Support for PL/M Applications
Numeric Coprocessor SUPPOrt Libraries........cocoeveveieneneneenieeieeeecseseeee 397
PL/M SUPPOIt LiDraries.o 398
Index 407
PL/M-386 Programmer’s Guide Contents XV

Tables
Table 1-1.
Table 2-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 5-1.
Table 5-2.
Table 5-3.
Table 9-1.

Table 11-1.
Table 11-1.
Table 11-1.
Table 11-4.
Table 11-5.
Table 11-5.
Table 13-1.
Table 13-2.
Table 13-3.

Table E-1.
Table E-1.
Table E-1.
Table E-1.
Table E-1.
Table F-1.
Table F-2.
Table F-3.
Table F-4.
Table G-1.

XVi

Assemblers, Debuggers, and ULIItIES.........cccccevvvevevenese e

PL/M Specia Characters................
Declaration Elements............cccue.....

Compiler Controls........cccceeveeenee.
Compiler Controls (continued)
Compiler Controls (continued)

WORD32 | WORD16 Data Type Mappingccceveeeresrererseeseereeseeseeseens
WORD32 | WORD16 BUuilt-in Mapping.......ccccceverereresereseseseeeeneenens
WORD32 | WORD16 Built-in Mapping (continued)ccccevveveerenennen.
Segmentation Controls and Memory Partitions...........ccccceeveveveeveresennnn,
Segmentation Controls, Register Addresses and Pointer Values...............

Intel 386 and Intel 486 Microprocessor-specific ES Register Segmentation

Controls, Register Addresses and Pointer Values..........ccocvevvvvececeereennne

Character Set.......coooveeveneininenns
Character Set (continued)...............
Character Set (continued)...............
Character Set (continued)...............
Character Set (continued)...............

Stack Representation for PL/M Parameters.........ccoovevvveeneneeesieeseeseenenens
Summary of the Intel 386 Microprocessor Register Usage.......cooveveveenen.
Registers Used to Hold Simple Data TYPESccvveverierereeeeneeeseeeeeeens
Summary of PL/M-386 Segment NamES.........ccccveveevereseseneereseeseesee e

Exception and Response Summary

Contents

10
17
31
46
61
74
79
138
209
210
211
254
255
256
286
287

289
353
354
355
356
358
363
368
370
371
387

Figures

Figure 1-1. 32-hit Protected Mode iRMX Application Development...........ccccccveeenee. 3
Figure 3-1. Successive Byte References of a StruCture........oovvvveeeeceeeevesese v 44
Figure 7-1. Inclusive Extent of BIOCKS..........cccoviereriereerese st 105
Figure 7-2. Sample Program Modules Illustrating Valid GOTO Usagecccoveveneee 112
Figure 7-3. Sample Program Modules Illustrating Valid GOTO Transfers.................. 113
Figure 10-1. The Hardware FlagS REGISIENccvvvveieeeieeeeceses e 176
Figure 10-2. The REAL EITON BYLE.....cccvceeierese st sees et 190
Figure 10-3. The REAL MOAEWOId........cccceivieieeieeeeere et 191
Figure 11-1. Sample Program Using Conditional Compilation (SET contral).............. 215
Figure 11-2. Sample Program Showing the NOCOND Contralcccccvevevrerenrennnnn 216
Figure 11-3. Sample Program Showing the OPTIMIZE(0) Contralcc.ccecvvvevennene. 230
Figure 11-4. Sample Program Showing the OPTIMIZE(1) Contralcccceevvvevennene. 233
Figure 11-5. Sample Program Showing the OPTIMIZE(2) Controlcc.ceevvvevennene. 239
Figure 11-6. Sample Program Showing the OPTIMIZE(3) Contradlccccceevvvevennene. 242
Figure 11-7. Program LiStiNg........cccoiererierieieseseseseeseesieseeseesie e sresseesesaeseeeeseessessesns 258
Figure 11-8. Code Listing (CONtiNUE)ccveeeeeieerieririe et 260
Figure 11-9. Cross-referenCe LiStiNg ...cocvceieriereseeeeieeiesesees e et se s eee e 261
Figure 11-10. Compilation SUMIMAIY........ccccieierieieseseeeeeeseesieseseesse e sseseeseesasssssseses 263
Figure 12-1. Source Code for FREQ MOGUIEcoovevierierieeeieese e et 266
Figure 12-2. Source Code for OPEN ModUIE..........coovvevieveeeeiee e 270
Figure 12-3. Source Code for PRINT MOAUIE........cccvieveienieseeeeeeeeee s 275
Figure 12-4. Include File -- defNS.iNC.....ccccviiiiieece e 280
Figure 12-5. Include File == Udi.iNC......cocviiieiireeceses s 281
Figure F-1. Stack Layout at Point Where a Non-interrupt Procedureis Activated 364
Figure F-2. Stack Layout During Execution of a Non-interrupt Procedure Body 365
Figure G-1. Stack Layout at Point Where an Interrupt Procedure Gains Contral 382
Figure G-2. Stack Layout during Execution of Interrupt Procedure Body 383
Figure G-3. TagWord FOIMEL.........ccceeieeiierereseseseseeee e see e ste e ae e e e seesresneens 393
Figure G-4. Memory Layout of the REAL Save Areain Protected Mode for the

386 MICIOPIOCESSONvveveerreieestestesseeseseesseaessessessessessessessesssessessessessessessenns 395

PL/M-386 Programmer’s Guide Contents XVii

Xviii Contents

Introduction

This chapter introduces the PL/M-386 compiler and explains the process of
developing software for execution by an Intel386™ or Intel486™
microprocessor-based system.

Product Definition

The PL/M-386 compiler is a software tool that translates PL/M source code into a
relocatable object module. The object modules (in OMF386 format) are compatible
with all other OMF386-producing trandators, such as ASM 386, iC-386, and Fortran-
386.

The PL/M-386 compiler translates a PL/M source text file into an object module and
alisting file. Partsor all of a program can be compiled in a single compilation.
Object modules can then be linked or bound in various combinations to form
different applications. These applications can be run on a DOS host or as part of the
iIRMX® Operating System (OS) or its Human Interface layer.

The PL/M-386 compiler also provides a listing output, error messages, and a number
of compiler controlsthat aid in devel oping and debugging programs.

D Note

For information on invoking the compiler, see Chapter 11,
Compiler Invocation and Controls. That chapter covers invocation
on both iRM X and DOS-hosted systems.

PL/M-386 Programmer's Guide Chapter 1 1

Compatible Assemblers, Debuggers, and Utilities

Table 1-1 shows the compatible Intel assemblers, debuggers, and utilities. Figure 1-1
shows the role of these software tools in developing an iIRM X application.

Table 1-1. Assemblers, Debuggers, and Utilities

Name for Intel386 and

Tool Intel486 Processors
assembler ASM386

C compiler iC-386

FORTRAN compiler Fortran-386

debuggers System Debugger (SDB)

System Debug Monitor (SDM)
Soft-Scope 11l Debugger

binder BND386
librarian LIB386
cross-reference MAP386

These tools support modular application development. Refer to the following
publications for further information:

« ASM386 - ASM386 Macro Assembler Operating I nstructions and ASVMI386
Assembly Language Reference

« iC-386-iC-386 Compiler User's Guide

« Fortran-386 - Fortran 386 Compiler User's Guide

+ SDB and SDM - iRMX System Debugger Reference

« Soft-Scope |11 Debugger - Soft-Scope® Debugger User's Guide
« BND386 - Intel 386 Family Utilities User's Guide

« LIB386 - Intel 386 Family Utilities User's Guide

« MAP386 - Intel 386 Family Utilities User's Guide

2 Chapter 1 Introduction

Create and Maintain
Libraries With

LIB386 Bound
@ Modules)~ |
Translate J Bind Object A
With A Files With Using
ASM386 | Linkable BND386 | ’g":’_a“
ption
) @) OMFSSB) © :
Object Usin
9
Write Source] Code 0 load
File With Option
Text Editor | iC-386 Debug Application Y
Source AY © | Software on Target
@ >\ code - i With
U Soft-Scope
l iRMX Target
System
PL/M-386 | % ~ t4
g
> O o
——
Fortran-386
9 Load for On-target
> © — Assembly-language
Debugging Using SDB/SDM
0 With
Bootstrap
Correct Errors Found During Translation Loader
Correct Errors Found During Debugging Q
Combine Into
IRMX 1 Oper_ating Load for On-target
System With Symbolic Debugging With
ICU386] Bootstrap d Soft-Scope]
@ < Loader 1] .
> U Pl U [R
. Target System
D Build U O
Application
System With IRMX Load for Cross-hosted °
BLD386 J Application Symbolic Debugging
System with With —
@ > 32-bit First —=[H]
Level Soft-Scope]
O or 1/0 Job) i
(BLD386 Automatically O
Invoked by Submit File)
Load into Emulation and Analysis
Tools for Cross-hosted Debugging
DOS 5,
Correct Errors Found During Debugging
|:| = ICU-configurable systems only. W-3359

Figure 1-1. 32-bit Protected Mode iRM X Application Development

PL/M-386 Programmer's Guide Chapter 1

Advantages of Using the PL/M Language

PL/M programs are portable, which means that they are easily transferred from one
microprocessor to another. When using PL/M, you need not be concerned with the
instruction set of the target processor. Additionally, there is no need to be concerned
with other details of the target processor, such asregister allocation or assigning the
proper number of bytes for each dataitem. The PL/M-386 compiler does these
functions automatically. PL/M keywords and phrases are close to natural English,
and many operations (including arithmetic and Boolean operations) can be combined
into expressions. This enables the execution of a sequence of operations with just
one program statement. Data types and data structures have functional attributes.
For instance, in PL/M, the program can be written in terms of Boolean expressions,
characters, and data structures, in addition to bytes, words, and integers.

Coding programsin a high-level language rather than assembly language involves
thinking closer to the level used when planning the overall system design. Following
isalist of the advantages of using PL/M, and the applications for which PL/M is best
suited:

« PL/M block structure and control constructs aid and encourage structured
programming.

« PL/M hasfacilities for data structures such as structured arrays and
pointer-based dynamic variables.

« PL/M isatyped language. The compiler does data type compatibility checking
during compilation to help detect logic errors in programs.

« PL/M datastructuring facilities and control statements are designed in alogically
consistent way. Thus, PL/M is agood language for expressing algorithms for
systems programming.

« PL/M isastandard language used for application development on Intel systems.
PL/M programs are compatible across the Intel 386 and Intel 486 family of
Mi Croprocessors.

+ PL/M wasdesigned for programmers (generally systems programmers) who
need access to the microprocessor's features such as indirect addressing and
direct 1/0O for optimum use of all system resources.

In comparison with other languages, PL/M has more features than BASIC and isa
more general-purpose language than either FORTRAN (best suited for scientific
applications) or COBOL (designed for business data processing). PL/M accesses the
microprocessor hardware features more easily than C. Additionally, in comparison to
C, PL/M offersthe ability to nest procedures and the program structureis easier to
maintain.

4 Chapter 1 Introduction

The Structure of a PL/M Program

PL/M isablock-structured language; every statement in a program is part of at least
one block. A block isawell-defined group of statements that begins with a DO
statement or a procedure declaration and ends with an END statement.

A module is alabeled simple DO-block. A module must begin with a labeled DO
statement and end with an END statement. Between the DO statement and the END
statement other statements provide the definitions of data and processes that make up
the program. These statements are said to be part of the block, contained within the
block, or nested within the block. A module can contain other blocks but is never
itself contained within another block. See Chapter 6 for a description of DO-blocks.

Every PL/M program consists of one or more modules, separately compiled, each
consisting of one or more blocks. The two kinds of blocks are DO-blocks and
procedure definition blocks.

A procedure definition block is a set of statements beginning with a procedure
declaration and ending with an END statement. Other declarations and executable
statements can be placed between these points, and are used later when the procedure
isactually invoked or called into execution. The definition block is a further
declaration of everything the procedure will use and do.

PL/M-386 Programmer's Guide Chapter 1 5

Overview of PL/M Statements

The two types of statementsin PL/M are declarations and executable statements. All
PL/M statements end with a semicolon (;).

Declaration Statements

The following is a simple example of a declaration statement:
DECLARE W DTH BYTE;

This statement introduces the identifier W DTH and associates it with the contents of 1
byte (8 bits) of memory. Now, rather than having to know the memory address of
this byte, you can refer to it by the name W DTH.

A group of statements intended to perform afunction (i.e., a subprogram or
subroutine) can be given a name by declaring them to be a procedure:

ADDER_UPPER: PROCEDURE (BETA) BYTE;

The statements that define the procedure follow the semicolon. This block of PL/M
statementsisinvoked from other pointsin the program, and may involve passing
parameters to the program. When a procedure has finished executing, control is
returned immediately to the main program. This capability isthe major feature
enabling modular program construction.

Executable Statements

The following is an example of an executable statement:
CLEARANCE = W DTH + 2;

The two identifiers, CLEARANCE and W DTH, must be declared prior to this executable
statement, which produces machine code to retrieve the W DTH value from memory.
Once the W DTH valueis obtained, 2 is added to it and the sum is stored in the
memory location for CLEARANCE.

For most purposes, it is unnecessary to think in terms of memory locations when
programming in PL/M. CLEARANCE and W DTH are variables, and the assignment
statement assigns the value of the expression W DTH + 2 to the variable
CLEARANCE. The compiler automatically generates all the machine code necessary
to retrieve data from memory, to evaluate the expression retrieved, and to store the
result in the proper location.

6 Chapter 1 Introduction

Executable statements are discussed in the following chapters:

Assignment Statement Chapter 5
CALL Statement Chapter 8
CAUSESINTERRUPT Statement Chapter 10
DISABLE Statement Chapter 10
DO CASE Statement Chapter 6
DO WHILE Statement Chapter 6
ENABLE Statement Chapter 10
END Statement Chapter 6
Executable Functions Chapter 9
GOTO Statement Chapter 6
HALT Statement Chapter 10
|F Statement Chapter 6
Iterative DO Statement Chapter 6
Nested | F Statement Chapter 6
RETURN Statement Chapter 8
Simple DO Statement Chapter 6

Built-in Procedures and Variables

PL/M provides avariety of built-in procedures and variables. Theseinclude
functions such as shifts and rotations, data type conversions, executable functions,
block 1/0, real math, and string manipulation (see Chapters 9 and 10).

Overview of PL/M Expressions

A PL/M expression is made up of operands and operators, and resembles a
conventional algebraic expression.

Operands include numeric constants (such as 3.78 or 105) and variables (aswell as
other types discussed in Chapters 3 and 5). The operatorsinclude + and - for
addition and subtraction, * and/ for multiplication and division, and MoD for
modular arithmetic.

Asin an algebraic expression, elements of a PL/M expression can be grouped with
parentheses.

PL/M-386 Programmer's Guide Chapter 1

An expression is evaluated using unsigned binary arithmetic, signed integer
arithmetic, and/or floating-point arithmetic, depending on the types of operandsin the
expression (see Chapters 3 and 5).

Input and Output

PL/M does not provide formatted 1/0O capabilities like those of FORTRAN, BASIC,
or COBOL. However, PL/M does provide built-in functions for direct 1/O that do not
require operating system run-time support. The PL/M-386 compiler has built-in
functions which allow for single-byte, half-word or word /O, aswell asfor block 1/0
(for strings of bytes, half-words, or single-words). For detailed information on these
1/O functions, see Chapter 10.

8 Chapter 1 Introduction

Language Elements

PL/M-386 programs are free-form, meaning there are no restrictions on where you
place a statement on aline. Y ou can use as many blanks (spaces) as necessary to
format your program for readability.

Character Set

The PL/M-386 source program character set is the following subset of the ASCI|
character set:

A.Z
a..z
0..9

and the following special characters:
=. [()y+-"*,<>:; @% _

and the blank (space), tab, carriage-return and line-feed characters. (Appendix E
indicates if each ASCII character isamember of the PL/M character set and, if so,
the hexadecimal value.)

PL/M does not distinguish between uppercase and |owercase |etters, except in string
constants. For example, the variable names xyz and XYZ are the same. (In this
manual, all PL/M syntax is uppercase, by convention.)

PL/M-386 Programmer's Guide Chapter 2

Special characters have particular meaning in PL/M, as explained throughout this
manual. Table 2-1 summarizes the meaning of special charactersin PL/M.

Table2-1. PL/M Special Characters

Symbol Name Use
= equal sign Two distinct uses:
(1) assignment operator
(2) relational test operator
= assign embedded assignment operator
@ at-sign location reference operator
dot Three distinct uses:
(1) decimal point
(2) structure member qualification
(3) address operator
/ slash division operator
I* beginning-of-comment delimiter
*/ end-of-comment delimiter
(left parenthesis left delimiter of lists, subscripts, some expressions
) right parenthesis right delimiter of lists, subscripts, some expressions
+ plus addition or unary plus operator
- minus subtraction or unary minus operator
' apostrophe string delimiter
* asterisk Two distinct uses:
(1) multiplication operator
(2) implicit dimension specifier
< less than relational test operator
> greater than relational test operator
<= less or equal relational test operator
>= greater or equal relational test operator
<> not equal relational test operator
: colon label terminator
; semicolon statement terminator
, comma list element delimiter
_ underscore significant character in identifier
$ dollar sign Two distinct uses:
(1) non-significant character embedded within number
of identifier
(2) significant as the first character on a control line in a
source file
10 Chapter 2 L anguage Elements

The PL/M compiler treats multiple contiguous blanksin PL/M source programs as
single blanks, by ignoring all the blanks except the first one.

The compiler produces an error or warning message whenever it encounters a
character other than those described above in a source program.

In addition to the source character set, PL/M allows the use of special character sets
(such as Kanji characters), located from 0080H through OOFFH (excluding 0081H).

Tokens, Separators, and the Use of Blanks

The smallest meaningful unit of a PL/M statement is atoken. Every token belongsto
one of the following classes:

« |dentifiers
« Reserved words

« Simplededimiters (al of the special characters, except the dollar sign, are simple
delimiters)

« Compound delimiters (combinations of two special characters):
<> <=, >z, 1=, [*, %]

» Numeric constants

« Character string constants

It isusually clear where one token ends and the next one begins. For example, in the
assignment statement:

EXACT=APPROX* (HEl GHT- 3) / SCALE;

EXACT, APPROX, HEI GHT, and SCALE are identifiers, 3 isanumeric constant, and all
the other characters are simple delimiters.

If adelimiter (ssmple or compound) does not naturally occur between two tokens,
you must separate them with one or more blank(s).

A comment can also be used as a separator.

Blanks can be inserted around any token without changing the meaning of the PL/M
statement. Thus, the assignment statement:

EXACT = APPROX * (HEIGHT - 3) / SCALE;
is equivalent to:
EXACT=APPROX* (HEI GHT- 3) / SCALE;

PL/M-386 Programmer's Guide Chapter 2 11

Identifiers and Reserved Words

| dentifiers name variables, procedures, symbolic constants, and statements.
Statement identifiers are called labels. Identifiers can be up to 31 characters long.
The first character must be al phabetic or the underscore (_), and the remaining
characters may be alphabetic, numeric, or the underscore.

Y ou can use the dollar sign character to improve the readability of an identifier or
constant, but the dollar character is not meaningful to the compiler. Anidentifier or
constant containing a dollar sign is equivalent to the same identifier without the dollar
sign. Note that you must not use a dollar character in a procedure name within a
subsystem definition. See Chapter 13.

Examples of valid identifiers are:

| NPUT_COUNT
X

GAMM

LONG DENTI FI ERNUVBERS

LONG$$$! DENTI FI ER$$$SNUVBERSSS3
_MAIN

| NPUT$COUNT

| NPUTCOUNT

Thelong identifiers are identical to the compiler. | NPUT$COUNT and | NPUTCOUNT
are interchangeable, but are different from | NPUT_COUNT.

| dentifiers must be distinct from reserved words. 1f you want to use PL/M built-in
procedures and variables, the identifiersin your source program must be distinct from
the built-ins' predefined identifiers. Appendix A lists the reserved words and
predefined identifiers.

Constants

A constant is a value that does not change during a program's execution. The three
types of constants are whole-number constants, floating-point constants, and
character strings.

12 Chapter 2 L anguage Elements

Whole-number Constants

Whole-number constants can be binary, octal, decimal, or hexadecimal numbers.
Specify the base of these constants by appending aB, Q, D, or H suffix. The compiler
interprets numbers without a base suffix as decimal numbers. When they encounter
charactersthat are invalid in the specified (or assumed) base, the compiler produces
appropriate messages. If aconstant contains charactersinvalid in the designated
number base, it will be flagged as an error.

In PL/M-386, awhole-number constant can be an 8-bit, 16-bit or 32-bit value. It can
also be a 64-bit value. The range of whole-number constantsis non-negative. (The
minus sign in front of awhole-number constant is not part of the constant.)

Thefirst character of a hexadecimal number must be a numeric digit to avoid looking
like an identifier. For example, write the hexadecimal form of the decimal value 163
as 0A3H (rather than A3H); otherwise the compiler will interpret it as an identifier.

Examples of valid whole-number constants are:
12AH 2 33Q 1010B 55D 0OBF3H 65535 7770 3EACH OF76C05H

Examples of invalid whole-number constants are:

12AF Hexadecimal digits used without an H suffix, and invalid in the default
decimal interpretation.

12AD Thefinal D could be a suffix but the Ais not adecimal digit. If
hexadecimal isintended, afinal His needed.

11A2B Aand 2 are not valid binary digits. If hexadecimal isintended, afinal H
iS hecessary.

2ADGH Gisnot avalid hexadecimal digit.

For example, the maximum whole-number 16-bit constant is:
2**16-1 = 1111$1111$1111$1111B = 177777Q = 65535D = OFFFFH
The maximum whole-number 32-bit constant is:

2%%32-1 = 1111$1111$1111$1111$1111$1111$1111$1111B
= 37777777777Q

4294967295D

OFFFFFFFFH

Floating-point Constants

The presence of adecimal point in adecimal constant creates a floating-point
constant. Floating-point constants are represented in REAL precision (see Duty
Types). Only decimal real constants are allowed.

PL/M-386 Programmer's Guide Chapter 2 13

14

At least one decimal digit (e.g., 0) must precede the decimal point. A fractional part
is optional after the decimal point, as is the base-ten exponent, which isindicated by
the letter E. This exponent must have at least one digit. Note that no fractional
exponents are possible.

In PL/M-386, the range is -2** (+128) to -2** (-126), zero, +2**(-126) to +2**(+128).
Thisrange is approximately -3.4 x 10**38 to -8.4 x 10**(-37), zero, and 8.4 x
10**(-37) to 3.4 x 10**38.

The following are examples of valid floating-point constants:

5.30 176.0 1.88 3. 14159 16. 222.2
53.0E-1 1.760E2 0.188E1 314159.E-5 1.6E+1 2.222E+2
Note that plus signs do not change the meaning of exponents.

The following are examples of invalid floating-point constants:

6 No decimal point

1. 3AH Hexadecimal not allowed in floating-point constants
10.011B Binary not alowed

7.52Q Octal not allowed

4. 8E1AH 2 Only decimal constants in exponents; no hexadecimal, no expressions,
no fractions

Chapter 2 L anguage Elements

Character Strings

Character strings are printable ASCII characters enclosed within apostrophes. There
are two types of character strings: 1) string constants and 2) character constants. A
string constant is used to initialize variables or to pass a pointer. The maximum
length of a string constant is 255. A character constant is used in expressions, and its
value should fit into a double or machine word (32 bits). A string used as a character
constant can contain from one to four characters.

To include an apostrophe in a string, write it as two apostrophes (e.g., the string

"' @ comprises 2 characters, an apostrophe followed by a Q). Vaues 0080H
through O0FFH (excluding 0081H) can be used in a quoted character string. Spaces
are alowed but line-feeds are not. The compiler represents character stringsin
memory as ASCII codes, one 7-bit character code to each 8-bit byte, with a
high-order zero bit. Strings of length 1 transate to single-byte values. Character
congtants of length 2 trandate to 16-bit values, and those of length 3 or 4 trandate to
32-bit values. For example:

"A isequivalentto 41H

"AG isequivalentto 4147H

" AGR isequivaentto 414752H

" AGRX' isequivalentto 41475258H

Therefore, character constants can be used as 8-bit, 16-bit, or 32-bit values.
Character constants longer than 4 characters exceed the 32-bit capacity.

See also Appendix E, Character Set.

Comments

In PL/M, acomment is a sequence of characters delimited on the left by the character
pair / * and on the right by the character pair */ . These delimitersinstruct the
compiler to ignore any text between them and to consider such text as not part of the
program.

A comment can contain any printable ASCII or special character and can aso include
space, carriage-return, line-feed, and tab characters. If you embed acomment in a
character string constant, it becomes part of the constant. A comment can appear
anywhere that a blank character can appear except embedded within a token.

Thefollowing is an example of a PL/M comment:

/*This procedure copies one structure to another.*/

In this manual, comments are presented in lowercase to distinguish them visually
from program code, which is presented in uppercase.

oo

PL/M-386 Programmer's Guide Chapter 2 15

16 Chapter 2 L anguage Elements

Data Declarations, Types,
and Based Variables

In PL/M-386, you can declare symbolic names for variables, constants, procedures
and statements (Iabels). For each symbolic name, there must be one declaration at
the beginning of the block containing the name, or in an outer, enclosing block. A
declaration consists of an identifier, type, attributes and/or location. Multiple
declarations of anamein ablock areinvalid. Required and optional declaration
elements are shown in Table 3-1.

Table 3-1. Declaration Elements

Declaration Must Use Can Use
Variable BYTE, INTEGER, CHARINT, linkage attributes:** PUBLIC or
Names SHORTINT, LONGINT, EXTERNAL; or location
OFFSET, WORD, QWORD, attributes: AT (location
HWORD, DWORD, REAL, reference) variable initialization
STRUCTURE, ADDRESS* attribute: INITIAL (value-list)
Constant type, as above, and constant linkage attributes as above
Names initialization attribute: DATA
(value-list)
Label Names LABEL linkage attributes as above
Macros LITERALLY 'string'

) ADDRESS is equivalent to the OFFSET data type.
Placement is important (see Variable Declaration Statements).

The declaration of avariable or constant identifier must precede use of the identifier
in an executable statement. Although it is hot good programming practice, you can
call areentrant procedure before defining it. Y ou can either explicitly declare a
statement label, or implicitly declare it by attaching it to an executable statement with
a colon character.

PL/M-386 Programmer's Guide Chapter 3 17

Variable Declaration Statements

A DECLARE statement is a nonexecutabl e statement that introduces some object or
collection of objects, associates names (and sometimes values) with them, and
allocates storage if necessary. The most important use of DECLARE is for declaring
variables.

A variable can be ascalar (i.e., asingle quantity), an array, or a structure.

A scalar variable is a single object whose value may not be known at compile time
and may change during the execution of the program.

An array isalist of scalars of the same data type, referred to by one identifier and
distinguished by the subscript associated with each scalar.

A structure is an aggregate of scalars, arrays and/or structures with the same main
identifier. The members of a structure are differentiated from each other by their
own member-identifiers or field names. For example, EMPLOYEES. NAME would
refer to the NAME field within the structure EMPLOYEES.

Sample DECLARE Statements

Note that when using linkage (PUBLI C/ EXTERNAL) and initialization
(DATA/ I NI TI AL) attributes, the order of declaration iscritical. Place linkage
attributes before the initialization attribute, and after the type declaration.

For example:
DECLARE a$p BYTE PUBLIC I NI TI AL(4);
The following statements declare scalars:

DECLARE APPROX REAL;
DECLARE (OLD, NEW BYTE;
DECLARE POl NT WORD, VAL12 BYTE;

The first example declares a single scalar variable of type REAL, with the identifier
APPROX.

The second example declares two scalars, OLD and NEW both of type BYTE. This
kind of statement is called afactored declaration, which is similar to the sequence:

DECLARE OLD BYTE;
DECLARE NEW BYTE;

A factored declaration (for structures and arrays) guarantees that the bytes will be
contiguously located in memory, which may be useful in real-time applications (see
also Combining DECLARE Statements). Separate declaration statements do not
guarantee this.

18 Chapter 3 Data Declarations, Types, and Based Variables

The third example declares two scalars of different types: PO NT is of type WORD,
and VAL12 is of type BYTE.

The following statements declare arrays:

DECLARE DOVAI N (128) BYTE;
DECLARE GAMVA (19) DWORD;

The first example declares the array DOMAI N, with 128 scalar elements of type BYTE.
These elements are distinguishable by subscripting the name DOVAI N, using the range
0to 127 for the subscripts. For example, the third element of DOMAI N can be referred
to asDOVAI N(2) . Thefirst element of every array has subscript O.

The second example declares the array GAMVA, with 19 scalar elements of type
DWORD. The subscripts for this array can range from 0 to 18.

The third example declares a structure with two scalar members:
DECLARE RECORD STRUCTURE (KEY BYTE, | NFO WORD);

The two members are a BYTE scalar that can be referred to as RECORD. KEY and a
WORD scalar that can be referred to as RECORD. | NFO. The word named by
RECORD. | NFOis the second and third bytes of this structure.

Structures are discussed in further detail in Chapter 4.

Results of Variable Declarations
Valid variable declarations result in the following:
« Thenameisgiven a unique address.
- Thevariableis considered to have the attributes declared.

All subsequent uses of the variable in the block where it is declared refer to the same
address (except for based variables, discussed in Based Variables).

A valid variable declaration also requires all references to the variable to conform to
the rules for the current attributes (i.e., those attributes having priority in the current
block). Thus, the compiler can flag alarge variety of errors caused by incompatible
references within the current block. The variable reference must be consistent with
the variable declaration.

PL/M-386 Programmer's Guide Chapter 3 19

Combining DECLARE Statements

20

A separate DECLARE statement is not required for each declaration. For example,
instead of writing the two DECLARE statements:

DECLARE CHR BYTE INITIAL (" A);
DECLARE COUNT | NTEGER;

Both declarations can be written in a single DECLARE statement, as follows:
DECLARE CHR BYTE INITIAL (' A), COUNT | NTEGER;

This declare statement contains two declaration elements, separated by acomma. A
declaration element isthe text for declaring one identifier (or one factored list of
identifiers). Every DECLARE statement contains at |east one declaration element. If a
DECLARE statement contains more than one declaration element, they are separated
by commas.

Most of the examples shown previoudly have only one declaration element in each
DECLARE statement. In the preceding example, the text CHR BYTE | NI Tl AL
(" A") isone declaration element; the text COUNT | NTEGER is another.

Another way of combining declaration elementsis called afactored declaration as
indicated above in this section. For example, the non-factored declarations:

DECLARE A BYTE, B BYTE;
DECLARE C WORD, D WORD;
DECLARE E DWORD, F DWORD;

can be combined as:
DECLARE (A B) BYTE, (C, D) WORD, (E F) DWORD;

In each factored declaration, the allocated locations are contiguous. Elements
declared in a nonfactored declaration statement are not necessarily contiguous.

Use factored declarations if the order in which variables are allocated is important.

Variables declared in afactored declaration (i.e., variables within a parenthesized list
that are not based, are not used as parameters, or are not EXTERNAL), are stored
contiguoudly in the order specified. (If abased variable occursin a parenthesized list,
the variable isignored when storage is alocated.)

The declaration elementsin a single DECLARE statement are independent of each
other, asif they were declared in separate DECLARE statements.

Chapter 3 Data Declarations, Types, and Based Variables

Initializations

Initialization guarantees that the variables being initialized have a particular value
before program execution begins. Every constant should beinitialized. Variables
can also beinitialized. There are no default values for constants or variables. Of
course, variables can be initialized by an assignment statement such as the following:

Pl = 3.1415927; /* Pl nmust first be declared REAL */
VARLI3 = 10; /* VAR13 nust be declared earlier */

However, in PL/M-386, the compiler can set up these values during the compilation
rather than using both instruction space and execution time to initialize variablesin
the program.

There are two kinds of compile-time initializations: | NI TI AL, used with variables,
and DATA, used for constants. (DATA isexplained in greater detail later in this
section.) In both initiaizations, the initialization attribute is placed after the typein
the declaration. For example:

DECLARE FAM LY WORD INITIAL (2);

Additionally, when using a linkage attribute (PUBLI C/ EXTERNAL), place the linkage
attribute after the type declaration and before the initialization attribute.

I NI TI AL causesinitialization to occur during program loading for variables that have
storage allocated for them. Such variables can subsequently be changed during
execution (just as any other variable). These variableswill not be reinitialized on a
program restart.

The following rules apply to both | NI TI AL and DATA:
e | NI TI AL and DATA cannot be used together in the same declaration.

e | NI TI AL can occur only in declarations at the outer level of amodule. DATA,
however, can occur in declarations at any level.

« Noinitiaizations are permitted with based variables, formal parameters (see
Chapter 8), or with the EXTERNAL attribute (see Chapter 7).

« Either | NI TI AL or DATA can follow use of the AT attribute. However, if thisuse
of I NI TI AL or DATA causes multiple initializations, the result cannot be
predicted.

PL/M-386 Programmer's Guide Chapter 3 21

- Theinitializing value should fit into the space allocated by the datatype. The
only exception isinitialization of HWORD when the offset is derived with a dot
operator. For example:

DECLARE HH HWORD | NI TI AL (. B)

In this case, the real offset istruncated to give the lower 16 bits. A warning
message is issued when an OFFSET value is truncated.

The general form of the | NI TI AL attributeis as follows:
I NI TI AL (val ue-1Iist)
Where:
val ue-1li st is a sequence of values separated by commas.

Values are taken one at atime from the value list and used to initialize the individual
scalars being declared. The initialization is performed in the same manner as an
assignment. Initial values for members of an array or structure must be specified
explicitly. For character string constants, the characters are taken one at atimeto
initialize an 8-bit scalar, two at atime to initialize a 16-bit scalar, four at atime to
initialize a 32-bit scalar, and eight at atimeto initialize a 64-bit scalar.

The expressions used with the | NI TI AL attribute have the following restrictions:

« For real variables only: An expression, which can contain a unary + or -
operator, can only be a single floating-point constant which can be used to
initialize a REAL scalar only.

« For PO NTER variables only: A restricted expression can be alocation reference
formed with the @operator, which must refer to a variable already declared or to
aconstant list.

« For al other types (except SELECTOR): A restricted expression can be a constant
expression containing no operators except + or -. A constant expression has only
whole-number constants as operands (e.g., 2048, 256+5), as explained in Chapter
5. The constant expression is evaluated asiif it were being assigned to the scalar
being initialized, using the rules described in Chapter 5.

« For OFFSET or WORD variables only: A constant expression containing only the +

and - operators, and operands that can be whole-number constants and/or ".
location references. |If the expression containsa"." location reference, only the
+ operator can precedeit. Any combination of + and - operators can follow the

" location reference. For example: 5+. xyz- 10.

Chapter 3 Data Declarations, Types, and Based Variables

The declaration:

DECLARE THRESHOLD BYTE I NI TI AL (48);
declares the BYTE scalar THRESHOLD and initializes the scalar to a value of 48.
The declaration:

DECLARE EVEN (5) BYTE INITIAL (2, 4, 6, 8, 10);

declaresthe BYTE array EVEN and initializesits five scalar elementsto 2, 4, 6, 8, and
10, respectively.

The declaration:

DECLARE COORD STRUCTURE (HI GH$BOUND \ORD,
VALUE (3) BYTE,
LOWSBOUND BYTE) INITIAL (302, 3, 6, 12, 0);

declares the structure COORD and initializes it as follows:

COORD. H GH$BOUND to 302
COORD. VALUE(0) to 3
COORD. VALUE(1) to 6
COORD. VALUE(2) to 12
COORD. LOASBOUND to 0

If astring occursinthe valueligt, it istaken apart from left to right and the pieces are
stored in the scalars being initialized. One character is stored in each BY TE scalar,
two characters in each WORD scalar, and four in each DWORD scalar. For
example:

DECLARE GREETI NG (5) BYTE AT (@) INITIAL (' HELLO);

causes GREETI NG 0) to beinitialized with the ASCII code for H, GREETI NG(1)
with the ASCII code for E, and so on.

All the examples shown previously have had value lists that match up one-for-one
with the scalars being declared. The valuelist can have fewer elements than are
being declared. Thus:

DECLARE DATUM (100) BYTE INITIAL (3, 5, 7, 8);

will work. Thefirst four elements of the array DATUMare initialized with the four
elementsin the value list, and the remainder of the array isleft uninitialized.
However, the value list cannot have more elements than are being declared.

The Implicit Dimension Specifier

Often, when initializing an array, you want the array to have the same number of
elements asthe value list. This can be done conveniently by using the implicit

PL/M-386 Programmer's Guide Chapter 3 23

24

dimension specifier in place of an ordinary dimension specifier (a parenthesized
congtant). The implicit dimension specifier has the form:

(*)
Also use the implicit dimension specifier to define an external or based array whose
precise number of elementsis either unknown or insignificant. Thus the declaration:
DECLARE FAREWELL(*) BYTE PUBLIC I NI TI AL (' GOODBYE, NOW);

declares apublic BYTE array, FAREWEL L, with enough elements to contain the string
' GOODBYE, NOW (namely 12), and initializes the array elements with the characters
of the string. To reference this array in another program module, declare it as
follows:

DECLARE FAREWELL(*) BYTE EXTERNAL;
See Chapter 7 for more information about PUBLI C and EXTERNAL attributes.

Notethat the | NI TI AL and DATA val ue- | i st s must not be present when the

implicit dimension specifier is used with an external array; otherwise, | NI TI AL and

DATAval ue- i sts are required. Also, the LENGTH, LAST, and Sl ZE built-ins

cannot be used on an external array that was declared with the implicit dimension

specifier.

The following is an example of an implicit dimension in a based declaration:
DECLARE X BASED P(*) BYTE;

Theimplicit dimension specifier cannot be used after the parenthesized list of
identifiersin afactored declaration (unlessit is declared EXTERNAL). Additionally,
an implicit dimension specifier cannot be used to specify an array that is a member of
astructure.

Theimplicit dimension specifier can be used with any value list; it is not restricted to
strings.

Chapter 3 Data Declarations, Types, and Based Variables

Names for Execution Constants: the Use of DATA

A variable isthe name of a single dataitem intended to be used and altered by a
program. If the variable is not atered during execution, it is a constant.

For example, the formulafor the circumference of acircle (R x 2 x pi) or (radius x 2 x
pi) could be writtenin PL/M as:

C=R* 2.0 * 3.14159;

in which C and Rwould be variables. The declarations for C and R would have to
precede the executable statement, and could appear as:

DECLARE (C, R) REAL;

If pi isused often enough, simplify writing of statements by using PI to declare a
symbolic name with that value as follows:

DECLARE Pl REAL DATA (3.1415927);
An array of constants requires alist of values. For example:
DECLARE FI BONACCI (9) BYTE DATA (0,1,1,2,3,5,8,13,21);

The form and use of the DATA initialization isidentical to that of | NI TI AL except for
the following differences:

« DATA causes storage to be allocated in the program's constant data segment. The
content and meaning of the name cannot be changed during execution. The
name should never appear on the left-hand side of an assignment statement. This
is not the case with | NI TI AL.

- DATAInitializations can be used in declarations at any block level in the
program. | NI TI AL can occur only at the module level, that is, inside the
DO-block that is the module itself, and outside any sub-blocks that the module
may contain.

« |If thekeyword DATA isused in a PUBLI C declaration when compiling with the
ROM option, DATA must also be used in the EXTERNAL declaration of program
modules that referenceit. However, noval ue- i st can be used since the data
isdefined elsewhere. | NI TI AL cannot be combined with EXTERNAL.

« Useof the AT attribute forces a name to be associated with a specific memory
location, which can defeat the purpose of the DATA initidization. Thiswill not
happen with | NI TI AL unless the variables and locations are explicitly redefined
using multiple ATs.

« If thefirst declaration has a datainitialization, then the variable that is AT that
location is also referred to as DATA, i.e., cannot have a value assigned into it.

PL/M-386 Programmer's Guide Chapter 3 25

Types of Declaration Statements

Compilation Constants (Text Substitution):
The Use of LITERALLY

26

If the program is large enough to have many declarations, declaring a compilation
congtant will save time at the keyboard, as follows:

DECLARE DCL LI TERALLY ' DECLARE' ;

Thereafter, during compilation, every time DCL appears alone (not as part of aword),
the full string DECLARE will be substituted by the compiler. Subsequent declarations
can be written asfollows:

DCL AREA REAL;
DCL Sl ZE WORD;

A declaration using the reserved word LI TERALLY defines a parameterless macro for
expansion at compile-time. Declare an identifier to represent a character string,
which will then be substituted for each occurrence of the identifier in subsequent text.
This expansion will not take place in strings or constants. The form of the
declaration is:

DECLARE identifier LITERALLY 'string';
Where:
identifier isany valid PL/M identifier.

string isasequence of arbitrary characters (limited by the size of the
symbol table) from the PL/M set (except an apostrophe).

An apostrophe can be included in a string by writing it as two consecutive
apostrophes.

Chapter 3 Data Declarations, Types, and Based Variables

The following example illustrates another use of LI TERALLY:
DECLARE TRUE LI TERALLY ' OFFH , FALSE LI TERALLY '0';

DECLARE ROUGH BYTE;
DECLARE (X, Y, DELTA, FINAL) REAL;

ROUGH = TRUE;
DO WHI LE ROUGH;
X = SMOOTH (X, Y, DELTA);
/* SMOOTH is a procedure decl ared el sewhere. */
IF (X-FINAL) < DELTA THEN
ROUGH = FALSE;
END;

Thisexample of aLl TERALLY declaration defines the Boolean values TRUE and
FALSE in amanner consistent with the way PL/M handles relational operators (see
Chapter 5). Literal substitution for fixed values makes a program more readable.

LI TERALLYs can aso be used to declare quantities that are fixed for one
compilation, but are subject to change from one compilation to the next. Consider
the following example:

DECLARE BUFFER$SI ZE LI TERALLY ' 32';
DECLARE PRI NT$BUFFER(BUFFER$SI ZE) WORD;

PRI NT$BUFFER(BUFFER$SI ZE - 10) = 'G ;

A future change to BUFFER$SI ZE can be made in one place, at the first declaration,
and the compiler will propagate the change throughout the program during
compilation. This eliminates the need to search the program for the occurrences of
32 that are BUFFER$SI ZE references and not some other reference to 32.

PL/M-386 Programmer's Guide Chapter 3 27

Declarations of Names for Labels

A label marksthe location of an instruction. Labels are permitted only on executable
statements, not on declarations.

A name can be declared as alabel both explicitly and implicitly. Explicit label
declarations are used mainly to enable module-to-module references (see Chapter 7).
The three explicit label declarations have the following formats:

DECLARE PART3 LABEL;
DECLARE START1 LABEL PUBLIC; /* for internodul e reference */
DECLARE PHASE2 LABEL EXTERNAL; /* for internodule reference */

Therulesfor explicit 1abel declarations are discussed in detail in Chapter 7.

Inimplicit label declarations (used more commonly than explicit label declarations),
the name s placed at the very beginning of the executable statement to which the
name is supposed to point. For example:

START2: ALPHA = 127;

This statement defines the label START2 as pointing to the location of the PL/M
instruction shown. |f this block has no explicit declaration of START2, such asthe
following:

DECLARE START2 LABEL;

then the compiler takes the definition of START2 as an implicit declaration as well as
adefinition, asif the declaration had occurred at the start of the last simple DO or
procedure statement. If thereisan explicit declaration, then the actual placement of
the label remains simply a definition.

Labels are used to indicate significant instructions or the starting point of instruction
sequences. Labels can be useful reference points for understanding the parts of a
program, or targets for the transfer of control during execution (as discussed under
GOTOand CALL in Chapter 6).

Results of Label Declarations

28

Valid label declarations result in the following:
« The declared name can be used to point to an executable instruction.
» Theuse of the declared name as avariablein its block is disallowed.

« |If thelabel isalso defined inits block by appearing in an executable statement,
the address of that statement will be assigned as the value of the label.

Chapter 3 Data Declarations, Types, and Based Variables

Declaration for Procedures
To declare a procedure, give its name with a statement of the form:
name: PROCEDURE

followed optionally by parameters, type and/or attributes. The definition of the
procedure then follows. The procedure definition isthe set of statements declaring
items used in the procedure (including any parameters) and the executable statements
of the procedure itself. The definition ends with an END statement, optionally
including the procedure name.

The complete declaration of a procedure includes all the statements from the
PROCEDURE statement through the END statement. This definition/declaration must
appear before the procedure name is used in an executable statement, just as variable
and constant names must be declared before their use.

The only exceptions arise when the full definition may appear in another separately
compiled module where it is declared PUBLI C, or when a procedure has been
declared REENTRANT. A PUBLI C procedure can be used (called) only if the calling
module meets the following requirements:

1. The procedure has been declared with the EXTERNAL attribute (so the linker or
binder will search for it).

2. Eachformal parameter the procedure uses has been declared so the compiler can
verify correct usage when this module invokes the procedure. End thislocal
declaration with an END statement.

For example:

SUMMER: PROCEDURE (A, B) EXTERNAL;
DECLARE A WORD, B BYTE;
END SUMVER;

See Chapter 7 for details on intermodule references. See Chapter 8 for details on
procedure definition and use.

PL/M-386 Programmer's Guide Chapter 3 29

Data Types

Data types apply not only to variables, but to every value processed by a PL/M
program. Thisincludes values returned by procedures as well as values calculated by
processing expressions. Data type specifications determine the value an object can
have, how thisvalueis stored in memory, and the operations that can be used on the
value.

The PL/M-386 compiler recognizes five classes of data, each of which has one or
more data types.

There are several unsigned binary number types. BYTE (8-bit number), HAORD
(16-bit number), WORD (32-bit humber), and DWORD (64-bit number). The OFFSET
type is a 32-bit number that represents the offset portion of a pointer, which hasits
own type: PO NTER. (The PO NTERtypeitself is also recognized.) Note that the
compiler controls WORD32 and WORD16 automate mapping 32- and 16-bit types.
These controls are discussed in Chapter 11.

There are four signed integer datatypes: | NTEGER (32-bit number); CHARI NT (8-bit
number); SHORTI NT (16-bit number).

PL/M-386 recognizes the floating-point data type REAL, for signed 32-bit numbers.

Throughout this manual, the data types are referenced according to the data type
class. Table 3-2 summarizes the data type classes for the Intel 386 and I ntel486
microprocessors. See the sections at the end of this chapter for a discussion on the
PL/M-386 compiler's WORD32| WORD16 mapping.

|:| Note

Although the PL/M-386 compiler assumes a 32-bit word it also
accepts PL/M-286 code asinput. PL/M-286 code can take
advantage of the 32-bit data type provided by the Intel386 and
Intel486 microprocessors when compiled with the PL/M-386
compiler.

30 Chapter 3 Data Declarations, Types, and Based Variables

Table 3-2. Data Types

Data Type and Value

Unsigned Binary
Number

Description

BYTE

8-bit number ranging from 0 to 255.
Occupies one byte of memory.

HWORD

Occupies two contiguous bytes of memory.
The least significant 8 bits are stored in the lower address.

WORD

32-bit number ranging from 0 to 4,294,967,295.
Occupies two contiguous HWORDs of memory.
The least significant 16 bits are stored in the lower address.

DWORD

64-bit number ranging from 0 to (2**64) -1.
Occupies two contiguous WORDs of memory.
The least significant 32 bits are stored in the lower address.

OFFSET

32-bit number that represents the offset portion of a POINTER.
(ADDRESS supported by PL/M-80 and PL/M-86/286, is equivalent to
OFFSET.)

SHORTINT

16-bit number from -32768 to +32767 occupies contiguous bytes of
memory. The least significant 8 bits are stored in the low address.
Internally stored in two's complement notation.

INTEGER

32-bit number ranging from -2,147,483,648 to +2,147,483,647.
Occupies four contiguous bytes of memory. The least significant 16
bits are stored in the low address. Internally stored in two's
complement notation. WORD32's LONGINT is equivalent to
INTEGER.

CHARINT

8-bit number ranging from -128 to +127. Occupies one byte of
memory. Internally stored in two's complement notation.

Real Numbers

Description

REAL

Signed, floating-point number. Occupies four contiguous bytes of
memory.

Pointers Description
POINTER The value is the address of the memory storage location.
Consists of a segment selector portion and an offset portion.
Selectors Description
SELECTOR The value is equivalent to the segment selector portion of a POINTER.

Can be used as the base of a based variable.

PL/M-386 Programmer's Guide

Chapter 3

31

Unsigned Binary Number Variables: Unsigned Arithmetic

32

Unsigned arithmetic is used to perform any arithmetic operation on unsigned binary
number variables. All of the PL/M operators can be used with these data types.
Arithmetic and logical operations on such variables yield aresult of one of the
unsigned binary number types, depending on the operation and the operands.
Relational operations always yield atrue or false result of type BYTE.

With unsigned arithmetic, if alarge value is subtracted from a smaller one, the result
isthe two's complement of the absolute difference between the two values. For
example, if aBYTE value of 1 (00000001 binary) is subtracted from a BYTE value of
0 (00000000 binary), the result isaBYTE value of 255 (11111111 binary).

Also, the result of adivision operation is always truncated (rounded down) to awhole
number. For example, if an HWORD value of 7 (0000000000000111 binary) is divided
by aBYTE value of 2 (00000010 binary), the result is an HWORD value of 3
(0000000000000011 binary).

When declaring a variable that may be used to hold or produce a negative result, it is
advisable to make the variable either a signed integer or real. If thevariableis
supposed to hold or produce a non-integer, it must be declared as REAL. Use of the
appropriate data types will reduce the occurrences of incorrect results from arithmetic
operations (see Chapter 5).

Chapter 3 Data Declarations, Types, and Based Variables

INTEGER Variables: Signed Arithmetic

Thesign bitis0if thel NTEGER value is positive or zero, and 1 if the value is
negative. The magnitude is given in two's complement notation.

Signed Arithmetic

For the Intel 386 and I ntel 486 microprocessors, arithmetic operations on signed
variables use 32-bit signed arithmetic to hold signed intermediate or final results.
Thus, addition and subtraction always produce mathematically correct results if
overflow does not occur. (See also the OVERFLOW control in Chapter 11.)
Relational operations are signed arithmetic comparisons that yield atrue or false
result of type BYTE.

However, as with unsigned binary number operands, division produces only an
| NTEGER result. The result is rounded toward zero (i.e., down if theresult is
positive, up if the result is negative).

Only the arithmetic and relational operators can be used with signed operands.
Logical operators are not allowed except for constant expressions within cast
parentheses (see Chapter 5).

REAL Variables: Floating-point Arithmetic

The value of aREAL variableis a signed floating-point number that occupies four
contiguous bytes of memory, which may be viewed as 32 contiguous bitsin the
single precision format. The bits are divided into fields as follows:

SIGN

EXPONENT SIGNIFICAND

3130 2423 16 15 8 7 0
0OSD567
The byte with the lowest address contains the least significant 8 bits of the

significand, and the byte with the highest address contains the sign bit and the most
significant 7 bits of the exponent field.

Thesign bit is 0 if the REAL valueis positive or zero, and 1 if the REAL valueis
negative.

The exponent field contains a value offset by 127. In other words, the actual
exponent can be obtained from the exponent field value by subtracting 127. This
fieldisall Osif the REAL valueis zero.

PL/M-386 Programmer's Guide Chapter 3 33

The significand contains the binary digits of the fractional part of the REAL value
when this part is represented in binary scientific notation. Thisfieldisall Osif the
REAL valueis zero.

Operations on REAL operands use signed floating-point arithmetic to yield aresult of
type REAL. Theimplementation guarantees that the result of each operation isthe
closest floating-point number to the mathematical real-number result (if overflow or
underflow does not occur). The relational operators and the arithmetic operators +, -,
*, and/ can be used with REAL operands. the MOD operator and the logical operators
are not allowed. Arithmetic operationsyield aresult of type REAL and relational
operations yield atrue or false result of type BYTE.

The PL/M compiler extends the utility of the REAL data types by holding
intermediate results in the numeric coprocessor's temporary-real format (80-bit).
Thisformat preserves 64 bits of precision and the full range of representable
numbers. The exponent in thisformat is 15 bits instead of 8 in the single precision
format.

The increased exponent range greatly reduces the likelihood of underflow and
overflow, and eliminates roundoff as a source of error until the final assignment of
the result is performed. Underflow, overflow, and roundoff errors are probable for
intermediate computations as well asin the final result. For example, an intermediate
underflow result might later be multiplied by a very large factor, providing afinal
result of acceptable magnitude.

Examples of Binary Scientific Notation

1. Consider the following binary number (which is equivalent to the decimal value
10.25):

1010. 01B

The dot (.) in this number isabinary point. The same number can be
represented as:

1.01001B * 2**3

Thisisbinary scientific notation, with the binary point immediately to the right
of the most significant digit. The digits 01001 are the fractional part, and 3 isthe
exponent. Thisvalue would be represented in the single precision format as
follows:

« Thesign bit would be 0, because the value is positive.
« The exponent field would contain the binary equivalent of 127+3=130.

« Theleftmost digits of the fraction field would be 01001, and the remainder
of thisfield would be all Os.

34 Chapter 3 Data Declarations, Types, and Based Variables

The complete 32-bit representation would be:
0 10000010 010010 0O000000000000000

and the contents of the four contiguous memory bytes would be as follows:

highest address: 01000001
00100100
00000000
lowest address: 00000000

Note that the most significant digit is not actually represented, because by
definition it isa 1 unlessthe REAL valueiszero. If the REAL valueis zero,
the entire 32-bit representation is all Os.

2. Consider the fraction 1/16, or 0.0625. In binary, itis:
1. 0000B * 2**(-4)

In single precision format, the actual exponent -4 would be represented as 123
(127-4), and the fraction field would contain al 0s.

In the single precision format, the largest possible value for avalid exponent
field is 254, which corresponds to an actual exponent of 127. Therefore, the
largest possible absolute value for a positive or negative REAL valueis:

1.1111211211121121211121121111B * 2**127
or approximately 3. 37 * 10**38.

The lowest permissible exponent field value for a non-zero REAL valueis 1,
which corresponds to an actual exponent of -126. Therefore, the smallest
possible absolute value for a positive or negative REAL valueis:

1.0B * 2**(-126)
or approximately 8. 43 * 10** (- 37).

PL/M-386 Programmer's Guide Chapter 3 35

POINTER Variables and Location References

36

The value of a PO NTER variable is the address of the microprocessor's storage
location and consists of a segment selector portion (see Chapter 9) and an offset
portion.

The bits are divided as follows:

}7 SELECTOR ————

I I I
INDEX T RPL OFFSET % S
| | |
/

47

40 39 34333231 24 23 0

0OSsD577

PO NTER variables are important as bases for based variables.

Only the relational operators for equality and inequality (= or < >) can be used with
PO NTER operands, yielding atrue or false result of type BYTE. No arithmetic or
logical operations are allowed (see Chapter 5).

A PO NTER can be viewed as a structure of SELECTOR and OFFSET rather than a
scalar. Therefore, arithmetic with PO NTERS (e.g., PTR+1) isillegal.

The value of a PO NTER variable can be created or changed in the following ways:

The variable can be initialized when declared, using | NI TI AL or DATA with an
address created with .

The variable can be assigned an address created via the @operator (described in
the following section). Thisisthe most commonly used method.

The variable can be assigned the value of a PO NTER variable or function
(including NI L, described in Chapter 9).

The variable can be assigned a value generated by the BUI LD$PTR function (also
described in Chapter 9).

PO NTER type conversion (cast). Changing from one value to another is
different from the PO NTER built-in function (see Chapter 9).

In SMALL RAMmodel, the POl NTER is actually the offset portion only. In this
case, al operations on the PL/M-386 OFFSET data type can be used, including
arithmetic.

Chapter 3 Data Declarations, Types, and Based Variables

The @ Operator

A location reference is formed with the @operator. A location reference has avalue
of type PO NTER, that is, alocation address. An important use of location references
isto supply values for PO NTER variables.

The basic form of alocation referenceis as follows:
@vari abl e-ref
Where:
vari abl e-ref isthename of avariable.
The value of thislocation reference is the actual run-time location of the variable.

Thevari abl e- ref may also refer to an unqualified array or structure name. The
pointer value is the location of the first element or member of the array or structure.

Consider the following declarations:

DECLARE RESULT REAL;
DECLARE XNUM 100) BYTE;
DECLARE RECORD STRUCTURE (KEY BYTE,
| NFO(25) BYTE,
HEAD POl NTER) ;
DECLARE LI ST(128) STRUCTURE (KEY BYTE,
| NFQ(25) BYTE,
HEAD POl NTER) ;

The @RESULT isthe location of the REAL scalar RESULT, and @XNUM 5) isthe
location of the 6th element of the array XNUM @NUMis the location of the beginning
of the array, that is, the location of the first element (element 0).

The RECORD STRUCTURE declares a byte called KEY followed by 25 bytes called
I NFQ(0), | NFQ(1) , and so on, followed by the PO NTER variable named HEAD.
Because KEY, | NFO, and HEAD are all declared part of the RECORD structure, their
contents must be referred to as RECORD. KEY, RECORD. | NFQ(0), . . . ,
RECORD. | NFQ(24) , and RECORD. HEAD.

Refer to the addresses of these elements of the RECORD structure by using the @
operator. @ECORD. HEAD is the location of the POINTER scalar RECORD. HEAD and
@RECORD is the location of the structure, which is the same as that of the BYTE scalar
RECORD. KEY. @RECORD. | NFOisthe location of the first element of the 25-byte
array RECORD. | NFO, whereas @GRECORD. | NFQ(7) isthe location of the 8th element
of the same array.

PL/M-386 Programmer's Guide Chapter 3 37

LI ST isan array of structures. The location reference @.| ST(5) . KEY isthe location
of the scalar LI ST(5) . KEY. Notethat @1 ST. KEY isillegal because it does not
identify a unique location (i.e., the KEY of which LI ST).

The location reference @.1 ST(0) . | NFQ(6) isthe location of the scalar
LI ST(0). I NFQ(6) . Also, @Q.I ST(0). | NFOisthelocation of the first element of
the same array (i.e., the location of the array itself).

A specia case exists when the identifier used asvari abl e-r ef isthe name of a
procedure. This procedure must be declared at the outer level of the program
module. No actual parameters can be given (even if the procedure declaration
includes formal parameters). The value of the location reference in this case isthe
location of the entry point of the procedure. (See Chapter 8 and Appendices F

and G.)

Storing Strings and Constants via Location References

38

Another form of location referenceis the following:
@ constant list)

Where:

constant |i st
is a sequence of one or more BYTE constants separated by commas and
enclosed by parentheses.

When this type of location reference is made, space is allocated for the constants.
The constants are stored in this space (contiguously, in the order given by the list),
and the value of the location reference is the location of the first constant. If RAMIS
specified on the compiler invocation command, constants are stored in the DATA
segment. If ROMis specified on the compiler invocation command, constants are
placed in the CODE segment (see Chapters 11 and 13).

Valuesin the constant list are treated asif they werein aBYTE array initialization
list.

Strings can be included in the list. For example, if the operand:
@' NEXT VALUE')

appears in an expression, it causes the string' NEXT VALUE' to be stored in memory
(one character per byte, thus occupying 10 contiguous bytes of storage). The value of
the operand is the location of the first of these bytes; in other words, it is a pointer to
the string.

Chapter 3 Data Declarations, Types, and Based Variables

OFFSET Data Type and the Dot Operator

A dot operator is provided for compatibility with PL/M-80 programs. The dot
operator (.) is similar to the @operator, but produces an address of type WORD. This
address represents an offset in the current data segment (for variables) or in the
current code segment (for procedures). Use this address with caution, because it can
produce unexpected resultsin a PL/M program that contains more than one data
segment or more than one code segment.

In a PL/M-386 program, wherever WORD can be used, OFFSET can also beused. The
main difference between the two typesisin casting.

To create or change the value of an OFFSET variable, it can be assigned an OFFSET
variable or function, or assigned the result of the built-in function OFFSET$COF, or
OFFSET type conversion, or the dot operator (see Chapter 9).

SELECTOR Variables

The value of a SELECTOR variable is equivalent to the segment selector portion of a
PO NTER, and can a so be used as the base of a based variable.

In PL/M-386, the hits of the SELECTOR portion of a POl NTER are shown below:

INDEX 'II' RPL
| |

47

41 40 34 33 32
0OSD578
The sections of this diagram are discussed in detail in Chapter 10.

Only the logical and relational operators for equality and inequality (=, <, > and <>)
can be used with SELECTOR operands, yielding atrue or false result of type BYTE.
No arithmetic operations are allowed (see Chapter 5).

To create or change the value of a SELECTOR variable it can be assigned a SELECTOR
variable or function, or assigned the result of the built-in function SELECTOR$OF or
SELECTOR type conversion (see Chapter 9).

The results of the @and dot operators cannot be assigned directly to SELECTOR
variables. They must first be converted to the SELECTOR type with the built-in
functions SELECTOR$OF and SELECTOR.

PL/M-386 Programmer's Guide Chapter 3 39

Based Variables

40

Sometimes, the address of a variable is not known until the program is actualy run.
For instance, if a procedure is written to swap two bytes and this procedure is called
from various places in the code, the addresses of the two bytes are not known when
writing the procedure definition.

For thistype of manipulation, PL/M uses based variables. A based variable is one
that is pointed to by another variable called its base. This means the base contains the
address of the desired (based) variable. A variable is made BASED by inserting in
its declaration the word BASED and the identifier of the base (which must already
have been declared).

A based variable is not allocated storage by the compiler. At different times during
program execution the based variable may actualy refer to different placesin
memory, because the variable's base may be changed by the program.

To declare an address based variable, first declare its base, which must be of type
PO NTER, SELECTOR, WORD, or OFFSET. Next, declare the based variable itself as
follows:

DECLARE | BYTE;
DECLARE | TEMBPTR PO NTER;
DECLARE | TEM BASED | TEMSPTR BYTE;

In these declarations, areference to | TEMis, in effect, areference to the BYTE value
pointed to by the current value of | TEMBPTR. Thus, the sequence:

| TEMBPTR = @ ;
| TEM = 77H;

loads the BYTE value of 77 (hex) into the variable | .

PL/M supports more than one level of based variable, so variables can be based on
based variables.

For example, the following declarations are valid:

DECLARE PTRL POl NTER,
DECLARE PTR2 BASED PTRL POl NTER
DECLARE STR1 BASED PTR2 STRUCTURE (
X REAL,
Y REAL);

Chapter 3 Data Declarations, Types, and Based Variables

The following restrictions apply to bases:
« Noinitiaizations are permitted with based variables.

« Thebase must be of type PO NTER, SELECTOR, WORD, or OFFSET. However,
use a base of type OFFSET or WORD with caution because it does not contain a
full microprocessor address. OFFSET- or WORD-based variables are addressed
relative to the current DS register.

« The base cannot be subscripted. That is, it cannot be an array element.

The word BASED must immediately follow the name of the based variable in its
declaration, asin the following examples:

DECLARE (AGE$PTR | NCOVESPTR, RATI NGBPTR CATEGORY$PTR) POl NTER;
DECLARE AGE BASED AGE$PTR BYTE;

DECLARE (| NCOVE BASED | NCOVE$PTR, RATI NG BASED RATI NGSPTR) WORD;
DECLARE (CATEGORY BASED CATEGORY$PTR) (100) WORD;

In the first DECLARE statement, the POl NTER variables AGESPTR, | NCOVESPTR,
RATI NGSPTR, and CATEGORY$PTR are declared. They are used as bases in the next
three DECLARE statements.

In the second DECLARE statement, a BYTE variable called AGE is declared. The
declaration implies that whenever AGE is referenced by the running program, its value
will be found at the location given by the current value of the PO NTER variable
AGE$PTR.

The third DECLARE statement declares two based variables, both of type WORD.

The fourth DECLARE statement defines a 100-element WORD array called CATEGORY,
based on CATEGORY$PTR. When any element of CATEGORY isreferenced at run
time, the current value of CATEGORY$PTR is the location of the array CATEGORY (i.e.,
itsfirst element).

The other elements follow contiguously. The parentheses around the tokens
CATEGORY BASED CATEGORY$PTR make the statement more readable, but are not
required.

|:| Note

Debug information is available for only the first level of indirection
when using variables based on BASED variables.

PL/M-386 Programmer's Guide Chapter 3 41

Location References and Based Variables

42

An important use of location references isto supply values for bases. Thus, the @
operator, together with the based variable concept, gives PL/M avery powerful
facility for manipulating pointers.

For example, to refer to the three different REAL variables NORTHSERROR,
EAST$ERROR, and HElI GHT$ERROCR at different times with the single identifier
ERROR, write:

DECLARE (NORTH$ERROR, EAST$ERROR, HElI GHT$ERROR) REAL;
DECLARE ERROR$PTR PO NTER;

DECLARE ERROR BASED ERROR$PTR REAL;

ERRORSPTR = @NORTH$ERROR;

The value of ERROR$PTR is the location of NORTHSERROR. A reference to ERRORIS,
in effect, areference to NORTHSERROR. Later in the program, write:

ERROR$PTR = @HEI GHT$ERROR;

Now areference to ERRCRIS, in effect, areference to HEI GHT$ERROR. In the same
way, the value of the pointer can be made the location of EAST$ERROR, and a
reference to ERROR can be made areference to EAST$ERROR.

Thistechniqueis useful for manipulating complicated data structures and for passing
locations to procedures as parameters. Examples are given in Chapter 8.

Chapter 3 Data Declarations, Types, and Based Variables

The AT Attribute

The AT attribute causes the address of a variable to be the specified location. The AT
attribute has the form:

AT (Il ocation)
Where:
 ocati on must be alocation reference formed with the @operator.

AT must refer to a nonbased variable that has already been declared. If thereisa
subscript expression, it must be a constant expression containing no operators except
+and-.

The following are examples of valid AT attributes:

AT (@UFFER)
AT (@UFFER(128))
AT (@AMVES(I NDEX + 1))

In the last example, | NDEX represents a whole-number constant that has been
previously declared with aLl TERALLY declaration. The compiler replaces this name
with the declared whole-number constant, thus satisfying the restrictions previously
mentioned.

The first nonbased variable in a factored declaration containing the AT attribute will
have the address specified by | ocat i on. Other variablesin the same declaration
will, in sequence, refer to successive locations thereafter.

For example, the declaration:
DECLARE (CHAR$A, CHAR$B, CHAR$C) BYTE AT (@GBUFFER);

causes the BYTE variable CHARSA to refer to the location of BUFFER. The variables
CHARS$B and CHARSC are located in the next two bytes after CHARSA.

The declaration:

DECLARE T(10) STRUCTURE (X(3) BYTE,
Y(3) BYTE,
Z(3) BYTE) AT (@ATA$BUFFER);

sets up structure references to 90 bytes. They are organized so that each of the 10
members of T refersto nine bytes. The first three use the name X, the second three Y,
and the last three Z. Figure 3-1 illustrates this structure.

PL/M-386 Programmer's Guide Chapter 3 43

T(0).X(0)
T(0).X(1)

T(0).X(2)
T(0).Y(0)

T(0).Y(1)
T(0).Y(2)

T(0).2(0)
T(0).2(1)

T(0).2(2)
T(1).X(0)

T().X(1)
T).X(2)

T(1).Y(0)
T(2).Y(1)

And So On
0OSD533

Figure 3-1. Successive Byte References of a Structure

Chapter 3 Data Declarations, Types, and Based Variables

The preceding declaration, using the AT attribute, causes the beginning of the
structure T, namely the scalar T(0) . X(0) , to be located at the same location as a
previously declared variable called DATA$BUFFER. The other scalars making up the
structure will follow thislocation in logical order: T(0) . X(1), T(0). X(2), and so
onuptoT(9).2(2),whichisthelast scalar, located in the 89th byte after the
location of DATA$BUFFER.

However, no memory locations for these 90 scalars are allocated by this declaration.
Y ou determine the contents of the memory space beginning at @ATA$BUFFER.

The following rules apply to the AT attribute:
e AT cannot be used with variables that are based, EXTERNAL, or parameters.

e AT can be used with the PUBLI C attribute, if it immediately follows the word
PUBLI C. However, the location cannot be alocation reference to a variable that
iSEXTERNAL.

The AT attribute can be used to make variables equivalent, providing more than one
way of referring to the same information. For example:

DECLARE DATUM HWORD,
DECLARE | TEM BYTE AT (@ATUM ;

causes | TEMto be declared a BYTE variable at the same location that has just been
allocated for the HWORD variable DATUM Thus, any reference to | TEMis, in effect, a
reference to the low-order byte of DATUM (because HWORD values are stored with the
low-order 8 bits preceding the high-order 8 hits).

The following is another example using the AT attribute:

DECLARE VECTOR (6) BYTE;

DECLARE SHORT$VECTOR STRUCTURE (FI RST (3) BYTE,
SECOND (3) BYTE)
AT (@/ECTOR) ;

In this example, a six-element BYTE array called VECTOR is declared. Additionally, a
structure of two three-byte arrays, SHORT$VECTOR. FI RST and
SHORT$VECTOR. SECOND, is declared.

Thefirst scalar of this structure, SHORT$VECTOR. FI RST(0), islocated at the same
location as the first element of the array VECTOR.

Thus, there are two ways to refer to the same six bytes. For example, the fifth byte in
the group can be referenced as either VECTOR(4) or SHORT$VECTOR. SECOND(1) .

When avariable is declared with the AT attribute, the compiler does not optimize the
machine code generated to access that variable.

PL/M-386 Programmer's Guide Chapter 3 45

WORD32 | WORD16 Type Mapping

46

The PL/M-386 compiler supports two primary controls, WORD32 and WORD16, for
unsigned binary number and signed integer data types, which provide some basic data
type and language semantics compatibility for the Intel386 and Intel486 family of
microprocessors. These controls specify the basic WORD size and thus affect the
representation of certain datatypes. The default for PL/M-386 isWORD32. The
WORD16 control does not specify 16-bit code (a parameter pushed on the stack is still
four bytes), but maps the names of some data typesinto others. Internally, all
processing is the same (e.g., signed arithmetic is 32-bit for both WORD16 and
WORD32). To accommodate existing 16-bit code where data type representation is
critical, WORD16 can be used to map word size to the convention used in earlier
versions of the PL/M compiler. Table 3-3 lists the data type representation for
WORD32 and WORD16.

Table 3-3. WORD32 | WORD16 Data Type Mapping

Unsigned Binary WORD32
Number Data Types (default) WORD16
BYTE 8-hit 8-hit
HWORD 16-bit 8-bit
WORD 32-bit 16-bit
DWORD 64-bit 32-bit
QWORD 64-bit 64-bit
Signed Integer
Data Types WORD32 WORD16
CHARINT 8-bit 8-bit
SHORTINT 16-bit 8-bit
INTEGER 32-bit 16-bit
LONGINT 32-bit 32-bit

D Note

In PL/M-386, ADDRESS is equivalent to the OFFSET data type.
OFFSET is a 32-bit data type that represents the offset portion of a
PO NTER. The size of OFFSET is not affected by the
WORD32|WORD16 compiler control.

Chapter 3 Data Declarations, Types, and Based Variables

When writing new PL/M code, or when updating existing PL/M code, it is best to
declare variables used for local addressing (i.e., those that are assigned from or
initialized to the dot operator location references, assigned from the OFFSET$OF
function, or used with the BUI LD$PTR function or the STACK$PTR built-in) as
OFFSET (or ADDRESS).

In PL/M-386, WORD is the natural 32-bit data type of the language on which all
operations are available. However, in ASM386 aWORD is 16 bits and a DWORD is 32
bits.

Choosing WORD32 or WORD16

The WORD32| WORD16 compiler control determines how the data typesin the source
code are interpreted by the PL/M-386 compiler. See Chapter 11 for a description of
the WORD32| WORD16 control and syntax.

When compiling new PL/M-386 source code, use WORD32 to take full advantage of
the Intel 386 or Intel486 microprocessors features.

When recompiling existing PL/M-86 or PL/M-286 code, consider the source code to
determine which compiler control to use. WORD32 isusually preferable. Use
WORD16 if one of the conditions listed below applies to the source code. Note that the
WORD16 control does not have any effect on the CMPB instruction. This always
remains as a 32-bit instruction.

« Scalar types are mapped to external data, such as STRUCTURES defined to
represent data records read from a peripheral device. The format of the data
from the peripheral device will not change regardless of the microprocessor
processing it.

« Dataisoverlaid, for example;

DECLARE W HWORD (B1, B2) BYTE AT (@V;
DECLARE P PO NTER, B BASED P (2) BYTE, VWV BASED P \ORD,

In this example, code may depend on the fact that two BYTES overlaying the
HWORD constitute both halves of the WORD completely. Similarly, code can
depend on the fact that the LOwWor HI GH of an HWORD returns 8 hits.

« Loops depend on the size of aWORD type. Operations dependent on a variable
overflow could produce unexpected results.

PL/M-386 Programmer's Guide Chapter 3 47

48 Chapter 3 Data Declarations, Types, and Based Variables

Arrays and Structures

Arrays

For increased efficiency, it is often desirable to use asingle identifier to refer to a
whole group of scalars, and to distinguish the individual scalars by means of a
subscript (i.e., avalue enclosed in parentheses). Such alist, in which the scalars are
all the sametype, iscalled an array.

An array is declared by using a dimension specifier. The dimension specifierisa
nonzero whole-number constant enclosed in parentheses. The value of the constant
specifies the number of array elements (individual scalar variables) making up the
array. For example:

DECLARE | TEMS (100) BYTE;

causes the identifier | TEMS to be associated with 100 array elements, each of type
BYTE. One byte of storageis allocated for each of these scalars.

The elements of an array are stored contiguously, with the first element in the lowest
location and the last element in the highest location. No storage is allocated for a
based array, but the elements are considered to be contiguous in memory.

The declaration:
DECLARE (W DTH, LENGTH, HEI GHT) (100) REAL;
issimilar to the following sequence:

DECLARE W DTH (100) REAL;
DECLARE LENGTH (100) REAL;
DECLARE HEI GHT (100) REAL;

The difference between the two declarations is that contiguous storage is guaranteed
for variables declared in asingle parenthesized list, whereas variables declared in
consecutive declarations are not necessarily stored contiguously.

This causes each of the three identifiers, W DTH, LENGTH, and HEI GHT, to be
associated with 100 array elements of type REAL, so that 300 elements of type REAL
have been declared in al. For each of these scalars, four contiguous bytes of storage
are dlocated.

PL/M-386 Programmer's Guide Chapter 4 49

Subscripted Variables

Torefer to asingle element of aprevioudly declared array, use the array name
followed by a subscript enclosed in parentheses. This construct is called a
subscripted variable.

For example, as aresult of the following DECLARE statement:
DECLARE | TEMS (100) BYTE;

each byte can be referenced asan individual item using | TEMS(0) , | TEMS(1),
| TEMS(2),and soonupto | TEMS(99).

Notice that the first element of an array has subscript 0, not 1. Thus, the subscript of
the last element is 1 less than the dimension specifier.

To add the third element of the array | TEMS to the fourth, and store the result in the
fifth, write the PL/M assignment statement as follows:

| TEMS(4) = | TEMS(2) + | TEMS(3);

The subscript of a subscripted variable need not be a whole-number constant. It can
be another variable, or any PL/M expression that yieldsa BYTE, HWORD, WWORD,
OFFSET, SHORTI NT, CHARI NT, or | NTEGER value.

Thus, the construction:
VECTOR(| TEMS(3) + 2)

refers to some element of the array VECTOR. Which element this construction refers
to depends on the expression | TEMS(3) + 2. Thisvalue, in turn, depends on the
value stored in | TEMS(3) , the fourth element of array | TEMS, at the time when the
reference is processed by the running program. If | TEMS(3) containsthe value 5,
then1 TEM5(3) + 2isequa to 7 and the referenceisto VECTOR(7), the eighth
element of the array VECTOR.

The following sequence of statements will sum the elements of the 10-element array
NUMBERS by using an index variable named | , which takes values from 0 to 9:

DECLARE SUM BYTE; /* To avoid overflow, */
DECLARE NUMBERS(10) BYTE; /* SUM shoul d add up */
DECLARE | BYTE; /* to less than 255 */
SUM = 0;

DOl =0 TO 9;

SUM = SUM + NUMBERS(1);
END;

Subscripted array variables can be used anywhere a variable can be used, including
the left side of an assignment statement if the array elements are of a scalar type.

Chapter 4 Arraysand Structures

Structures

Just as an array enables one identifier to refer to a collection of elements of the same
type, a structure enables one identifier to refer to a collection of structure members
that may have different datatypes. Each member of a structure has a member
identifier.

A structure member can be another structure; these nested structures are described in
the section titled, Nested Structures.

The following is an example of a structure declaration:

DECLARE Al RPLANE STRUCTURE (
SPEED REAL,
ALTI TUDE REAL) ;

This statement declares two REAL scalars, both associated with the identifier

Al RPLANE. Once this declaration has been made, the first scalar can be referred to as
Al RPLANE. SPEED and the second as Al RPLANE. ALTI TUDE. These names are also
called the members of this structure.

A structure can have many members (see Appendix B for the correct limit). The
members of a structure are stored contiguoudly in the order in which they are
specified. (No storage is alocated for a based structure, but the members are
considered to be contiguous in memory.)

Individual structure members cannot be based and cannot have any attributes (see
Chapter 3).

Arrays of Structures

With PL/M, arrays of structures can be created. The following DECLARE statement
creates an array of structures that can be used to store SPEED and ALTI TUDE for 20
Al RPLANES instead of one:

DECLARE Al RPLANE (20) STRUCTURE (
SPEED REAL,
ALTI TUDE REAL)

This statement declares 20 structures associated with the array identifier Al RPLANE,
each distinguished by subscripts from 0 to 19. Each of these structures consists of
two REAL scalar members. Thus, storageis allocated for 40 REAL scalars.

To refer to the ALTI TUDE of the 17th Al RPLANE, write Al RPLANE(16) . ALTI TUDE.

Arrays Within Structures

An array can be used as a member of a structure, as follows:

PL/M-386 Programmer's Guide Chapter 4 51

DECLARE PAYCHECK STRUCTURE (
LAST$NAVE(15) BYTE,
FI RST$NAVE(15) BYTE,
M BYTE,
AVOUNT REAL) ;

This structure consists of two 15-element BYTE arrays, PAYCHECK. LAST$NANME and
PAYCHECK. FI RST$NAME, the BYTE scalar PAYCHECK. M , and the REAL scalar
PAYCHECK. AMOUNT.

To refer to the fourth element of the array PAYCHECK. LAST$NAME, write
PAYCHECK. LAST$NAME(3) .

Arrays of Structures With Arrays Inside the Structures

Given that an array can be made up of structures, and a structure can have arrays as
members, the two constructions can be combined to write:

DECLARE FLOOR (30) STRUCTURE (
OFFI CE (55) BYTE);

Theidentifier FLOOR refersto an array of 30 structures, each of which contains one
array of 55 BYTE scalars. This could be thought of as a 30-by-55 matrix of BYTE
scalars. To reference aparticular scalar value (for example, element 46 of structure
25) write FLOOR(24) . OFFI CE(45) . Note that the scalar elements of each OFFI CE
array are stored contiguously, and the OFFI CE arrays are elements of the FLOOR array
and are stored contiguously.

Alter the preceding PAYCHECK structure declaration to make it an array of structures,
asfollows:

DECLARE PAYROLL (100) STRUCTURE (
LAST$NAVE(15) BYTE,
FI RSTSNAME(15) BYTE,
M BYTE,
AMOUNT REAL) ;

Thisisan array of 100 structures, each of which can be used during program
execution to store the last name, first name, middle initial, and amount of pay for one
employee. LAST$SNANME and FI RST$NAME in each structure are 15-byte arrays for
storing the names as character strings.

52 Chapter 4 Arraysand Structures

To refer to the Kth character of the first name of the Nth employee, write:
PAYROLL(N- 1) . FI RST$NAME(K- 1)

where Nand K are previoudy declared variables to which appropriate values have
been assigned. This might be convenient in aroutine for printing out payroll
information.

Nested Structures

A member of a structure can also be another structure; thisis called a nested
structure.

Nested structures are subject to the samerules as all structures. They can contain
their own member identifiers, whether these are scalars, arrays, or structures.

The following example shows nested structures:

DECLARE EMPLOYEE (100) STRUCTURE (
| D VWORD,
NAME STRUCTURE (
LASTSNAME (15) BYTE,
FI RSTSNAME (15) BYTE,
M BYTE),
AGE BYTE,
JOB WORD,
PAY STRUCTURE (
RATE REAL,
OTRATE REAL,
BENEFI TS STRUCTURE (
OPTI ONS REAL,
CHOSEN BYTE)
)
)
The preceding declaration statement is for an array (named EMPLOYEE) of 100
structures. Each of the 100 elements of EMPLOYEE is a structure with the following

members. aWORD scalar named | D, a nested structure called NAME, a BYTE scalar
named AGE, a WORD scalar named JOB, and a nested structure named PAY.

The NAME structure has two arrays (LASTSNANVE and FI RST$NAME) of 15 bytes each
for members, aswell asaBYTE scalar named M .

The PAY structure has two REAL scalars (RATE and OTRATE) for members, aswell as
anested structure named BENEFI TS. BENEFI TS has the REAL scalar OPTI ONS and
the BYTE scalar CHOSEN as members.

PL/M-386 Programmer's Guide Chapter 4 53

The preceding example contains two levels of nested structures. The structures NAVE
and PAY are at the first level of nesting; the structure BENEFI TS is at the second level
of nesting. See Appendix B for the maximum limit on nested structures.

References to Arrays and Structures

A variable reference isthe use, in program text, of the identifier of avariable that has
been declared. A variable reference can be fully qualified, partially qualified, or
unqualified.

Fully Qualified Variable References

A fully qualified variable reference specifies asingle scalar. For example, given the
following declarations:

DECLARE AVERAGE REAL;
DECLARE | TEMS (100) BYTE;

DECLARE RECORD STRUCTURE (
KEY BYTE,
| NFO WORD) ;

DECLARE NODE (25) STRUCTURE (
SUBLI ST (100) BYTE,
RANK BYTE) ;

then AVERAGE, | TEMS(5) , RECORD. | NFO, and NODE(21) . SUBLI ST(32) areall
fully qualified variable references. Each refers unambiguously to asingle scalar.

Note that qualification can only be applied to variables that have been appropriately
declared. A subscript can only be applied to an identifier that has been declared with
adimension specifier. A member-identifier can be applied only to an identifier
declared as a structure identifier. The compiler flags violations of these rules as
errors.

54 Chapter 4 Arraysand Structures

Unqualified and Partially Qualified Variable References

Unqualified and partially qualified variable references can be used only in location
references (see Chapter 3) and in the built-in procedures LENGTH, LAST, and SI ZE
(see Chapter 9).

An unqualified variable reference is the identifier of a structure or an array, without a
member-identifier or subscript. For example, with the declarationsin the previous
section, | TEMS and RECORD are unqualified variable references. An unqualified
variable reference is areference to the entire array or structure. @ TEMS isthe
location of the entire array | TEMS (the location of itsfirst byte). Similarly, GRECORD
isthe location of the first byte of the structure RECORD.

A partially qualified variable reference does not refer to a single scalar even using a
subscript and/or member-identifier with an identifier.

For example, in the declaration in the previous section, NODE(15) and
NODE(12) . SUBLI ST are partialy qualified variable references.

When used with the @operator, partialy qualified variable references are taken to
mean the first byte that fits the description. Thus, @NODE(15) isthe location of the
first byte of the structure NODE(15) , which is an element of the array NODE.
Similarly, @NODE(12) . SUBLI ST isthe location of the first byte of the array

NODE(12) . SUBLI ST, which isamember of the structure NODE(12) , which isan
element of the array NODE.

Because it is ambiguous, @NODE. SUBLI ST cannot be used. In alocation reference
referring to an array consisting of structures, a subscript must be given before a
member-identifier can be added to the reference. Theruleisdifferent for partially
qualified variable references in connection with the built-in procedures LENGTH,
LAST, and SI ZE, as explained in Chapter 9.

PL/M-386 Programmer's Guide Chapter 4 55

56 Chapter 4 Arraysand Structures

Expressions and Assignments

A PL/M expression consists of scalar operands (values) combined by arithmetic,
logical, and relational operators. For example:

A+ B
A+B-C
A*B + CD

A(B+C - (D- E)/F

where +, -, *, and/ are arithmetic operators for addition, subtraction, multiplication,
and division, and A, B, C, D, E, and F represent operands. The parentheses group
operands and operators to control the order of evaluation.

This chapter describes the rules governing PL/M expressions. Although these rules
may appear complex, most of the expressions used in actual programs are simple. In
particular, when the operands of arithmetic and relational operators are all of the
same type, the resulting expression is easy to understand.

Operands

Operands are the building blocks of expressions. An operand is a quantity with a
value at run time on which an arithmetic, logical, or relational operation is performed
by an operator. In the preceding examples, A, B, C, etc., are identifiers of scalar
variables that have values at run time.

Operands in expressions can also be numeric constants and fully qualified variable
references. The following sections describe all of the types of operands that are
permitted.

PL/M-386 Programmer's Guide Chapter 5 57

Constants

A numeric constant can be an operand in an expression. However, itstype must be
appropriate, as discussed in the following paragraphs.

A numeric constant that contains a decimal point is of type REAL. A numeric
constant that does not contain a decimal point is awhole-number constant.

Y ou can use awhole-number constant in either signed context or unsigned context.
In unsigned context, a whole-number constant is treated as an unsigned binary
number datatype. In signed context, a whole-number constant is treated as a signed
integer data type (see Table 3-2).

Whole-number Constants in Unsigned Context

In PL/M-386, if the WORD32 control isin effect, awhole number constant in unsigned
context is treated as follows:

« AsaBYTE valueif it rangesfrom 0 to 255

+ AsaHWORDvalueif it ranges from 256 to 65,535

+ AsaWoRDvalueif it ranges from 65,536 to 4,294,967,295 (i.e., 2**32-1)
« AsaDWORDvaueif it rangesfrom 2**32 to 2**64-1

Whole-number Constants in Signed Context

In signed context, a whole-number constant is always treated as an | NTEGER value.
In PL/M-386, the range is-2,147,483,648 to 2,147,483,647. Additionally, small
integer values are extended into 32-bit values with no change to the arithmetic value.

String Constants

58

A string constant containing not more than four characters can also be used as an
operand. If astring constant has only one character, it is treated as a BYTE constant
whose value is the 8-hit ASCII code for the character. If astring constant isa
two-character string, it is treated as an HWORD constant in PL/M-386. The value of
the two-character string is formed by stringing together the ASCII codes for the two
characters, with the code for the first character forming the most significant 8 bits of
the 16-bit number.

Chapter 5 Expressions and Assignments

In PL/M-386, if the WORD32 control isin effect, a three- or four-character string
constant is treated as a WORD constant whose value is formed by stringing together the
ASCII codesfor al of the characters. The first character represents the high 8 bits,
the second character represents the second most significant 8 bits, and so on. If the
string has three characters, the ASCII NUL character isinserted in front of the first
character to form a four-character string.

Strings of more than four characters are illegal as operandsin expressions, and can be
used in only two contexts: asinitialization values for an array or as part of alocation
reference that points to the location at which the string constant is stored (see Chapter
3).

PL/M-386 Programmer's Guide Chapter 5 59

Variable and Location References

Asdescribed in Chapter 4, fully qualified variable references uniquely specify a
single scalar value. (Partially qualified references, also discussed in Chapter 4, have
very restricted uses.) Any fully qualified variable reference can be used as an
operand in an expression. When the expression is evaluated, the reference is replaced
by the value of the scalar.

A function reference is the name of atyped procedure that has been declared
previoudly, along with any parameters required by the procedure declaration. The
value of afunction reference is the value returned by the procedure.

For example, in the statement:
I =J + ABS(L);

the absolute value of L will be returned by the function ABS and then added to the
value of J beforebeing stored in| . If L is-27, the result will be the same as writing:

I =3 + 27;

For a complete discussion of procedure and function references, see Chapter 8.
L ocation references are described in Chapter 3.

Subexpressions

A subexpression is an expression enclosed in parentheses, which can be used as an
operand in an expression. A subexpression can be used to group portions of an
expression together, just asin ordinary algebraic notation.

Compound Operands

60

All the operand types previously described are primary operands. An operand can
also be avalue calculated by evaluating some portion of the total expression. For
example, in the expression:

A+ B*C

(where A, B, and C are variable references), the operands of the * operator are B and
C. The operands of the + operator are A, and the result of the compound operand B *
C. Noticethat this expression is evaluated as if it had been written as follows:

A+ (B* O

Thisanalysis of an expression to determine which operands belong to which
operators, and which groups of operators and operands form compound operands, is
discussed in Expression Evaluation. Table 5-1 lists operator precedence.

Chapter 5 Expressions and Assignments

Table5-1. Operator Precedence

Operator Class Operator Interpretation
Precedence () Controls order of evaluation: expressions within
parentheses are evaluated before the action of any
outside operator on the parenthesized items
Unary +, - Single positive operator, single negative operator
Arithmetic * [/, MOD Multiplication, division, modulo (remainder) division,
+, - addition, subtraction
Relational <, <=, <> Less than, less than or equal to, not equal to, =,
>= > equals, greater than or equal to, greater than
Logical NOT Logical negation
AND Logical conjunction
OR, XOR Logical inclusion disjunction, logical exclusive

disjunction

Arithmetic Operators

PL/M has the following five principal arithmetic operators:

* [MDD

These operators are used as in ordinary algebrato combine two operands. Each

operand can have an unsigned binary number data type value; a signed integer data

type value; or a REAL number data type value (except that REAL operands cannot be

used with the MOD operator).

Arithmetic operations cannot be used with PO NTER and SELECTOR variables.

The +, -, *, and / Operators

The operators +, -, *, and / perform addition, subtraction, multiplication, and division
on operands of any data type except the PO NTER and SELECTOR data types. The
following rules govern these operations.

« Both operands must be of the same class (i.e., both operands must be unsigned,
signed, or real). Mixing operands of different classesisillegal. However, an
operand of one class can be converted, in an expression, to another class with the
use of a built-in conversion function (see Chapter 9).

PL/M-386 Programmer's Guide

Chapter 5

61

« Unsigned Arithmetic
— Unsigned Addition and Subtraction

If both operands are of the same data type, the result is of the same data type
(e.g., BYTE + or - BYTE produces a BYTE result).

If the operands are of different data types, the smaller operand is extended
with high-order 0 bits to the size of the larger operand; the addition or
subtraction is then performed as though both operands are of the same type.
For example, for BYTE + or - WORD, the BYTE operand is zero-extended by 8
bits to WORD size; then the operation is performed with the WORD operands to
produce a WORD result. For aBYTE + or - DWORD the BYTE operand is
zero-extended by 24 bits to DWORD size; then the operation is performed with
the DWORD operands to produce a DWORD result. For WORD + or - DWORD, the
WORD operand is zero-extended by 16 bits to DWORD size; then the operation
is performed with two DWORD operands producing a DWORD resullt.

— Unsigned Multiplication and Division

Assuming WORD32, if both operands are of type BYTE, the * and / operations
produce an HWORD result; if both operands are of type HAORD, the * and /
operations produce a WORD result. If both operands are of type WORD, the *
and / operations produce a WORD result. |f both operands are of type
OFFSET, the * and / operations produce an OFFSET result. If both operands
are of type DWORD, the * and / operations produce a DWORD result.

For mixed unsigned operands, the same rules as for addition and subtraction
apply. The smaller operand is zero-extended to the size of the larger
operand, then the multiplication or division is performed as though both
operands are of the same type. The results are as described in the preceding

paragraph.
If one operand is a whole-number constant or a string constant, it is treated

as a HWORD or WORD depending on its value (see Whole-number Constants in
Unsigned Context and String Constants).

All arithmetic for signed operandsis 32-bit signed integer arithmetic. The
names of the storage type (e.g., CHARI NT) do not imply what type of
arithmetic is performed, only the size of storage assigned for the variable.

62 Chapter 5 Expressions and Assignments

During signed arithmetic an expression can overflow only if it overflowsthe
machine word (32 bits). However, overflow is possible when the value is
assigned to a variable with SHORTI NT or CHARI NT datatype. If thevaueis
assigned to CHARI NT, 24 high-order bits are truncated to form the CHARI NT
value. If the value is assigned to SHORTI NT, 16 high-order bits are
truncated to form the SHORTI NT value. If the valueisassigned to | NTEGER,
it is not changed.

Assignment overflow is detected using the OVERFLOW control (see
Chapter 11).

Constants are always represented as integer constants, regardless of their
value.

— Redl arithmetic

Both operands are always of type REAL. Thus, the +, -, *, and/ operations
produce aresult of type REAL.

If one operand is a constant, it must be typed as a floating-point constant,
that is, it must have adecimal point. Mixing REAL operands with
whole-number constantsis not allowed. For example, if RisaREAL
variable, R+1.0isalega expression, but R+1isillegal. Also, 1.0+1is
illegal, because it mixes a REAL constant with a whole-number constant.

— Arithmetic expressions containing operands of type SELECTOR or POl NTER
areillegal.

— If both operands are whole-number constants, the operation depends on the
context in which it occurs, as explained in Special Case: Constant
Expressions.

— Theresult of division by 0 is undefined, except for REAL values (see
Appendix G).

A unary - operator isalso defined in PL/M. It takes asingle operand, to whichiit is
prefixed. A minus sign that has no operand to the left of it istaken to be aunary
minus.

A unary - operator makes (-A) equivalent to (0-A), where A isany operand. TheOis
aBYTE valueif A isan unsigned binary number datatype. TheOisan| NTEGER
valueif A isasigned integer datatype; or a REAL valueif A isareal number data
type. If A isawhole-number constant, its type and the unary - operation depend on
the context as explained in Special Case: Constant Expressions. In unsigned context,
(-1) isassigned a BY TE value (0-1) which is equivalent to OFFH. In signed context,
(-1) isassigned an INTEGER value (0-1) which is equivalent to OFFFFFFFFH for
PL/M-386.

Finally, aunary + has no effect; (+A) is equivalent to (A).

PL/M-386 Programmer's Guide Chapter 5 63

The MOD Operator

MOD performs division, except the result is not the quotient, but rather the remainder
left after integer division. The result has the same sign as the operand on the left side
of the MOD operator.

REAL operands cannot be used with the MOD operator; only unsigned or signed
operands can be used.

For example, if Aand B are | NTEGER variables with values of 35 and 16,
respectively, then AMOD B yields an | NTEGER result of 3, and - A MOD B yields -3.

Unlike the/ operator, the MOD operator must be separated from surrounding letters
and digits by blanks or other separators.

64 Chapter 5 Expressions and Assignments

Relational Operators

The following relational operators are used to compare operands of the same type:

< less than

> greater than

<= less than or equal to
>= greater than or equal to
<> not equal to

= equal to

Relational operators are always binary operators, taking two operands, to yield a
BYTE result. Relational operators can be used with all types.

If both operands are unsigned, then unsigned arithmetic will be used to compare the
two values. Aswith the arithmetic operators, mixing unsigned data types are
allowed, with the smaller operand being zero-extended to the size of the larger
operand.

Whole-number and string constant operands are treated as BYTE, HWORD, WWORD, or
OFFSET. Unsigned data types are primarily used to represent positive values.
Negative numbers are represented by two's complement in the smallest unsigned data
type that can hold the value. For example, -2 is represented as the BYTE value of
OFEH. If BisaBYTE variable, then the relational expression B>=- 2 isTRUE only if
B has the value of 254 or 255, because the expression -2 (when evaluated unsigned)
has a BYTE value of 254.

In PL/M-386, if both operands are signed, then signed 32-bit integer arithmetic is
used to compare the two values. CHARI NT or SHORTI NT are sign extended to
| NTEGER values. The calculated value is then assigned to the specified data type.

If both operands are real, floating point arithmetic will be used to compare the two
values. Only floating-point constants (i.e., constants containing a decimal point) can
be mixed with REAL operands.

Two PO NTER operands can be compared for equality but greater than, less than, and
inequality operations cannot be used. In PL/M-386 only, two POl NTERs are equal
only if they are bitwise equal (i.e., if both segment selector portions are equal and
both offset portions are equal).

Two SELECTOR operands can be compared for equality, inequality, less than, and
greater than.

Since constants cannot be typed as PO NTER or SELECTOR, comparison between
PO NTER or SELECTOR operands and constantsisillegal.

PL/M-386 Programmer's Guide Chapter 5 65

66

Aswith arithmetic operations, operands of different classes cannot be mixed together
in relational operations. An operand of one class can be converted, in an expression,
to another class using a built-in conversion function (see Chapter 9).

If the specified relation between the operands istrue, a BYTE value of OFFH (or
1111$1111B) isreturned. Otherwise, the result isaBYTE value of 00H (or
0000$0000B). Thus, in al cases, the result is of type BYTE, with all 8 bits set to 1 for
atrue condition, or to O for afalse condition. For example:

(6>5) result is OFFH (true)
(64<=4) result is OOH (false)

Values of true and false resulting from relational operations are useful in conjunction
with DOWHI LE statements and | F statements, as described in Chapter 6. Inthe
context of a DOWHI LE statement or | F statement, only the least significant bit of a
true or false value isused. Thus, each value with the least significant bit set
(including OFFH) is considered true and each value with the least significant bit O is
considered false. A BYTE valueisreturned.

Chapter 5 Expressions and Assignments

Logical Operators
PL/M has the following four logical (Boolean) operators:
NOT' AND OR XOR

These operators are used with the unsigned binary number data type, or
whole-number or string constant operands to perform logical operations on 8, 16, or
32 hits.

NOT is aunary operator, taking one operand only. It produces aresult of the same
type asits operand: each bit of the result is the one's complement of the
corresponding bit of the original value.

The remaining operators (AND, OR, XOR) each take two operands, and perform bitwise
and, or, and exclusive or, respectively. The bits of an AND result are 1 only when the
corresponding bit in each operand is 1. The bits of an OR result are 1 when the
corresponding bit of either operand is 1, and 0 only when both operands are 0. The
bits of an XOR result are 0 only when the corresponding bits of the operand are the
same (i.e., both 1 or both 0); the result has a 1 when one operand is 1 and the
corresponding bit of the other operand is 0.

When both operands are of the same type, the result is the same type as the operands.

Aswith the arithmetic and relational operators, unsigned data types can be mixed in
any combination for logical operations. Whole-number operands are treated as BYTE,
HWORD, or WORD valuesin PL/M-386. The only exception is an expression composed
only of whole numbers within the cast parentheses; then the constants have integer
context and the numbers are extended to the 16-bit signed value. The usua bitwise
logical operation then takes place (as explained above for 16-bit numbers for bitwise
operations). Mixing OFFSET with WORD produces an OFFSET result.

The following are examples of logical operations:

NOT 11001100B result is 00110011B
10101010B AND 11001100B result is 10001000B
10101010B OR 11001100B resultis 11101110B

10101010B XOR 11001100B result is 01100110B

PL/M-386 Programmer's Guide Chapter 5 67

Note that true and false values resulting from relational operations can be combined
with logical operators:

NOT (6>5) result is O0H (false)

(6>5) AND (1>2) result is O0H (false)

(6>5) OR (1>2) result is OFFH (true)

(LIM =Y) XOR (Z<2) result is OFFH (true) if LIM = Y and Z<2 or if LIM<>Y and
Z<2, but result is 00H (false) if both relations are true or
both false

Note that in the statement:
A = (NOT B)

parentheses must be used as indicated. Failure to do so will result in a syntax error
because relational operators (=) have higher precedence than logical operators (NOT).

The following are examples of whole numbers. In this example the parentheses
enclose items to be converted (casted).

OFFSET(10101010B AND 11001100B) gives OFFSET(010001000B). Thisisthe
16-bit result obtained with the smple logical operation written above, except that the
offset typeisreturned. PL/M-386 extends the result to 32 bits.

HAORD (-4 AND 7) givesHWORD (OFFFFFFFCH AND 00000007H) which gives
HWORD(4) or the unsigned 16-bit value of 4.

68 Chapter 5 Expressions and Assignments

Expression Evaluation

Precedence of Operators: Analyzing an Expression

In PL/M, operators have an implied order that determines how operands and
operators are grouped and analyzed during compilation.

The PL/M operators are listed in Table 5-1 (page 5-61) from highest to lowest
precedence; those that take effect first are listed first. Operatorsin the sameline are
of equal precedence and are evaluated as they are encountered in aleft to right
reading of an expression.

The order of evaluation in an expression is controlled first by parentheses, then by
operator precedence, and finally by left to right order.

The compiler first evaluates operands and operators enclosed in paired parentheses as
subexpressions, working from the innermost to the outermost pairs of parentheses.
The value of the subexpression is then used as an operand in the remainder of the
expression.

Parentheses are al so used around both subscripts and the parameters of function or
procedure references. These are not subexpressions, but they too must be evaluated
before the remainder of the expressions or references can be evaluated at a higher
level.

When there is more than one operator in an expression, evaluate the results by
beginning with the operator with the highest precedence. |If the operators are of equal
precedence, evaluate them left to right, asfollows:

Example Reason
(A+B)*CisnotthesameasA+B*C Parentheses form subexpressions
A + B * C means the same as A + (B * C) Operator precedence

A/B * C means the same as (A/B) * C Left to right, equal precedence

PL/M-386 Programmer's Guide Chapter 5 69

70

The following are examples of precedence ranking:

A+B*C is equivalentto A+ (B * C)
A+B-C*D is equivalent to (A + B) - (C * D)
A+B+C+D is equivalentto ((A+B)+C) +D
A/B*C/D is equivalentto ((A/B)*C)/D
A >B AND NOT B<C-1 is equivalent to (A > B) AND

(NOT (B<(C<1)))

In the last four examples, the application of the left-to-right rule for operators with
the same precedenceis shown. In the second, third, and fifth examples, the
left-to-right rule for operators of equal precedence makes no difference in the value
of the expression. But in the fourth example, the left-to-right ruleis critical.

The following example shows the action of the rules of precedence on alonger
expression:

(-B+SQRT (B* B- 4.0* A* C)/(2.0 * A

Assume A, B, and C are variables of type REAL, and SQRT is a procedure of type REAL
which returns the square root of the value passed to it as a parameter. In this case,
the parameter isthe expressonB * B -4.0 * A * C. Floating point constants
(4.0, 2.0) areused rather than whole-number constants (4, 2) becauseit isinvalid
to combine whole-number constants with REAL variables.

The compiler first analyzes the portions of the expressions within the innermost
parentheses, then the procedure parameter and the subexpression2.0 * A. (The
subexpression is also called a compound operand because itsresult isused in
evaluating the whole expression.)

In aleft-to-right scan, the two operands of the first * operator are both equal to the
value of B. The operands of the second * operator are 4. 0 and the value of A. The
operands of the third * operator are the results of the second evaluation (i.e., the
compound operand 4. 0 * A) and the value of C. The operands of the fourth *
operator are 2. 0 and the value of A.

The subexpression2. 0 * Aisnow completely analyzed, but the parameter
expression still contains aminus (-) operator that has not been analyzed. The
operands of this operator are the result of evaluating B * B and the result of
evaluating4.0 * A * C. Oncethe evaluations are done, the parameter expression
isanalyzed and its value can be calcul ated.

This value does not become an operand in the overall expression. It is passed to the
procedure SQRT, which returns the square root of the parameter. This returned value
then becomes an operand in the remainder of the full original expression:

(-B + returned value) / (2.0 * A

Chapter 5 Expressions and Assignments

Now that the innermost subexpressions have been analyzed and evaluated, a division
operator whose |eft operand must be evaluated further remains. This outer
subexpression is - B + the returned square root: there are two operators. Thefirstisa
unary minus (-) and its operand is the value of B. The second is the binary plus (+)
operator, with two operands. the value of - B and the value of SQRT(B * B - 4.0

* A * C). - Bhasthe same meaning as 0- B, which is to be added to the known
value of the square root indicated. The final operator is division (/), whose two
operands are known: thevalueof (-B + SQRT(B * B -4.0 * A * C)) andthe
valueof (2.0 * A).

Three important points must be emphasi zed about expression evaluation, as discussed
in the next three sections.

Compound Operands Have Types

Compound operands have types as do primary operands. All of the primary operands
used in the preceding example were of type REAL, which results in compound
operands of type REAL. Itisalwaysvalid for all the operandsin an arithmetic
expression to be of the same type, and the result will be that type also. Combining
BYTE values can validly create a WORD or HWORD value. Combining a signed integer
data type value always creates an | NTEGER value.

In an expression containing mixed data types, any combinations can be used as long
as the types belong to the same class (i.e., unsigned binary number, signed integer,
real, pointer, or selector). Datatypes (of the same class) can be mixed as operandsin
expressions, whether they are constants or variables.

Mixing types of different classesin arithmetic, logical, or relational expressionsis
invalid. For example, if F and Gare | NTEGER variables and H and K are REAL
variables, then the expressionsF > KandH + Gareinvalid.

Due to operator precedence, some combinations can occur validly in the same
expression without being directly combined. In the following logical expression:

(F> GAND H < K)

the subexpression F > GyieldsaBYTE value, as does the subexpressionH < K.
Then the BYTE values are ANDed together. Thisexpressionislegal despite an
apparent mixing of types. Gand H could not be the operands for two reasons:

1. Therelational operators are of higher precedence than the AND operator.
2. Only unsigned operands are legal with logical operators.

PL/M-386 Programmer's Guide Chapter 5 71

Relational Operators Are Restricted

In the absence of parentheses denoting a subexpression, the result of arelational
operation (comparison) cannot become an operand in another relational operation.
Thus, the expression:

A<= X<=B

isinvalidin PL/M because the second <= operator would have to use the result of the
first <= operator as one of its operands.

In PL/M the valid expression is as follows:
A <= X AND X <= B

Parentheses also could have created a valid expression; for example:
(A<= X) <= B

However, in this expression the result does not have the desired meaning: A <= X
becomes a byte of value O if Ais greater than X, OFFH if A isnot greater than X.
Thus, if AisO, Xis1, andBis2:

(0 <=1) <=2
evaluates to:

(OFFH) <= 2
and yieldsa FALSE value. Thisis contrary to the original intention.

Order of Evaluation of Operands

72

Operators and operands are not bound in the same order as the order in which
operands are eval uated.

Therules of analysis specify which operands are bound to each operator. The
following example shows how operands are bound to operators.

A+B*C

B and C are the operands of the * operator, and A and thevalueof B * Carethe
operands of the + operator. B and C must be evaluated before the * operation can be
performed, and the compound operand B * C must be evaluated beforethe +
operation is performed.

However, it is not obvious whether B will be evaluated before C or vice versa. A
could be evaluated before either B or C, and its value stored until the + operation is
performed.

Chapter 5 Expressions and Assignments

Therules of PL/M do not specify the order in which subexpressions or operands are
evaluated in each statement. Thisflexibility enables the compiler to optimize the
object code it produces, as described in Chapter 11. In most cases, the order of
evaluation makes no difference. However, certain embedded assignments (see
Assignment Statements) or function references (see Chapter 8) change the value of
an operand in the same expression.

Choice of Arithmetic: Summary of Rules

Asdescribed in Chapter 3, PL/M uses three distinct kinds of arithmetic: unsigned,
signed, and floating-point. Whenever an arithmetic or relational operation is carried
out, PL/M uses one of these types of arithmetic, depending on the types of the
operands.

Table 5-2 isasummary of the rules that determine which type of arithmeticisused in
each case. Thetable also lists the data type of the result for each kind of arithmetic
operation. The notes following the table provide additional information. (see
Relational Operators and Logical Operators for rules governing relational and logical
operations.)

In PL/M-386, OFFSET operands are always 32-hit unsigned operands.

In expressions, whole-number constants are always converted to the value of the
equivalent data type.

PL/M-386 Programmer's Guide Chapter 5 73

Table5-2. Summary of Expression Rulesfor PL/M-386

Variable Kind of
Type Arithmetic Operand Type Operation Result Notes
BYTE Unsigned BYTE w/BYTE +or- BYTE range: 0 to 255
HWORD * [or MOD HWORD 0 to 65,535
WORD HWORD +or - HWORD range: 0-65,535
DWORD w/HWORD * [or MOD WORD 0 to 2**32-1
BYTE w/HWORD +or - HWORD BYTE is extended with
becomes HWORD */or MOD WORD 8 high-order zeros to
w/HWORD an HWORD value
WORD w/WORD any WORD range:
arithmetic 0 to 2**32-1
BYTE w/WORD any WORD BYTE is extended with
becomes arithmetic 24 high-order zeros
WORD w/WORD to a WORD value
HWORD w/WORD any WORD HWORD is extended
becomes arithmetic with 16 high-order
WORD w/WORD zeros to a WORD
value
DWORD any DWORD range:
w/DWORD arithmetic 0-2**63-1
BYTE w/DWORD any DWORD BYTE is extended
becomes DWORD arithmetic with 56 high-order
w/DWORD zeros to a DWORD
value
HWORD any DWORD HWORD is extended
w/DWORD arithmetic with 48 high-order
becomes DWORD zeros to a DWORD
w/DWORD value
WORD w/DWORD any DWORD WORD is extended
becomes DWORD arithmetic with 32 high-order
w/DWORD zeros to a DWORD
value
continued
74 Chapter 5 Expressions and Assignments

Table5-2. Summary of Expression Rulesfor PL/M-386 (continued)

OFFSET Unsigned OFFSET any OFFSET range:
W/OFFSET arithmetic 0 to 2**32-1
BYTE w/OFFSET any OFFSET BYTE is extended with
becomes OFFSET arithmetic 24 high-order zeros to
W/OFFSET an OFFSET value
HWORD any OFFSET HWORD is extended
W/OFFSET arithmetic with 16 high-order
becomes OFFSET zeros to an OFFSET
W/OFFSET value
WORD w/OFFSET any OFFSET range: O to 2**32-1
becomes OFFSET arithmetic
W/OFFSET
OFFSET any DWORD OFFSET is extended
w/DWORD arithmetic with 32 high-order
becomes DWORD zeros to a DWORD
w/DWORD value

CHARINT Signed INTEGER +or - INTEGER -2**31to

SHORTINT W/INTEGER * [or MOD +2**31-1

INTEGER

REAL Floating REAL w/REAL +-*or/ REAL

Point

POINTER POINTER = BYTE 0 or OFFH
wW/POINTER

SELECTOR Unsigned SELECTOR =, <>, BYTE 0 or OFFH
W/SELECTOR <, or>

Note: CHARINT and SHORTINT are sign extended to INTEGER before expression evaluation.

The combinations of operands shown in Table 5-2 are the only usable combinations
of arithmetic operations and operands. For example, an operand of the signed integer
data type cannot be combined with an operand of the unsigned binary number data
type. However, explicit conversion can be coded in-line using the PL/M built-ins
described in Chapter 9.

PL/M-386 Programmer's Guide Chapter 5 75

Special Case: Constant Expressions

76

Therules aready given explain expressions like:
A+3*B

where there is a single whole-number constant. However, if there is an expression
like:

3-5+A

then the kind of arithmetic that will be used to evaluate 3 - 5 must be considered,
because both operands are whole-number constants.

The answer, in this case, depends on the type of operand A. If Aisan unsigned binary
number, then 3 - 5 isconsidered to be in unsigned context. Unsigned arithmetic is
usedto evaluate 3 - 5, giving aBYTE result of 254. Unsigned arithmetic is then
used to add thisresult to A.

For PL/M-386, if Aisasigned integer, then 3 - 5 isin signed context. Signed 32-hit
arithmeticisused to evaluate 3 - 5. Signed 32-bit arithmetic is then used to add
thisresult to A.

If Aisof type REAL, PO NTER, or SELECTOR, the expression isillegal.

Any compound operand, subexpression, or expression that contains only
whole-number constants as primary operandsis called a constant expression.
Floating-point constants are of type REAL and are treated as the values of REAL
variables.

In this expression:
3-5+500 +A

3 - 5isaconstant expression that forms part of the larger constant expression
3 - 5 + 500.

If the constant expression is not the entire expression, its value is an operand in the
expression. The context is created by the other operand of the same operator.

In the preceding example, suppose the operand A hasaBYTE value. Then the
congtant expression3 - 5 + 500 isin unsigned context. The constants3 and 5 are
treated as BYTE values, and 500 istreated as a WORD or HWORD value. The operation
3 - 5givesaBYTE result of 254, and thisis extended to a WORD or HWORD val ue of
254 before adding 500. This resultsin a WORD or HWORD value of 754. Itisexactly as
if the expression had been written as follows:

754 + A

Chapter 5 Expressions and Assignments

If A had a SHORTI NT value, theconstant 3 + 5 - 500 would be in signed context;
signed 32-bit arithmetic is used for the operation3 - 5 + 500. Theresult (498) is
added to the value of Ato form a 32-bit signed temporary result.

In summary, if the context is created by an unsigned binary number data type
operand, the constant expression isin unsigned context. If the context is created by a
signed integer data type operand, the constant expression isin signed context. Note
that if the context is created by areal number, pointer or selector data type operand,
the constant expressionisillegal.

If the constant expression is the entire expression, then it belongs in one of the
categorieslisted below. For additional information, see Assignment Operators.

Constant expression as right-hand part of an assignment statement: context is
created by the variable to which the expression is being assigned.

Constant expression as subscript of an array variable: evaluated asif being
assigned to an | NTEGER variable.

Constant expression inthe | F part of an | F statement: evaluated asif being
assigned to aBYTE variable.

Constant expression in aDOWHI LE statement: evaluated asif being assigned to a
BYTE variable.

Constant expression as start, step, or limit expression in an iterative DO
statement: evaluated asif being assigned to a variable of the same type as the
index variable in the same iterative DO statement.

Constant expression in a DO CASE statement: evaluated as if being assigned to a
WORD variable.

Constant expression as an actual parameter in a CALL statement or function
reference: evaluated asif being assigned to the corresponding formal parameter
in the procedure declaration.

Constant expression in a RETURN statement: evaluated asif being assigned to a
variable of the same type as the (typed) procedure that contains the RETURN
Statement.

Constant expression inside an explicit type conversion (cast built-ins); evaluated
asif being assigned to an | NTEGER variable, shorter values are extended to 16
bits or 32 bits. The only exception is that relational operators can be used and
are performed bitwise on 16-bit or 32-bit constant values.

PL/M-386 Programmer's Guide Chapter 5 77

Assignment Statements

Results of computations can be stored as values of scalar variables. At any given
moment, a scalar variable has only one value; however, this value can change with
program execution. The PL/M assignment statement changes the value of avariable.
Itssimplest formis:

vari abl e =expression;

where expression isany PL/M expression, as described in the preceding sections.
Thisexpression is evaluated, and the resulting value is assigned to (that is, stored in)
the variable. Thisvariable can be any fully qualified variable reference except a
function reference. The old value of the variable islost.

For example, following execution of the statement:
RESULT = A + B;

the variable RESULT will have a new value, calculated by evaluating the expression A
+ B.

Implicit Type Conversions

In an assignment statement, if the type of the value of the right-hand expression is not
the same as the type of the variable on the left side of the equal sign, then either the
assignment isillegal or an implicit type conversion occurs. For PL/M-386, all
unsigned binary number, signed integer and real data type values are converted
automatically. Chapter 9 includes a description of built-in functions that, when
invoked, perform explicit conversions for use in expressions or assignments.

For implicit type conversions, the data type of the value on the right-hand side of the
assignment statement is always forced to equal the data type of the value on the
left-hand side of the assignment statement. Thisis done either by extending the value
of the expression, or by truncating the value of the expression by the appropriate
number of high-order bits so that the data types of both sides of the assignment
statement are the same.

Theimplicit type conversions that occur for assignment statements are summarized
inTable 5-3.

78 Chapter 5 Expressions and Assignments

Table5-3. Implicit Type Conversionsin Assignment Statements for PL/M-386"

Expression Variable on Left of
Result Type Assignment Statement Conversion
BYTE HWORD BYTE value is extended by 8 high-order 0
bits to HWORD value
WORD BYTE value is extended by 24 high-order 0
bits to WORD value
DWORD BYTE value is extended by 56 high-order 0
bits to DWORD value
OFFSET BYTE value is extended by 24 high-order 0
bits to OFFSET value
HWORD* BYTE 8 high-order bits of HWORD value are
truncated to convert it to a BYTE value
WORD HWORD value is extended by 16 high-order
0 bits to convert it to a WORD value
DWORD HWORD value is extended by 48 high-order
0 bits to convert it to a DWORD value
OFFSET HWORD value is extended by 16 high-order
0 bits to convert it to an OFFSET value
WORD* BYTE 24 high-order bits of WORD value are
truncated to convert it to a BYTE value
HWORD 16 high-order bits of WORD value are
truncated to convert it to a HWORD value
DWORD WORD value is extended by 32 high-order 0
bits to convert it to a DWORD value
OFFSET No conversion (both WORD and OFFSET
are 32-bits)
DWORD* BYTE 56 high-order bits of DWORD value are
truncated to convert it to BYTE value
HWORD 48 high-order bits of DWORD value are
truncated to convert it to HWORD value
WORD 32 high-order bits of DWORD value are
truncated to convert it to WORD value
OFFSET 32 high-order bits of DWORD value are

truncated to convert it to OFFSET value

* Assuming WORD32.

PL/M-386 Programmer's Guide

continued

Chapter 5

79

Table5-3. Implicit Type Conversionsin Assignment Statements for PL/M-386"
(continued)
Expression Variable on Left of
Result Type Assignment Statement Conversion
OFFSET** BYTE 24 high-order bits of OFFSET value are
truncated to convert it to a BYTE value
HWORD 16 high-order bits of OFFSET value are
truncated to convert it to a HWORD value
WORD No conversion is necessary (both WORD
and OFFSET are 32 bits)
DWORD OFFSET value is extended by 32-high-order
0 bits to convert it to a DWORD value
INTEGER* CHARINT 24 high-order bits of INTEGER value are
truncated to convert it to CHARINT value
SHORTINT 16 high-order bits of INTEGER value are
truncated to convert it to SHORTINT value
REAL REAL Automatically converted to 32-bit value

* Assuming WORD32.
** A warning message is issued if OFFSET values are truncated.

Notet

hat implicit conversion is not performed for PO NTER or SELECTOR values.

For assignment statements with PO NTER or SELECTOR expressions, the left side of
the assignment statement would be of the same type as the expression.

80 C

hapter 5 Expressions and Assignments

Constant Expression

BYTE variable on the left: The constant expression is evaluated in unsigned context.
If the resulting value is equal to or greater than 0 and equal to or lessthan 255, it is
treated as a BYTE value and no conversion is necessary. If the resulting value is
greater than 255, it is truncated to type BYTE by dropping all except its 8 low-order
bits.

| NTEGER variable on the left: The constant expression is evaluated in signed context.
No conversion is necessary.

REAL variable on the left: The assignment isillegal unless all values on the right are
floating-point constants. If the value of the constant expression is out of the range for
REAL variables, an overflow exception occurs (see Chapter 10 and Appendix G).

HWORD variable on the left: The constant expression is evaluated in unsigned context.
If the resulting value is equal to or greater than 0 and equal to or lessthan 65,535, it is
treated as an HWORD value, and no conversion is necessary. |f the resulting valueis
greater than 65,535, it is truncated to type HWORD by dropping all except its 16
low-order hits.

WORD variable on the left: The constant expression is evaluated in unsigned context.
No conversion is necessary.

DWORD variable on the left: The constant expression is evaluated in unsigned context
and is zero-extended to a DWORD value.

OFFSET variable on the left: The constant expression is evaluated in unsigned
context. No conversion is necessary.

CHARI NT variable on the left: The constant expression is evaluated in 32-bit
| NTEGER arithmetic. If the valueislessthan -128 or greater than +127, it is
truncated to 8 bits.

SHORTI NT variable on the left: The constant expression is evaluated in 32-bit
| NTEGER arithmetic. If the valueis outside the given range for SHORTI NT (-32,768
to +32,767), it is truncated to 16 bits.

Constants cannot be assigned to PO NTER or SELECTOR variables.

Type conversion built-ins can be used to change the type of a constant expression to
the type required for assignment. The entire expression within the type conversion is
evaluated in signed context.

Multiple Assignment

It is often convenient to assign the same value to several variables at the same time.
Thisisaccomplished in PL/M by listing all the variables to the left of the equal sign,

PL/M-386 Programmer's Guide Chapter 5 81

separated by commas. The variables LEFT, CENTER, and Rl GHT can all be set to the
value of the expression | NI T + CORR with the single assignment statement:

LEFT, CENTER, RIGHT = INT + CORR

The variables on the left-hand side of a multiple assignment must be all of the same
class, that is, all unsigned, all signed, all POl NTER, all SELECTOR, or all REAL. Then
the conversion rules described previously in this chapter are applied separately to
each assignment.

D Note

The order in which the assignments are performed is not
guaranteed. Therefore, if avariable on the left side of amultiple
assignment also appears in the expression on the right side, the
results are undefined.

Embedded Assignments

A specia form of assignment can be used within PL/M expressions. The form of this
embedded assignment is:

vari abl e: =expr essi on

and can appear anywhere an expression is allowed. The expression (everything to the
right of the : = assignment symbol) is evaluated and stored in the variable on the | eft.
Parentheses are used to specify the limits of an embedded assignment within an
assignment statement. The value of the embedded assignment is the same as that of
itsright half. For example, the expression:

ALT + (CORR := TCORR + PCORR) - (ELEV := HT/ SCALE)
results in exactly the same value as:
ALT + (TCORR + PCORR) - (HT/ SCALE)

except that the intermediate results TCORR + PCORR and HT/ SCALE are stored in
CORR and ELEV, respectively. These names for intermediate results can then be used
at alater point in the program without recalculating their values. The names must
have been declared earlier.

82 Chapter 5 Expressions and Assignments

Therules of PL/M do not specify the order in which subexpressions or operands are
evaluated. When an embedded assignment changes the value of a variable that also
appears elsewhere in the same expression, the results cannot be guaranteed.

For example, the following expression:
A = (X =X+4) + Y*Y + X
could mean either of the following interpretations:

Al = (X+4) + Y*Y + (X+4);
A2 = (X+4) + Y*Y + X

Avoid this ambiguity by removing the embedded assignment from the expression and
using a separate assignment statement to achieve the desired effect as follows:

X=X+ 4
AL = X + Y*Y + X

X =X + 4

A2 = X+ YEY + X - 4
A3 = X+ 4+ VY + X
X =X + 4

PL/M-386 Programmer's Guide Chapter 5 83

Chapter 5 Expressions and Assignments

Flow Control Statements

This chapter describes statements that alter the sequence of PL/M statement
execution and that group statements into blocks.

DO and END Statements: DO Blocks

Procedures and DO blocks are the basic building units of modular programming in
PL/M. (Procedures are discussed in Chapter 8.)

This chapter discusses all four kinds of DO-blocks. Each DOblock begins with a DO
statement and includes all subsequent statements through the closing END statement.
The four kinds of DOblocks are as follows:

« Simple DOblock

DO, /* all statements executed, each in order */
st at enent - 0;
statenent-1;
st at enent - 2;

END;
« DO CASE block

DO CASE sel ect _expressi on; /* one statenment executed */
case-0O-statenent; * executed if select_expression = 0 */
case-1l-statenent;/* executed if select_expression = 1 */

END,;
« DO WH LE block

DO WHI LE expression_true;
st at ement - 0; /* all executed repeatedly if expression */
stat enent - 1; /* true, none executed if false. */

PL/M-386 Programmer's Guide Chapter 6 85

86

END;
« |terative DOblock

DO counter = start-expr TO limt-expr BY step-expr;
st at ement - O; /* all statenments executed a nunber */
statenent-1; /* of times depending on conparison */
/* of counter with limt expression */

END;
The last two blocks are also referred to as DO-loops because the executable

statements within them can be executed repeatedly (in sequence) depending on the
expressions in the DO statement.

Any DO statement can have multiple labels on it, and only the last of these can appear
between the word END and the next semicolon. For example:

A B: C D EM DO

END EM ; /* end of block EM */
/* A, B, C, Dalso end here. */

As mentioned in Chapter 3, the placement of declarationsisrestricted. Except for
use in procedures, declarations are permitted only at the top of a simple DO block,
before any executable statements of the block. (This DO can, of course, be nested
within other DOs or procedures. Chapter 7 discusses the scope of declared names.)

Each DO block can contain any sequence of executable statements, including other DO
blocks. Each block is considered by the compiler as a unit, asif it wereasingle
executable statement. Thisfact is particularly useful in the DO CASE block and the | F
statement, both discussed in this chapter.

The discussions that follow describe the normal flow of control within each kind of
DOblock. The normal exit from the block passes through the END statement to the
statement immediately following. These discussions assume that none of the
statementsin the block causes control to bypass that process. A GOTO statement with
the target outside the block would be one such bypass. (GOTCs are discussed later in
this chapter.)

Chapter 6 Flow Control Statements

Simple DO Blocks

A simple DOblock merely groups, as a unit, a set of statements that will be executed
sequentially (except for the effect of GOTOs or CALLS):

DO,
st at enent - 0;
statenent-1;

stat enment - n;
END,

For example:

DO
NEWSVALUE = OLD$VALUE + TEMP;
COUNT = COUNT + 1,

END;

This simple DO block adds the value of TEMP to the value of OLD$VALUE and stores it
in NEWSVALUE. It then increments the value of COUNT by one.

DO blocks can be nested within each other as shown in the following example:

ABLE: DG,
st at enment - 0;
statenment - 1;
BAKER: DO,
st at enent - a;
st at enent - b;
st at enent - c;
END BAKER;
st at ement - 2;
st at ement - 3;
END ABLE;

The first DO statement and the second END statement bracket one simple DO block.
The second DO statement and the first END statement bracket a different DO block
inside the first one. Notice how indentation (using tabs or spaces) can be used to
make the sequence more readable, so that it can be seen at a glance that one DO block
is nested inside another. It is recommended that this practice be followed in writing
PL/M programs. See Appendix B for the number of DO blocks that can be nested.

A simple DO block can delimit the scope of variables, as discussed in Chapter 7.

PL/M-386 Programmer's Guide Chapter 6 87

DO CASE Blocks

A DOCASE block begins with a DO CASE statement, and selectively executes one of
the statementsin the block. The statement is selected by the value of an expression.
The maximum number of casesis givenin Appendix B. The form of the DO CASE
block is:

DO CASE sel ect _expressi on;
st at enent - 0;
statenent-1;

stat enment - n;
END,

In the DO CASE statement, sel ect _expr essi on must yield an unsigned binary
number (excluding DWORD) or asigned integer value. If the expression is a constant
expression, it isevaluated as if it were being assigned to a WORD variable. The value
(call the value K) must be between 0 and n, inclusive. K is used to select one of the
statements in the DO CASE block, which isthen executed. Thefirst case

(st at enent - 0) correspondsto K = 0; the second (st at enent - 1) correspondsto
K=1, and so forth. Only one statement from the block is selected. This statement is
then executed (only once). Control then passes to the statement following the END
statement of the DO CASE block.

|:| Note

If the run-time value of the expression in the DOCASE statement is
lessthan O or greater than n (where n + 1 isthe number of
statements in the DO CASE block), the effect of the DO CASE
statement is undefined. This may have disastrous effects on
program execution. Therefore, if thereis any possibility that this
out-of-range condition may occur, the DO CASE block should be
contained within an | F statement that tests the expression to make
sure that it has a value that will produce meaningful results.

88 Chapter 6 Flow Control Statements

An example of a DOCASE block is:
DO CASE SCORE;

; /* case O
CONVERS| ONS=CONVERSI ONS + 1; /* case 1
SAFETI ES = SAFETIES + 1; /* case 2
FI ELDGOALS = FI ELDGOALS + 1; /* case 3
; /* case 4
; /* case 5
TOUCHDOWNS=TOUCHDOWNS + 1; /* case 6

END;

When execution of this CASE statement begins, the variable SCORE must be in the

*/
*/
*/
*/
*/
*/
*/

range0to 6. If SCORE isO, 4, or 5 then anull statement (consisting of only a
semicolon, and having no effect) is executed; otherwise the appropriate statement is

executed, causing the corresponding variable to be incremented.
A more complex DO CASE block is the following:

SELECT = COUNT - 5;
| F SELECT <= 2 AND SELECT >= 0 THEN
DO CASE SELECT;

X=X+ 1; /* Case O
DO /* Begin Case 1
X =Y + 10;
Y=Y + 1;
END; /* End Case 1
DOl = LAST$H + 1 TO TOP - 6; /* Begin Case 2
Z(1) = X* Y + 1;
W) = 2z(1) * z(1);
V(1) = WI) - Z(1);
END; /* End Case 2
END; /* End DO CASE bl ock

ELSE CALL ERRCR

*/

*/

*/

*/

*/

*/

If SELECT and COUNT are | NTEGER variables, negative values could occur. The DO

CASE block is placed within an | F statement to guarantee that execution of the DO

CASE block will not be attempted if the value of SELECT islessthan O or greater than

2. Instead, a procedure called ERROR (declared previously) will be activated.

PL/M-386 Programmer's Guide Chapter 6

89

The preceding example illustrates the use of a simple DOblock asasingle PL/M
statement. The DO CASE statement can select Case 1 or Case 2 and cause multiple
statements to be executed. Thisisonly possible because they are grouped asasimple
DOblock, which acts as a single statement.

DO WHILE Blocks

90

DOWH LE and | F statements examine only the least significant bit of the value of the
expression. |If the value isan odd number (least significant bit = 1), it will be
considered true. If it iseven (least significant bit = 0), it will be considered false. If
the expression is relational, e.g., A<B, the result will have a value of 00H or OFFH,
but thisisincidental; it may have any unsigned value.

A DOWHI LE block begins with a DOWHI LE statement, and has the following form:

DO WH LE expressi on; /* expression nust yield */
st at enent - 0; /* an unsi gned val ue */
stat enent - 1;

statenent -n;
END;

The effect of this statement is as follows:

1. First the unsigned expression following the reserved word WHI LE is eval uated.
If the rightmost bit of the result is 1, then the sequence of statements up to the
END is executed.

2. When the ENDis reached, the expression is evaluated again, and again the
sequence of statementsis executed only if the value of the expression has a
rightmost bit of 1.

3. Theblock is executed over and over until the expression has a value whose
rightmost bit is 0. Execution then skips the statements in the block and passes to
the statements following the END statement.

Consider the following example:

AMOUNT = 1,

DO WHI LE AMOUNT <= 3;
AMOUNT = AMOUNT + 1;

END;

The statement AMOUNT = AMOUNT + 1 is executed exactly 3 times. The value of
AMOUNT when program control passes out of the block is 4.

Chapter 6 Flow Control Statements

Iterative DO Blocks

An iterative DO block begins with an iteration statement and executes each statement
in the block, in order, repeating the entire sequence. The form of the iterative DO
block is:

DO counter = start-expr TO limit-expr BY step-expr ;
statenment-0 ;
statement-1 ;

END ;
TheBY st ep- expr phraseisoptional; if omitted, astep of 1isthe default.

For PL/M-386, the counter must be a non-subscripted variable of unsigned type:
BYTE, HWORD, WORD, or OFFSET, or asigned integer datatype: | NTEGER, CHARI NT,
or SHORTI NT.

An example of an iterative DOblock is:

DOl =1 TO 10;
CALL BELL;
END;

where BELL isthe name of a procedure that causes a bell to ring. The bell will ring
ten times.

Another example shows how the index-variable can be used within the block:

AMOUNT = 0;
DOl =1 TO 10;

AMOUNT = AMOUNT + |[;
END;

The assignment statement is executed 10 times, each time with anew valuefor I .
The result isto sum the numbers from 1 to 10 (inclusive) and leave the sum (namely,
55) as the value of AMDUNT.

The next example uses st ep- expr :

/* Conmpute the product of the first N odd integers */

PROD = 1;

DOl =1 TO (2*N-1) BY 2;
PROD = PROD*I ;

END;

PL/M-386 Programmer's Guide Chapter 6 9

The type of counter (signed or unsigned) affects the following factorsin the
execution flow of iterative DCs:

* When st ep- expr isevaluated.
« What causes execution to exit the DO block.

The following steps constitute the general execution sequence of an iterative DO
block, with both signed and unsigned variables and expressionsin the DOitself. Type
is mentioned only for steps in which actions or consequences vary according to type.
Where the signed case is different, it is described in parentheses. The discussion
following this description summarizes the rules and their results for signed and
unsigned data types.

1. Thestart-expr isevaluated and assigned to counter.

2. Thelinit-expr isevaluated and compared with counter. (If counter and
limt-expr areof signed type, then st ep- expr isaso newly evaluated at this
time.)

a. If counter isgreater thanl i mi t - expr, execution exits the DO and passes to
the statement following the next END (unless st ep- expr isanegative
signed value; if so, the exit occurs only if counter islessthan | i mi t - expr).

b. Otherwise, the statements within the DO block are executed in order until the
END statement is reached.

c. AttheEND, ast ep-expr of unsigned type (BYTE, HWORD, or WORD for
PL/M-386) is newly evaluated.

3. The counter isincremented by the value of st ep- expr . For unsigned counters,
if the new valueisless than the old value (due to modulo arithmetic as explained
next), the loop is exited immediately. Otherwise, control returnsto step 2.

An 8-bit BYTE can represent numbers no larger than 11111111B (255 decimal). The
largest number a 16-bit WORD (or HWORD) can represent is1111111111111111B,
which is 65535 decimal. The largest number a 32-bit WORD can represent is
OFFFF$FFFFH, which is 4,294,967,295 decimal. Adding 1 to these values gives a
result of 0. Thus, the new counter can be less than the old.

92 Chapter 6 Flow Control Statements

These rules and their consequences can be summarized in two broad cases:

1. Starting with anon-negative st ep- expr , the loop is exited as soon as any one
of the following conditions become true:

a. Thenew counter isgreater thenew | i mi t - expr.

b. A signedst ep- expr becomes negative and the new counter is still less
thanthenew | i mit - expr.

c. Anunsigned st ep- expr causes alower counter than the one just used.

2. When starting with a negative and signed st ep- expr , then the loop is exited as
soon as either of the following two conditions occurs:

a. Thenew counter islessthanthenew | i mi t - expr.

b. Thenew st ep- expr becomes non-negative and the new counter is greater
thanthenew | i mit - expr.

Upon exit from the iterative DO block:
1. Inall casesst ep- expr hasbeen reevaluated.

2. Inal butonecaselint-expr hasbeenreevaluated. When an unsigned
counter has just gone over and become smaller, | i mi t - expr isunchanged from
its value during the last oop.

3. Inall casescount er has been changed, but the step value that was added to it
varies. If signed, count er has been incremented by the former step value
before it was reevaluated. For unsigned counters, the newer step has been used.

The following distinctions are important:

 Ineverycase start-expr isevauated only onceand | i mi t - expr is
evaluated before any execution.

« Asignedst ep- expr isevaluated in step 2; other st ep- expr sare evaluated in
step 3.

« With an unsigned counter, there cannot be a negative step. Furthermore,
stepping downtoal i mit - expr thatislessthanst art - expr isnot possible
because the loop will be exited immediately.

PL/M-386 Programmer's Guide Chapter 6 93

END Statement

An END statement must terminate all DOblocks. An END statement has the following

syntax:
END [nane] ;
Where:
nane isthe optional name that (if present) should match the label of the

corresponding DO statement.

IF Statement

The | F statement provides conditional execution of statements. It takes the form:

| F expression THEN st atenent-a;
ELSE st at enment - b; [*optional */

The reserved word THEN and the statement following it are required. The reserved
word ELSE and the statement following it are optional.

The | F statement has the following effect: first expr essi on isevaluated asif it
were being assigned to avariable of type BYTE. If the result istrue (rightmost bit is
1) then st at enent - a isexecuted. If theresult isfalse (rightmost bit is 0), then

st at enment - b isexecuted. Following execution of the chosen alternative, control
passes to the next statement following the | F statement. Thus, of the two statements
(st at enent - a and st at ement - b) only one is executed.

Consider the following program fragment:

IF NEW> OLD THEN RESULT = NEW
ELSE RESULT = QLD

Here, RESULT is assigned the value of NEWor the value of OLD, whichever is greater.
This code causes exactly one of the two assignment statements to be executed.
RESULT always gets assigned some value, but only one assignment to RESULT is
executed.

In the event that st at ement - b is not needed, the ELSE part may be omitted entirely.
Such an | F statement takes the form:

| F expression THEN st at ement - a;

94 Chapter 6 Flow Control Statements

Here, st at enent - a is executed if the value of expression has a rightmost bit of 1.
Otherwise, nothing happens, and control immediately passes on to the next statement
following the | F statement.

For example, the following sequence of PL/M statements will assign to | NDEX either
the number 5, or the value of THRESHOLD, whichever islarger. Thevalueof I NI T
will change during execution of the | F statement only if THRESHOLD is greater than
5. Thefinal value of I NI T is copied to | NDEX in any case:

INNT =5
IF THRESHOLD > INIT THEN INI T = THRESHOLD,
INDEX = INIT,;

The power of the | F statement is enhanced by using DO blocks in the THEN and ELSE
parts. Since a DOblock can be used wherever a single statement can be used, each of
the two statementsin an | F statement may be a DOblock. For example:

IF A =B THEN
DO,
EQUALSEVENTS = EQUALSEVENTS + 1
PAI RSVALUE = A;
BOTTOM = B;
END;
ELSE
DO
UNEQUALSEVENTS = UNEQUALSEVENTS + 1
TOP = A
BOTTOM = B;
END;

DO blocks nested within an | F statement can contain further nested DO blocks, | F
statements, variable and procedure declarations, and so on.

PL/M-386 Programmer's Guide Chapter 6 95

Nested IF Statements

Any | F statement (including the ELSE part, if any) can be considered a single PL/M
statement (although it is not ablock). Thus, the statement to be executed in a THEN
or an ELSE clause may in fact be another | F statement.

An| F statement inside a THEN clauseis called anested | F. Nesting may be carried
to several levels without needing to enclose any of the nested | F statementsin DO
blocks, asin the following construction:

| F expression-1 THEN
| F expression-2 THEN
| F expression-3 THEN st atenent - a;

Here are three levels of nesting. Note that st at enent - a will be executed only if the
values of all three expressions are true. Thus, the preceding exampleis equivalent to:

| F expression-1 AND expression-2 AND expression-3
THEN st at enent - a;

Notice that the preceding example of nesting does not have an ELSE part. When
using nested | F statements, it isimportant to understand the following rule of PL/M:

« A setof nested | F statements can have only one ELSE part, and it belongs to the
innermost (that is, the last) of the nested | F statements.

This rule could also be restated as follows:

+ Whenan| F statement is nested within the THEN part of an outer | F statement,
the outer | F statement may not have an ELSE part.

For example, the construction:

| F expression-1 THEN
| F expression-2 THEN statenent-a
ELSE st at enent - b;

islegal and meansthat if the values of both expr essi on- 1 and expr essi on- 2 are
true, then st at enent - a will be executed. If the value of expr essi on- 1 istrue
and the value of expr essi on- 2 isfalse, then st at enent - b will be executed. If
the value of expr essi on- 1 isfalse, neither st at enent - a nor st at ement - b will
be executed, regardless of the value of expr essi on- 2.

96 Chapter 6 Flow Control Statements

The preceding construction is equivalent to:

| F expression-1 THEN
DO,
| F expression-2 THEN st at enent - a;
ELSE st at enent - b;
END;

This construction is much more readable and offers less opportunity for error.

If the intention is for the ELSE part to belong to the outer | F statement, then the
nesting must be done by means of a DO block:

| F expression-1 THEN
DG,
| F expression-2 THEN st atenent - a;
END;
ELSE st at enent - b;

Note that the meaning of this construction differs completely from the previous one.
Finally, consider the following:

| F expression-1 THEN
| F expression-2 THEN
| F expression-3 THEN st at enent - a;
ELSE st at enent - b;
ELSE statenent-c; /* illegal statenment */
ELSE st at enent -d; /* illegal statenent */

This construction isillegal because only one ELSE part isalowed. If theintentionis
for the ELSE partsto match the | F parts asindicated by the indenting, the nesting
must be done with DO blocks, as follows:

| F expression-1 THEN
DO,
| F expression-2 THEN
DO,
| F expression-3 THEN st at enent - a;
ELSE st at enent - b;
END;
ELSE st atement-c;
END;
ELSE st at enent - d;

PL/M-386 Programmer's Guide Chapter 6 97

Sequential IF Statements

98

Consider the following example. An ASCII-coded character is stored in aBYTE
variable named CHAR. If the character isan A, st at enent - a should be executed. If
the character isa B, st at ement - b should be executed. If the character isa C,

st at enent - ¢ should be executed. If the character isnot A, B, or C, st at enent - x
should be executed. The code for doing this could be written as follows, using | F
statements that are completely independent of one another:

IF CHAR = " A" THEN st atenent - a;

| F CHAR 'B'" THEN st at enent - b;

IF CHAR = 'C THEN statenent-c;

IF CHAR <> 'A' AND CHAR <> 'B' and CHAR <> 'C
THEN st at emrent - x;

This sequence isinefficient because all four | F statements (six testsin all) will be
carried out in every case, which is wasteful when one of the earlier tests succeeds.

A must be tested for in all cases. However, B needs to be tested only if the test for A
fails and C needs to be tested only if both previous testsfail. Finaly, if the testsfor

A, B, and C all fail, no further tests are needed and st at enent - x must be executed.
To improve the code, rewrite it as follows:

IF CHAR = " A' THEN st at enent - a;

ELSE IF CHAR = 'B' THEN st at enent - b;
ELSE IF CHAR = 'C THEN statenent-c;
ELSE st at enent - X;

Notice that this sequence is not a case of nested | F statements as described in the
preceding section. | F statements are nested only when one | F statement isinside the
THEN part of another. In the next example, | F statements are inside the ELSE parts of
other | F statements. This construction is called sequential | F statements. Itis
equivalent to the following:

IF CHAR = " A" THEN st at enent - a;
ELSE DG,
|F CHAR = 'B' THEN st at enent - b;
ELSE DG,
IF CHAR = 'C THEN statement-c;
ELSE st at emrent - x;
END;
END;

Sequential | F statements are useful whenever a set of testsisto be made, but the
remaining tests should be skipped whenever one of the tests succeeds. This
construction works in such cases because all the remaining tests are in the ELSE part
of the current test.

Chapter 6 Flow Control Statements

GOTO Statements

A GOTO statement alters the sequential order of program execution by transferring
control directly to alabeled statement. Sequential execution then resumes, beginning
with the target statement. The GOTO statement has the following form:

GOTO | abel
For example:
GOTO ABCRT;
The appearance of | abel inaGOTOstatement is called alabel reference, not alabel
definition.
The reserved word GOTO can also be written GO TO, with an embedded blank.

For reasons discussed in Chapter 7, GOTO statements are restricted. The only possible
Gorotransfers are the following:

« From aGOTO statement in the outer level of some block to alabeled statement in
the outer level of the same block.

« From aGOTOstatement in an inner block to alabeled statement in the outer level
of an enclosing block (not necessarily the smallest enclosing block). However, if
the inner block is a procedure block, the transfer can only be to a statement in the
outer level of the main program module.

« From any point in one program module to alabeled statement in the outer level
of the main program module. To jump to such alabel, the label must be declared
to have extended scope, (i.e., declare it PUBLI Cin the main module and
EXTERNAL in the module containing the GOTO).

The use of GOTOs is necessary in some situations. However, in most situations where
control transfers are desired, the use of an iterative DO, DOWHI LE, DOCASE, | F, or a
procedure activation (see Chapter 8) is preferable. Indiscriminate use of GOTGCs will
result in a program that is difficult to understand, correct, and maintain.

PL/M-386 Programmer's Guide Chapter 6 99

The CALL and RETURN Statements

The CALL and RETURN statements are mentioned here only for completeness, since
they control the flow of a program. However, they are discussed in detail in Chapter
8.

The CALL statement is used to activate an untyped procedure (one that does not return
avalue).

The RETURN statement is used within a procedure body to cause areturn of control
from the procedure to the point from which it was activated.

100 Chapter 6 Flow Control Statements

102 Chapter 6 Flow Control Statements

Block Structure and Scope

This chapter explains the meaning of outer level and the concept of scope, including
the use of the linkage attributes, PUBLI C and EXTERNAL.

The outer level of ablock means statements (or labels) contained in the block but not
contained in any nested blocks. The term exclusive extent also has this meaning.
The inner level, or inclusive extent, includes this outer level and all nested blocks as
well.

A block at the same level as another block means that both blocks are contained by
exactly the same outer blocks.

The scope of an object means those parts of a program where its name, type, and
attributes are recognized (i.e., handled according to a given declaration). An object
means a variable, label, procedure, or symbolic (named) constant (i.e., a compilation
constant or execution constant as discussed in Chapter 3). A program isthe complete
set of modules that are ultimately executed as a unit.

PL/M-386 Programmer's Guide Chapter 7 103

Names Recognized Within Blocks

104

As shown throughout this manual, PL/M is a block-structured language that enables
design implementation for problem solving, data processing, and hardware control.

PL/M isused to create blocks of code containing declarations followed by executable
statements. These blocks are ordered and nested in such away as to simplify and
clarify the flow of data and control. (See Appendix B for maximum block nesting.)
A collection of these blocks that performs a single function, or a small set of related
functions, is usually compiled as one module, as discussed in Chapter 1.

Beyond the advantages of modularity, simplicity, and clarity, the nesting of blocks
serves another very basic purpose: names declared at an outer level are known to all
statements of all nested blocks aswell.

A new meaning can be declared for any such name within a nested simple DO or
procedure block, thereby cutting off its earlier meaning for thisblock. But if this
option is not chosen, its meaning is established by a single declaration at an outer
level. (The only objects that do not require declarations prior to use are labels and
reentrant procedures.)

In Figure 7-1, everything inside the figure (except the title) constitutes the inclusive
extent of block MMM (in this case, module MWM). KK is known throughout this block,
including al nested blocks.

Everything inside the large box constitutes the inclusive extent of block SORT. JJ
and | I are known throughout this block, but not outsideit. JJ and I | are not known
before the label SORT or after the END SORT statement.

Everything inside the small box constitutes the inclusive extent of block FI ND. Since
thisis not a simple DO or procedure block, declarations are not allowed. All prior
declarations shown are available for use within FI ND.

Chapter 7 Block Structureand Scope

MW DG,

/* Begi nning of nodule */

DECLARE RECORD (128) STRUCTURE

(KEY
| NFO
DECLARE
(KEY
| NFO
DECLARE

BYTE,
WORD) ;

CURRENT STRUCTURE
BYTE,

WORD) ;

KK BYTE;

KK = 127;
/* Instructions here would read in data. */

SORT:

DO
DECLARE (JJ,ii) | NTEGER,

DO JJ = 1 TO 127;

CURRENT. KEY = RECORD(JJ) . KEY;
CURRENT. | NFO = RECORD(JJ). | NFQ
o= J3J;

FIND [DOWMLE Il >0 AND
RECORD(| | - 1) . KEY > CURRENT. KEY;
RECORD(1 1) . KEY = RECORD(|1 -1) . KEY;
RECORD(11). I NFO = RECORD(11-1).1NFQ
o= 11-1;

END FI ND;

RECORD(| 1) . KEY = CURRENT. KEY;
RECORD(| 1) .1 NFO = CURRENT. | NFG,
END;

END SORT,

/
END MM

* |Instructions here would wite out data fromthe records.

/* End of nodule */

Figure 7-1. Inclusive Extent of Blocks

PL/M-386 Programmer's Guide Chapter 7

*/

105

In Figure 7-1, the area within the large box and outside the small box is the exclusive
extent (the outer level) of block SORT. The area within the small box is the exclusive
(and inclusive) extent of block FI ND. To the instructions within the FI ND block,
SORT's exclusive extent is an outer level. The outermost level (or module level) is
the area outside the large box enclosing the SORT block.

Restrictions on Multiple Declarations

106

In any given block, a known name cannot be redeclared at the same level asits
origina declaration. A new declaration is permitted inside a nested ssmple DO or
procedure block, where it automatically identifies a new object despite the existence
of the same name at a higher level. The new object will be the only one known by
this name within its block, and it will be unknown outside its block, where the prior
name maintains its meaning. These observations also apply when anameis
redeclared in another block at the same level as the block containing the original
declaration.

When aname is declared only in a separate block at the same level, there is no way to
access it except in that block where it isdeclared. The definition is not at an outer
level to the current block. Any local declaration that is supplied establishes a new
separate object whose values bear no relation to those of the other.

The reason for these rules, as for many in programming, is that there must be no
ambiguity about what address/location is meant by each name in the program. The
preceding declaration rules give freedom to choose hames appropriate to a given
block, without interfering with exterior uses of them. But when a name is redeclared,
its outer-level meaning isinaccessible until execution exits the block containing the
new declaration. For example:

A: DO
DECLARE X, Y, Z BYTE;
L1: X = 2;
Y = X
Z = X
B: DO
DECLARE X, Y BYTE;
X = 3;
Y = X
L2: Z = X
END B;
L3: /* At this point, X=2, Y=2, Z=3, because */
/* the value of the redeclared X was used */
/* to fill Z |If statenent L2 were outside */

/* the loop | abeled B, then Z woul d be 2 */
/* because the outer X value would be used */

Chapter 7 Block Structureand Scope

Extended Scope: The PUBLIC and EXTERNAL
Attributes

The PUBLI C and EXTERNAL attributes permit the scope of names to be extended for
all objects except modules; a module name cannot be declared with either attribute.

To extend the scope means to make the names available for use in modules other than
the one where they are defined. (The names are aready available to nested blocksin
thismodule.) Extended scope includes names for variables, labels, procedures, and
execution constants.

For example, the statement:
DECLARE FLAG BYTE PUBLI C,

causes a byte named FLAGto be allocated, and its address made known to any other
module where the following declaration occurs:

DECLARE FLAG BYTE EXTERNAL;
Similarly, if one module has a procedure declaration block that begins:

SUMMER: PROCEDURE (A, B) WORD PUBLI C,
DECLARE (A, B) BYTE;
/* other declarations can go here */
/* executabl e statenments go here, */
/* defining the procedure */

END SUMVER,
then any other module may invoke SUMMER if it first declares:

SUMMER: PROCEDURE (A, B) WORD EXTERNAL; /* A B can be any */
DECLARE (A, B) BYTE; /* names but these nanes nust */

/* match them and each type nust */

END SUMMER,; /* match its public definition */

PL/M-386 Programmer's Guide Chapter 7 107

108

The use of PUBLI C and EXTERNAL must follow a strict set of rulesto prevent
ambiguity of location or definition. These rules are asfollows:

1

These attributes can be used only in adeclaration at the outermost level of a
module (i.e., never in a nested block).

Only one can appear in any declaration, no more than once. Thus:

DECLARE ZETA BYTE PUBLI C EXTERNAL; /* error */
DECLARE RHO WORD PUBLI C PUBLI C, /* error */

and similar constructs are all invalid.

Names can be declared PUBLI C no more than once. The PUBLI C declarationis
the defining declaration: the address it createsis used in each procedure or
module where the same name is declared EXTERNAL. Do not create more than
one PUBLI C address for any name.

Names can be declared EXTERNAL only if they are also declared PUBLI Cin a
different module of the program. The EXTERNAL attributeis essentialy a
request to use a PUBLI C address. An EXTERNAL without a PUBLI Cisadead
letter. Lack of adefinition elsewhere will result in alink-time error.

Where the name is declared EXTERNAL, it must be given the same type as where
itisdeclared PUBLI C. Any contradiction of type would violate the intention to
use the location(s) and content(s) defined elsewhere. If the nameis declared
PUBLI C and has the DATA attribute, all EXTERNAL declarations must also use
DATA, but cannot assign a value to the constant being declared.

Similarly, names declared EXTERNAL must not be given alocation (using the AT
clause), or aninitialization (using DATA or I NI TI AL). Such usage would
contradict the fact that names are being defined in another module. However, in
the module where this name is declared PUBLI C, the use of AT, DATA (with
initialization values present), or | NI TI AL is allowed.

Neither PUBLI C nor EXTERNAL can be applied to a name that is based. For
example:

DECLARE PTR1 PO NTER;
DECLARE V1 BASED PTR1 PUBLI C;

isinvalid. The reason: by definition, V1 has no home of its own; itslocation is
always determined by PTR1. Thus, to declare V1 PUBLI C or EXTERNAL does not
permit the correct assignment of addresses. PTR1, on the other hand, always
contains the current address of V1. Declaring the base, in this case PTR1, to be
PUBLI C or EXTERNAL isaways permissible since it permits valid results.

Chapter 7 Block Structureand Scope

|:| Note

The PL/M compiler will generate external records only for items
that are actually referenced in the program.

8. When extending the scope of a name with the PUBLI C attribute and DATA or
I NI TI AL, the placement in the DECLARE statement is critical. PUBLI C must be
placed after the type declaration and before the DATA or I NI TI AL attribute. For
example:

DECLARE a$p BYTE PUBLIC I NI TI AL(4);

(Additional restrictions on the use of PUBLI C and EXTERNAL procedures are
described in Chapter 8.)

Following these rules will enable consistent and reliable execution of programs using
names with extended scope. A PUBLI C definition occurring in one module will then
be used by all related referencesto that name in separate modules; that is, references
which declare the name EXTERNAL. The following diagram illustratesthis:

MOD1: DG,
DECLARE V1 BYTE PUBLI C;

END MODL1,
MoD2: DG,
DECLARE V1 BYTE EXTERNAL;
Q4: PROCEDURE PUBLI C,

END QQ4;
END MOD2;

PL/M-386 Programmer's Guide Chapter 7 109

Both references to V1 will use the same definition (location) for V1, namely, the
definition in module MOD1. Similarly, if any module needed to call procedure Q@4, it
would first need a declaration like this:

QQ4: PROCEDURE EXTERNAL;
END QQ4;

so that a subsequent CALL Q4 would correctly pass control to that procedure in
MOD2.

Scope of Labels and Restrictions on GOTOs

110

L abels are subject to exactly the same rules of scope previoudy discussed.

A label is unknown outside the block where it isdeclared. Asdiscussed in Chapter 1,
alabel is either declared explicitly at the beginning of a simple DO or procedure
block, or the compiler considersit to be declared there as soon as it is defined by use
anywhere in the block. Therefore, the discussion of what names are known in which
blocks applies directly to labels as well asto other names.

Thelabel on ablock is not part of the block it names. For example, the name on the
DO enclosing the module itself is not part of the DG; it merely namesit. For nested
blocks, alabel isagain not part of the block it names, but belongs instead to the outer
level as part of that first enclosing block.

If aname used as alabel on ablock is defined inside that block, it will name anew
item, beit label, variable, or constant. There will be no confusion with the outer
label name. This fact leads to important restrictions on the use of the GOTO
statement:

1. Itisimpossible for a GOTOto transfer control from an outer block to alabeled
statement inside a nested block.

2. Moreover, a GOTO can transfer control from one block to another in the same
module only if the target block encloses the one containing the GOTO (and only if
the name of that target label is not declared in the nested block).

Furthermore, alabel with the PUBLI C attribute is permitted only in the main module.
This has the interesting consegquence of forcing all other transfers of contral (i.e.,
those not involving a return to the main module) to use procedure calls. Thisfavors
the development of orderly, modularized, traceable programs.

Chapter 7 Block Structureand Scope

Only four GOTOtransfers are possible; these are as follows:

1. From one point in ablock to another statement also in the same level of the same
block.

2. From aninner, nested DOblock (not a nested procedure) to a statement in the
outer level of any enclosing block.

3. From aprocedure to a statement in the outer level of the main program in the
same module.

4. Toamain-program label that is declared PUBLI C, from any point in any module
that declares that label EXTERNAL.

Recall that only labels at the outer level of amain program can be declared PUBLI C.

Program structure and declarations are shown in Figure 7-2. Figure 7-3 illustrates the
only legal GOTOtransfers that are permitted among the given labelsin Figure 7-2. A
single-headed arrow means the transfer is valid only in the direction shown. A
double-headed arrow means that a GOTO can be used in either direction.

PL/M-386 Programmer's Guide Chapter 7 111

MAI N: DO
DECLARE (LAB33, LAB77) LABEL PUBLIC,
DECLARE | T BYTE;

LAB33: . . . ;

DO,
END;
LAB77: . ;
DO WH LE IT > O;
END;
END MAI N;
MOD1: DO

DECLARE (LAB33, LAB77) LABEL EXTERNAL;
P1: PROCEDURE;

Li: ...
DO
DECLARE KO BYTE;
P2: PROCEDURE;
L2;
END P2;
END;
L3: .
END P1;
END MOD1;
MOD2: DO

DECLARE (LAB33, LAB77) LABEL EXTERNAL;
P4: PROCEDURE;

La: . . .

L5: . . .
DO,
L6: ;

END;

L7z: . . .
END P4;
LB: . .
END MOD2;

Figure 7-2. Sample Program Modules|llustrating Valid GOTO Usage

112 Chapter 7 Block Structureand Scope

L4

L2

LAB33

L5

OR

LAB77

L6

L4

/
\

AN

1

L7

0OsSD534

Figure 7-3. Sample Program Moduleslllustrating Valid GOTO Transfers

PL/M-386 Programmer's Guide

Chapter 7

113

114 Chapter 7 Block Structureand Scope

Procedures

A procedure isasection of PL/M code that is declared without being executed, and
then activated from other parts of the program. A function reference or CALL
statement activates the procedure, even if it is physically located el sewhere. Program
control istransferred from the point of activation to the beginning of the procedure
code, and the code is executed. Upon exit from the procedure code, program control
is passed back to the statement immediately after the point of activation.

The use of procedures forms the basis of modular programming. It facilitates making
and using program libraries, eases programming and documentation, and reduces the
amount of object code generated by a program. The following sections review how
to declare and activate procedures.

Procedure Declarations

A procedure must be declared, just as variables must be declared. Thereafter, any
reference to a procedure must occur within the scope defined by the procedure
declaration. Also, a procedure cannot be used (called, or invoked in an expression)
until after the END statement of the procedure declaration unlessit is reentrant.

A procedure declaration consists of three parts: a PROCEDURE statement, a sequence
of statements forming the procedure body, and an END statement.

The following is a simple example:

DOOR$CHECK: PROCEDURE;
| F FRONT$DOORSLOCKED AND S| DE$SDOOR$LOCKED THEN
CALL POVNERSON,
ELSE CALL DOOR$ALARM
END DOOR$CHECK;

where PONER$ON and DOOR$ALARMare procedures declared previoudly in the same
program.

PL/M-386 Programmer's Guide Chapter 8 115

|:| Note

The name DOOR$CHECK in a PROCEDURE statement has the same
appearance as a label definition, but it is not considered alabel
definition, and a procedure name is not alabel. PROCEDURE
statements cannot be |abeled.

The name DOORSCHECK isa PL/M identifier, which is associated with this procedure.
The scope of a procedure is governed by the placement of its declaration in the
program text, just as the scope of avariable is governed by the placement of its
DECLARE statement (see Chapter 7 for a detailed description). Within this scope, the
procedure can be activated by the name used in the PROCEDURE statement.

A procedure declaration, like a DO block, controls the scope of variables as described
in Chapter 7. Also, like asimple DOblock, a procedure declaration can contain
DECLARE statements, which must precede the first executable statement in the
procedure body.

AsinaDOblock, theidentifier in the END statement has no effect on the program, but
helps legibility and debugging. If used, it should be the same as the procedure name.

The parameter list and the type are discussed in the following two sections.

Parameters

116

Formal parameters are non-based scalar variables declared within a procedure
declaration; their identifiers appear in the parameter list in the PROCEDURE
statement. The identifiersin the list are separated by commas and the list is enclosed
in parentheses. No subscripts or member-identifiers can be used in the parameter list.

If the procedure has no formal parameters, the parameter list (including the
parentheses) is omitted from the PROCEDURE statement.

Each formal parameter must be declared as a non-based scalar variable in a DECLARE
statement preceding the first executable statement in the procedure body. However,
procedure parameters are not stored according to the same rules as other declared
variables. In particular, do not assume that a parameter is stored contiguously with
other variables declared in the same factored variable declaration.

When a procedure that has formal parametersis activated, the CALL statement or
function reference contains alist of actual parameters. Each actual parameter isan
expression whose value is assigned to the corresponding formal parameter in the
procedure before the procedure begins to execute.

For example, the following procedure takes four parameters, called PTR, N, LOAER,
and UPPER. It examines N contiguoudly stored BYTE variables. The parameter PTRis
the location of the first of these variables. If any of these variablesisless than the

Chapter 8 Procedures

parameter LOAER or greater than the parameter UPPER, the ERRORSET procedure
(declared previoudly in the program) is activated:

RANGE$CHECK: PROCEDURE(PTR, N, LOWER, UPPER);
DECLARE PTR PO NTER,
DECLARE (N, LOWER, UPPER, |) BYTE;
DECLARE | TEM BASED PTR(1) BYTE;

DOl =0 TON - 1;
IF (ITEMI) < LONER) OR (I TEMI) > UPPER)
THEN CALL ERRORSET;
/* ERRORSET is a procedure declared previously */
END;
END RANGE$CHECK;

Notice that the array | TEMis declared to have only one element. Sinceit isabased
array, areference to any element of | TEMisreally areference to some location
relative to the location represented by PTR. In writing the procedure RANGE$CHECK,
adimension specifier that is any arbitrary number greater than zero must be supplied
for | TEMso that referencesto | TEMcan be subscripted. But it does not matter what
the dimension specifier is (1 isarbitrarily used here).

Having made this declaration, suppose that 25 variables are stored contiguously in an
array called QUANTS. To check that all of these variables have values within the
range defined by the values of two other BYTE variables, SMALL and LARGE, write:

CALL RANGE$CHECK (@QUANTS, 25, SMALL, LARGE);
When this CALL statement is processed, the following sequence occurs:

« Thefour actual parametersin the CALL statement (@QUANTS, 25, SMALL, and
LARGE) are assigned to the formal parameters PTR, N, LOAER, and UPPER, which
were declared within the procedure RANGE$CHECK. Since | TEMis based on PTR
and the value of PTRis @QUANTS, every reference to an element of | TEM
becomes a reference to the corresponding element of QUANTS.

« The executable statements of the procedure RANGESCHECK are executed. If any
of the values are less than the value of SMALL or greater than the value of LARGE,
the procedure ERRORSET is activated.

« Finaly, control returns to the statement following the CALL statement.

Notice how the use of a based variable, with the base passed as a parameter, allows
the procedure to have its own unchanging name (I TEM) for a set of variables which
may be a different set each time the procedure is activated.

Parameters are placed on the stack in left-to-right order. The stack grows from
higher locations to lower locations, so the first parameter occupies the highest

PL/M-386 Programmer's Guide Chapter 8 117

position on the stack, and the last parameter occupies the lowest position. For more
information, see Appendix F.

|:| Note

PL/M does not guarantee the order in which multiple actual
parameters will be evaluated when the procedure is activated. |If
one actual parameter changes another actual parameter, the results
are undefined. This can occur if an expression used as an actual
parameter contains an embedded assignment or function reference
that changes another actual parameter for the same procedure.

Typed Versus Untyped Procedures

The preceding RANGE$CHECK procedure is an untyped procedure. No typeisgivenin
the PROCEDURE statement, and it does not return avalue. An untyped procedureis
activated by using itsname in a CALL statement.

A typed procedure, also called afunction, has atype in its PROCEDURE statement: an
unsigned binary number, signed | NTEGER, REAL number, PO NTER or SELECTOR
datatype. Such aprocedure returns avalue of thistype, which isused in an
expression or stored as the value of avariable. The procedureis activated by using
its name as an operand in an expression; this special type of variable referenceis
called afunction reference.

When the expression is processed at run time, the function reference causes the
procedure to be executed. The function reference itself is then replaced by the value
returned by the procedure. The expression containing the function reference is then
evaluated, and program execution continues in normal sequence.

Like an untyped procedure, atyped procedure can have parameters. They are
handled as described in the previous section.

The body of atyped procedure can contain a RETURN statement with an expression,
as explained later in this chapter.

|:| Note

The body of atyped procedure can contain code (such as an
assignment statement) that changes the value of some variable
declared outside the procedure. Thisis called a side effect.

118 Chapter 8 Procedures

Recall that PL/M does not guarantee the order in which operandsin an
expression are evaluated. Therefore, if afunction used in an expression
changes the value of another variable in the same expression, the value
of the expression depends on whether the function reference or the
variable is evaluated first.

If the analysis of the expression does not force one of these operands to
be evaluated before the other, then the value of the expression is
undefined.

This situation can be avoided by using parentheses to segregate any
typed procedure that has a side effect, or by using this procedure in an
assignment statement first to create an unambiguous sequence.

Activating a Procedure: Function References and
CALL Statements

The two forms of procedure activation depend on whether the procedure is typed or
untyped. An untyped procedure is activated by means of a CALL statement, which
has the form:

CALL nane;
or
CALL name (paraneter list);
For example:
CALL REORDER (@GRANK$TABLE, 3) ;
(An alternate form of the CALL statement is discussed later.)

A typed procedure is activated by means of afunction reference, which is an operand
in an expression. A function reference has the form:

nanme
or

name (paraneter |ist)

PL/M-386 Programmer's Guide Chapter 8 119

This occurs as an operand in an expression, as in the following example:
TOTAL = SUBTOTAL + SUMBARRAY (@ TEMS, COUNT) ;

where SUMBARRAY is a previously declared typed procedure. The value added to
SUBTOTAL will be the value returned by SUMBARRAY using the actual parameters
(@ TEMS, COUNT).

In both forms of procedure activation, the elements of the parameter list are called
actual parameters to distinguish them from the formal parameters of the procedure
declaration. At the time of activation, each actual parameter is evaluated and the
result is assigned to the corresponding formal parameter in the procedure declaration.
Then, the procedure body is executed. Any PL/M expression may be an actual
parameter if itstype is the same as that of the corresponding formal parameter.

The actual parameter list in a procedure activation must also match the formal
parameter list in the procedure declaration. That is, it must contain the same number
of parameters of the same type (except as described in the next paragraph) in the
same order. |If the procedureis declared without aformal parameter list, then no
actual parameter list can be used in the activation.

Asin expression evaluation and assignment statements (see Chapter 5), afew type
conversions are performed automatically when necessary in activating and returning
from a procedure. The built-in explicit type conversion procedures described in
Chapter 9 can also be used to force the value of an expression to a desired type.

Indirect Procedure Activation

120

The CALL statement, in the form shown in the preceding section, activates an untyped
procedure by itsname. It isalso possible to activate an untyped procedure by its
location. Thisisdone by means of a CALL statement with the form:

CALL identifier[.nmenber-identifier] [(paraneter list)];

Theidentifier cannot be subscripted; however it can be a structure reference. The
identifier must be afully qualified PO NTER or WORD type variable reference for
PL/M-86 and PL/M-286, and a fully qualified POl NTER, OFFSET, or WORD type
variable reference for PL/M-386. Itsvalueis assumed to be the location of the
entry-point of the procedure being activated.

Chapter 8 Procedures

|:| Note

Callsthrough 48-bit PO NTERs will be translated into long calls
whereas calls through 32-bit OFFSETS, WORDs, or POl NTERS (in the
SMALL case) will be translated into short calls (relative to the
current code segment).

Theidentifier for the indirect procedure activation cannot be an
HWORD. Therefore, all variables used for indirect calling in
programs that are recompiled from PL/M-286 and use the WORD16
control should have DWORD, OFFSET (or ADDRESS) data types.

A normal CALL uses the name of the procedure; the compiler checks to make sure
that the correct number of parametersis supplied and performs automatic type
conversion on the actual parameters.

When the CALL statement uses a location, the compiler does not check the number of
parameters or perform type conversion. However, type conversion is performed if
the actual argument is a constant expression. The constant expression is evaluated in
unsigned context, as described in Chapter 5. If the number of parametersiswrong or
if an actual parameter is not of the same type as the corresponding formal parameter,
the results are unpredictable.

PL/M-386 Programmer's Guide Chapter 8 121

Code Examples

The following code examplesillustrate an indirect call for the COMPACT model.
Thefirst example is a procedure which, when compiled, generates warnings.

122

[EnY

© O ~NO UL~ WNDN

25

$COVPACT

CALLF: DG,

DECLARE dunmy word,
i nner_p pointer,
mai n_p pointer;

f unct 1: PROCEDURE;
DECLARE i WORD;
i = 0;
RETURN;

END funct 1;

f unct : PROCEDURE;
DECLARE i WORD;

i = 0;
i nner_p = @unct1;
call inner_p;
RETURN;

END funct;

dunmmy = .funct;
CALL dummy;
main_p = @unct;
CALL mai n_p;
END cal | f;

Warnings are generated at lines 16 and 23. The warnings occur because of conflicts
in FAR and NEAR calls. In most cases of using the COMPACT segmentation
model, indirect function callsare NEAR calls. The"@" operator causes FAR
function calls. Therefore, indirectly activating a function using the " @" operator in a
COMPACT model causes a FAR call, however, the function will execute a NEAR

return. This causes the compiler to generate a warning.

The warning is based on stack corruption. A long call pushes the segment selector
and offset addresses onto the stack. COMPACT functions do aNEAR RETURN
(unlessthey are on the EXPORT list). Therefore, only the OFFSET for the
RETURN addressis popped. Thisleavesthe previously pushed segment selector on
the stack.

Chapter 8

Procedures

The following example properly demonstrates indirect procedure callsin the
COMPACT model. Thismethod usesthe"." operator to generate aNEAR call. This
operator issimilar to the " @" operator except it generates an address of the type

WORD.

1 $COVPACT

2

3 CALLF: DO,

4 DECLARE dunmy WORD;
5

6 f unct : PROCEDURE;
7 DECLARE i WORD;
8 i =0;

9 RETURN;

10 END funct;

11

12 dunmy=f unct ;

13 CALL dummy;

14 END CALLF;

|:| Note

Do not use the"." operator when using a pointer to a function as
required by certain iRMX system calls. Thesecalls, such as
rq_create task andrq_create job, expect a pointer to atask address,
not just the offset. The interface to IRMX system libraries requires
a 32-bit pointer as aparameter. The"@" operator must be used
when the pointer to the start address of the task is passed to the
iRMX system call. No compiler warning is generated because the
task never returns, causing no stack corruption.

Exit from a Procedure: The RETURN Statement

The execution of a procedure isterminated in one of three ways:

« By execution of a RETURN statement within the procedure body. A typed
procedure must terminate with a RETURN statement that has an expression.

« By executing a GOTOto a statement outside the procedure body. The target of
the GOTOmust be at the outer level of the main program (see Chapter 7).

« By reaching the END statement that terminates the procedure declaration.

PL/M-386 Programmer's Guide Chapter 8 123

The RETURN statement takes one of two forms:
RETURN;
or

RETURN expr essi on;

Thefirst formis used in an untyped procedure. The second form isused in atyped
procedure. The value of the expression becomes the value returned by the procedure.

It isevaluated asif it were being assigned to a variable of the same type as used on
the PROCEDURE statement.

124 Chapter 8 Procedures

The Procedure Body

The statements within the procedure body can be any valid PL/M statements,
including CALL statements as well as nested procedure declarations.

Examples
1. Thefollowing isatyped procedure declaration:

AVG PROCEDURE (X, Y) REAL;
DECLARE (X, Y) REAL;
RETURN (X + Y)/2.0;
END AVG

This procedure could be used as follows:

SVALL 3.0;
LARGE = 4.0;
MEAN = AVG (SMALL, LARGE);

The effect would be to assign the value 3.5 to MEAN.

2. Thefollowing isan untyped procedure;

AQUT: PROCEDURE (I TEM ;
DECLARE | TEM WORD;
| F | TEM >= OFFH THEN COUNTER = COUNTER + 1;
RETURN;

END AQUT;

Here COUNTER is some variable declared outside the procedure (i.e., it isaglobal
variable). This procedure could be activated as follows:

CALL AQUT (UNKNOWN)

If the value of the variable UNKNOWN is greater than or equal to OFFH, the value
of COUNTER will be incremented.

PL/M-386 Programmer's Guide Chapter 8 125

126

3. Thisexample demonstrates an important use of based variables:

SUMBARRAY: PROCEDURE (PTR, N) BYTE;

DECLARE PTR PO NTER,

ARRAY BASED PTR(1) BYTE,

(N, SUM |) BYTE;

SUM = 0;

DOl =0 TON,

SUM = SUM + ARRAY(1);
END;
RETURN SUM
END SUMBARRAY;

This procedure returns the sum of the first N+ 1 elements (from the zeroth to the
Nth) of a BYTE array pointed to by PTR. Notice that ARRAY is declared to have 1
element. Sinceit isabased variable, no space is alocated for it. It must be
declared as an array (with a non-zero dimension) so that it can be subscripted in
the iterative DOblock. The choice of 1 asthe constant in the dimension specifier
isarbitrary and does not restrict the value of N that may be supplied when the
procedure is activated.

The procedure could be used as follows to sum the elements of a 100-element
BYTE array named PRI CE, and to assign the sum to the variable TOTAL:

TOTAL = SUMBARRAY(@RI CE, 99) ;

Chapter 8 Procedures

The Attributes: PUBLIC and EXTERNAL,
INTERRUPT, REENTRANT

The PUBLI C and EXTERNAL attributes can be included in PROCEDURE statements to
give procedures extended scope. Extended scopeis discussed in Chapter 7.

A procedure declaration with the PUBLI C attribute is called a defining declaration. A
procedure declaration with the EXTERNAL attribute is called a usage declaration.
Most of the rules for PUBLI C and EXTERNAL appear in Chapter 7. The following
additional rules apply to the use of the EXTERNAL attribute in a procedure
declaration:

1. The EXTERNAL attribute cannot be used in the same PROCEDURE statement as a
PUBLI C or REENTRANT attribute. Note, however, that the defining declaration of
aprocedure may have the REENTRANT attribute.

2. A usage (EXTERNAL) declaration of a procedure should have the same number of
parameters as the defining (PUBLI C) declaration. Variable types and dimension
specifiers should match up in the same sequence in both declarations. The
names of the parameters need not be the same. Note that a discrepancy between
the parameter lists in the defining declaration and in a usage declaration will not
be automatically detected (see Chapter 11 for a description of the TYPE control
to detect such an error at module linkage time).

3. The procedure body of ausage declaration cannot contain anything except the
declarations of the formal parameters. The formal parameters must be declared
with the same types as in the defining declaration.

4. No labels can appear in a usage declaration.

|:| Note

The PL/M compiler will generate external records only for items
that are actually referenced in the program.

For example, the procedure AVG (from example 1 in " The Procedure Body") can be
altered by giving it the PUBLI C attribute:

AVG PROCEDURE (X, Y) REAL PUBLIC
DECLARE (X, Y) REAL;
RETURN (X + Y)/2.0;

END AVG

Another module would have a usage declaration, as follows:

AVG PROCEDURE (X,Y) REAL EXTERNAL;
DECLARE (X, Y) REAL;
END AVG

PL/M-386 Programmer's Guide Chapter 8 127

Now, in the module with the usage declaration, AVG can be referenced in an
executable statement:

M DDLE = AVG (FI RST, LATEST);
thereby activating the procedure AVG as declared in the first module.

Interrupts and the INTERRUPT Attribute

128

The | NTERRUPT attribute enables definition of a procedure to handle some condition
signaled by a microprocessor interrupt (e.g., from a peripheral device). A procedure
with this attribute is activated when the corresponding interrupt signal isreceived in
the target system. The PL/M statement CAUSE$I NTERRUPT (const ant) can aso be
used to initiate an interrupt signal (see Chapter 10).

Note that the following discussion applies only to interrupt procedures; interrupt tasks
are discussed in Appendix G.

The | NTERRUPT attribute can be used only in declaring an untyped procedure with no
parameters at the outermost level of a program module. It must be declared PUBLI C
or EXTERNAL (and optionally REENTRANT). Theformiis:

| NTERRUPT
At build time, an interrupt vector is assigned to each interrupt procedure.

The following discussion of the microprocessor interrupt mechanism clarifies how
interrupt procedures work. Additional information can be found in Appendix G.

The microprocessor interrupt mechanism has two states: enabled or disabled. With
the ENABLE statement, interrupts can take effect. The DI SABLE statement prevents
interrupts from having any effect. The HALT statement also enables interrupts. (The
state of the microprocessor interrupt mechanism upon initialization is determined by
the operating system.)

Chapter 8 Procedures

When some peripheral device sends an interrupt to the CPU, it isignored if the
interrupt mechanism is disabled. If interrupts are enabled, the interrupt is processed
asfollows:

1. The CPU completes any instruction currently in execution.

2. The CPU sends an acknowledge interrupt signal, then the interrupting device
sendsits interrupt number.

3. Theinterrupt mechanism isdisabled. This prevents any other device from
interfering.

4. Control passesto the interrupt procedure whose number matches the number sent
by the peripheral device. If no such procedure has been established, the results
are undefined (since the vector that transfers control may be uninitialized).

5. When the procedure is through (by executing a RETURN or reaching the END
of the procedure), the interrupt mechanism is enabled so other devices can be
serviced, and control returns to the point where the interrupt occurred.

It is possible (as with other untyped procedures) for the procedure to terminate by
executing a GOTOwith atarget outside the procedure in the outer level of the main
program module. In this case, control will never be returned to the point where the
program was interrupted, and interrupts will not be enabled automatically.

The following is an example of an interrupt procedure for a system where a
peripheral device initiates an interrupt whenever the temperature of a device exceeds
acertain threshold. The interrupt procedure turns on the annunciator light, updates a
status word, and returns control to the program:

Hl TEVMP: PROCEDURE | NTERRUPT 100 PUBLI C,
CALL ANNUNCI ATOR(1);
/* This will result in an output fromthe nicroprocessor
to turn on annunciator |ight number 1, the
hi gh-t enperature warning. */

ALERT = ALERT OR 00000010B;
/* This puts a 1 in one of the bit positions
of ALERT, which contains a bit pattern
representing current alerts. */

END HI TEMP;

Reentrancy and the REENTRANT Attribute

With the REENTRANT attribute, a procedure can suspend execution temporarily,
restart with new parameters, and then later compl ete the original execution
successfully asif there had been no interruption.

PL/M-386 Programmer's Guide Chapter 8 129

130

This ability is desirable in two circumstances: (1) if the procedure (PROCL1) activates
itself (called direct recursion), or (2) if the procedure activates another procedure
(PROC2) that will reactivate PROCL before PROCL has finished its original processing
(called indirect recursion).

Without the REENTRANT attribute, storage for procedure variablesis allocated
statically, in fixed locations within the data segment of the object module.
Re-entering such a procedure would write over the earlier contents of such locations
making it impossible to complete the original suspended execution.

When the attribute REENTRANT is used in declaring a procedure, its variables are not
stored with other variables in the data section, but are stored on the stack. Thus
preserved, each set can be used independently by each invocation of the procedure.

Hence, multiple sets of variables might need to be stored on the stack during
recursive use of such procedures. A stack size must be specified (when binding the
program module) that is large enough for all such storage needed by all multiple
invocations that may be active at one time.

A procedure with the REENTRANT attribute may be activated before it is declared.
This permits direct recursion, where the procedure activates itself and permits
indirect recursion, where the procedure activates a second procedure and the second
procedure activates the first, or activates a third procedure, which activates a fourth,
and so forth, with the result that the first procedure is activated before it terminates.

The following rules summarize the use of the REENTRANT attribute:

« Any procedure that can be interrupted and is also activated from within an
interrupt procedure should have the REENTRANT attribute.

Note that this may apply to an interrupt procedure that runs with interrupts enabled
because it contains an ENABLE statement. If thereis any possibility that it will be
interrupted by its own interrupt, it should have the REENTRANT attribute. This
situation is equivalent to recursion.

« Any procedure that is directly recursive (activates itself) should have the
REENTRANT attribute.

« Any procedure that isindirectly recursive (activates another procedure and is
activated itself as aresult) should have the REENTRANT attribute.

« Any procedure that is activated by a reentrant procedure should also have the
REENTRANT attribute. In other words, if thereis any possibility that a procedure
can be activated while it is already running, it should be REENTRANT.

« The REENTRANT attribute cannot be used in the same declaration as the
EXTERNAL attribute. (It may be used with the PUBLI C attribute.)

Chapter 8 Procedures

« The REENTRANT attribute can only be used in a PROCEDURE statement at the
outer level of amodule.

« A procedure declaration with the REENTRANT attribute cannot have a nested
procedure declaration.

PL/M-386 Programmer's Guide Chapter 8 131

132 Chapter 8 Procedures

Built-in Procedures, Functions,
and Variables

Built-in procedures, functions, and variables are already declared in the PL/M code.
This makes it unnecessary to write code to perform the particular functions that
built-ins are designed to perform. The following built-in procedures, functions, and
variables are discussed in this chapter:

LENGTH, LAST, and SI ZE functions — these functions return information
concerning variables. For example, the SI ZE function returns the number of
bytes occupied by a scalar, array, or structure.

Explicit type and value conversion functions — these functions provide explicit
conversion for types and values.

Shift and rotate functions — these functions move bits using a pattern of 8, 16, or
32 hits.

String manipulation procedures and functions — these procedures and functions
move strings, compare strings, search strings for a match or a mismatch,
trandate strings, and set strings to a specified value.

Bit manipulation procedures — these functions copy (and move) a bit string and
search bit strings for a set bit.

MOVE bytes — this procedure moves a specified number of bytes from one
location to ancther.

Time delay — this procedure causes atime delay.
Lock set — this function enables a software synchronization lock.
Lock bit — this function enables a memory location lock.

PO NTER and SELECTOR functions — these functions enabl e the manipulation of
location addresses in the microprocessor's memory.

Theidentifiers for these built-ins are subject to the rules of scope (described in
Chapter 7). This means that the name of a built-in procedure or variable can be
declared to have alocal meaning (scope) within the program. Within the scope of
such a declaration, the built-in isunavailable. This distinguishes these identifiers
from reserved words (listed in Appendix A), which cannot be used as identifiersin
declarations.

PL/M-386 Programmer's Guide Chapter 9 133

No built-in procedure can be used within alocation reference (e.g.,
@ENGTH(LI ST)). No built-in variable can be used within alocation reference,
except as specifically noted in the following sections.

Obtaining Information About Variables

PL/M has three built-in procedures that take variable names as actual parameters and
return information based on the declarations of the variables: LENGTH, LAST, and
SI ZE.

The LENGTH Function

LENGTH is abuilt-in WORD function that returns the number of elementsin an array; it
is activated by a function reference with the form:

LENGTH (vari abl e-ref)
Where:
vari abl e-ref must be anon-subscripted reference to an array.

The array can be amember of a structure; it cannot be an EXTERNAL array using the
implicit dimension specifier (see Chapter 3).

The value returned is the number of elements assigned to the array in the declaration
statement (i.e., the value of the dimension specifier).

If the array is not a structure member, then the reference must be an unqualified
variable reference. If the array is a structure member, then the reference is a partially
qualified variable reference. For example, given the declaration:

DECLARE RECORD STRUCTURE (KEY BYTE,
I NFO(3) WORD) ;

LENGTH(RECORD. | NFO) isavalid function reference and returns a WORD value of 3.

If the array is a member of astructure, and that structure is an element of an array, a
special case arises. Given the declaration:

DECLARE LI ST (4) STRUCTURE (KEY BYTE,
I NFO (3) WORD);

then all of the following function references are correct and return the value 3:

LENGTH(LI ST(0) . | NFO)
LENGTH(LI ST(1) . | NFO)
LENGTH(LI ST(2) . | NFO)
LENGTH(LI ST(3) . | NFO)

134 Chapter 9 Built-in Procedures, Functions, and Variables

In other words, the subscript for the array LI ST isirrelevant when a
member-identifier is supplied, because the arrays within the structures are all the
same length. PL/M has a shorthand form of partially qualified variable referencein
the LENGTH, LAST, and SI ZE function references. For example:

LENGTH(LI ST. | NFO)

isavalid function and returns the value 3.

The LAST Function

LAST is a built-in WORD function that returns the subscript of the last element in an
array. Itisactivated by afunction reference with the form:

LAST (vari abl e)
Where:
vari abl e must be anon-subscripted reference to an array.

The array can be amember of a structure; it cannot be an EXTERNAL array using the
implicit dimension specifier (see Chapter 3).

The value returned is the subscript of the last element of the array. For agiven array,
LAST will aways be one less than LENGTH. When used with a based variable, LAST
returns the value assigned in the declaration statement. Thisis not necessarily the
actua value.

Asin the LENGTH function, a shorthand form of partialy qualified variable reference
isalowed in the case where the array is amember of a structure that is also an array
element.

The SIZE Function

S| ZE is a built-in WORD function that returns the number of bytes occupied by a
scalar, array or structure. It is activated by a function reference with the form:

SI ZE (vari abl e)
Where:

vari abl e isafully qualified, partialy qualified, or unqualified reference to any
scalar, array, or structure. The variable cannot be an EXTERNAL
declaration that uses the implicit dimension specifier (see Chapter 3).

The value returned is the number of bytes required by the variable referenced. When
used with a based variable, SI ZE returns the value assigned in the declaration
statement. Thisis not necessarily the actual (current) value.

PL/M-386 Programmer's Guide Chapter 9 135

If the reference is fully qualified, it refersto a scalar, and the value is the number of
bytes required for the scalar. If the referenceis unqualified, it refersto an entire
structure or array, and the value is the total number of bytes required for the structure
or array.

If the reference is partially qualified, it refers either to a structure member that is an
array or nested structure, or to an array element that is a structure. The value isthe
number of bytes required for the array or structure.

Asin the LENGTH function, a shorthand form of partially qualified variable reference
isalowed in the case where the array or scalar is a member of a structure and the
structure is an array element.

Explicit Type and Value Conversions

136

The functions in this section provide explicit conversion from one data type to
another and from signed values to or from absolute magnitudes.

Explicit type and value conversion functions are invoked as:
function-nane (expression)

In Tables 9-1 and 9-2, each function name is followed by the expression type
expected, the purpose of the function, and the nature of the value it returnsto the
expression that invoked it. For each function there is only one possible class of
expressions (e.g., Hl GH accepts only unsigned values) that can be converted. For the
type conversions (BYTE, WORD, DWORD, | NTEGER, REAL, PO NTER, and SELECTOR,
OFFSET, HWORD, CHARI NT, and SHORTI NT), the context of the entire expression is
always asigned integer value. Table 9-1 gives the value and type conversions for
PL/M-386 when the WORD32 control isin effect.

Chapter 9 Built-in Procedures, Functions, and Variables

Table9-1. Valueand Type Conversionsfor PL/M-386

Procedure Parameter
Name Type Function Result Returned
LOW BYTE BYTE value unchanged
HWORD Converts HWORD value to Low-order BYTE of HWORD
BYTE value
WORD or Converts WORD or OFFSET Low-order HWORD of WORD
OFFSET value to HWORD value or OFFSET
DWORD Converts DWORD value to Low-order WORD of DWORD
WORD value
HIGH BYTE zero
HWORD Converts HWORD value to High-order BYTE of HWORD
BYTE value
WORD or Converts WORD or OFFSET High-order HWORD of WORD
OFFSET value to HWORD value or OFFSET
DWORD Converts DWORD value to High-order WORD of DWORD
WORD value
DOUBLE BYTE Converts BYTE value to HWORD, by appending 8
HWORD value high-order zero bits
HWORD Converts HWORD value to WORD, by appending 16
WORD value high-order zero bits
WORD or Converts WORD or OFFSET DWORD, by appending 32
OFFSET value to DWORD value high-order zero bits
DWORD DWORD value unchanged
FLOAT CHARINT Converts signed integer Same value of type REAL
SHORTINT value to REAL value
INTEGER
FIX REAL Converts REAL value to Same value of type INTEGER if
INTEGER value within range -2**31 to
+(2**31)-1 otherwise undefined
INT BYTE Converts unsigned binary Same value of type INTEGER if
HWORD value to INTEGER value, within range -2**31 to
WORD interprets parameter as +(2**31)-1 otherwise
positive
SIGNED BYTE Converts unsigned integer BYTE value is extended with
value to INTEGER value 24 high-order zeros
HWORD HWORD value is extended with
16 high-order zeros
WORD WORD value unchanged

PL/M-386 Programmer's Guide

Chapter 9 137

continued

138 Chapter 9 Built-in Procedures, Functions, and Variables

Table9-1. Value and Type Conversionsfor PL/M-386 (continued)

Procedure Parameter
Name Type Function Result Returned
UNSIGN CHARINT Converts INTEGER value to Signed INTEGER value is
SHORTINT WORD value interpreted as unsigned WORD
INTEGER value
ABS REAL Converts negative real value Absolute value of parameter:
to positive real value value unchanged if positive
-(value) if negative. Result type
is same as parameter type.
IABS CHARINT Converts negative integerto Absolute value of parameter:
SHORTINT positive integer value unchanged if positive -
INTEGER (value) if negative. If -(value) is
out of range, result is
undefined. Result type is same
as parameter type.
BYTE any Converts any unsigned type BYTE value, by truncation
unsigned to BYTE
type
any signed Converts any signed type to BYTE value, by truncation
type BYTE
REAL Converts any REAL typeto BYTE (CHARINT (real))
BYTE
SELECTOR Converts SELECTOR to BYTE value, by truncation
BYTE
POINTER Converts offset portion of BYTE (OFFSET$OF (pointer))

POINTER to BYTE

PL/M-386 Programmer's Guide

continued

Chapter 9 139

Table9-1. Value and Type Conversionsfor PL/M-386 (continued)

Procedure Parameter
Name Type Function Result Returned
HWORD any Converts any unsigned type HWORD value, by truncation or
unsigned to HWORD zero extension
any signed Converts any signed type to HWORD value, by truncation or
type HWORD sign extension
REAL Converts any real type to HWORD (SHORTINT (real))
HWORD
SELECTOR Converts SELECTOR to HWORD type, value
HWORD unchanged
POINTER Converts offset portion of HWORD (OFFSET$OF
POINTER to HWORD (pointer))
WORD any Converts any unsigned type ~ WORD value, by truncation or
unsigned to WORD zero extension
type
any signed Converts any signed type to WORD value, by sign
type WORD extension
REAL Converts any real type to WORD (INTEGER (real))
WORD
SELECTOR Converts SELECTOR to WORD value, by zero
WORD extension
POINTER Converts offset portion of WORD (OFFSET$OF
POINTER to WORD (pointer))
continued
140 Chapter 9 Built-in Procedures, Functions, and Variables

Table9-1. Value and Type Conversionsfor PL/M-386 (continued)

Procedure Parameter
Name Type Function Result Returned
DWORD any Converts any unsigned type DWORD value, by zero
unsigned to DWORD extension
type
any signed Converts any signed type to DWORD value, by sign
type DWORD extension
REAL Converts any real type to DWORD (INTEGER (real))
DWORD
SELECTOR Converts SELECTOR to DWORD value, by zero
DWORD extension
POINTER Converts offset portion of DWORD (OFFSET$OF
POINTER to DWORD (pointer))
CHARINT any Converts any unsigned type CHARINT value, by truncation
unsigned to CHARINT
any signed Converts any signed type to CHARINT value, by sign-
type CHARINT extension
REAL Converts any real type to CHARINT (FIX(real))
CHARINT
SELECTOR Converts SELECTOR to CHARINT value, by truncation
CHARINT
POINTER Converts offset portion of CHARINT (OFFSET$OF
POINTER to CHARINT (pointer))
continued
PL/M-386 Programmer's Guide Chapter 9 141

Table9-1. Value and Type Conversionsfor PL/M-386 (continued)

Procedure Parameter
Name Type Function Result Returned
SHORTINT any Converts any unsigned type ~ SHORTINT value, by zero
unsigned to SHORTINT extension or truncation
type
any signed Converts any signed type to SHORTINT value, by sign
type SHORTINT extension
REAL Converts any real type to SHORTINT (FIX (real))
SHORTINT

SELECTOR Converts SELECTOR to SHORTINT value
SHORTINT

POINTER Converts offset portion of SHORTINT (OFFSET$OF
POINTER to SHORTINT (pointer))
INTEGER any Converts any unsigned type INTEGER value, by zero
unsigned to INTEGER extension or truncation
type
any signed Converts any signed type to INTEGER value, by sign
type INTEGER extension
REAL Converts any real type to INTEGER (FIX (real))
INTEGER

SELECTOR Converts SELECTOR to INTEGER value, by zero
INTEGER extension

POINTER Converts offset portion of INTEGER (OFFSET$OF
POINTER to INTEGER (pointer))

REAL any Converts any unsigned type REAL (SIGNED (unsigned))
unsigned to REAL
type (except
OFFSET)
any signed Converts any signed type to FLOAT (signed)
type REAL
REAL value unchanged

continued
142 Chapter 9 Built-in Procedures, Functions, and Variables

Table9-1. Value and Type Conversionsfor PL/M-386 (continued)

Procedure Parameter
Name Type Function Result Returned
SELECTOR any Converts any unsigned SELECTOR value, by zero
unsigned binary type to SELECTOR extension or truncation
binary type
OFFSET Current data segment selector
any Converts any signed integer SELECTOR value by sign
unsigned data type to SELECTOR extension or truncation
integer data
type
POINTER Selector portion of the
POINTER
REAL Cannot be used
OFFSET any Converts any unsigned type OFFSET, by zero extension or
unsigned OFFSET truncation
type
any signed Converts any signed type to OFFSET, by sign extension
type OFFSET
SELECTOR zero (0)
POINTER OFFSET$OF (pointer)
POINTER any Converts value of any BUILD$PTR (DS, OFFSET
unsigned unsigned type to POINTER (unsigned)) (DS is selector of
type current data segment)
any signed Converts value of any signed BUILD$PTR (DS, OFFSET
type type to POINTER (signed)) (DS is selector of
current data segment)
SELECTOR BUILD$PTR (SELECTOR, 0)
OFFSET BUILD$PTR (DS, OFFSET)
(DS is selector of current data
segment)
Notes:

Conversions from REAL to OFFSET, or POINTER, and vice versa, are not allowed. Under WORD32 (the default),
LONGINT is equivalent to INTEGER. ADDRESS is equivalent to OFFSET.

PL/M-386 Programmer's Guide

Chapter 9

143

The PL/M-386 LOW, HIGH, and DOUBLE Functions

144

The PL/M-386 LOWbuilt-in function converts DWORD val ues to WORD val ues, WORD or
OFFSET values to HWORD values, and HWORD values to BYTE values. LOWis activated
using the following form:

LOW (expr essi on)
Where:
expressi on has an unsigned binary number type.

If expr essi on has a DWORD value, LOWreturns the value of the low-order (least
significant) WORD of the expr essi on value. If expr essi on hasaWORD or OFFSET
value, LOWreturns the value of the low-order (least significant) HWORD of the

expr essi on value. If expressi on hasan HWORD value, LOWreturns the value of
the low-order (least significant) BYTE of the expr essi on value. If expr essi on
has a BYTE value, LOWreturns this value unchanged.

The PL/M-386 HI GH built-in function converts DWORD val ues to WORD values, WORD
or OFFSET values to HWORD values, and HWORD valuesto aBYTE values. Hl GHis
activated using the following form:

Hl GH (expression)
Where:
expressi on has an unsigned binary number type.

If expr essi on has a DWORD value, HI GH returns the value of the high-order (most
significant) WORD of the expr essi on value. If expr essi on hasaWORD or OFFSET
value, Hl GH returns the value of the high-order (most significant) HWORD of the

expr essi on value. If expressi on hasan HWORD value, HI GH returns the value of
the high-order (most significant) BYTE of the expr essi on value. If expr essi on
has a BYTE value, then Hl GHwill return a zero.

Chapter 9 Built-in Procedures, Functions, and Variables

The PL/M-386 DOUBLE built-in function converts BYTE val ues to HAORD val ues,
HWORD val ues to WORD values, and WORD or OFFSET values to DWORD values. DOUBLE
is activated using the following form:

DOUBLE (expressi on)
Where:
expr essi on has an unsigned binary number type.

If expr essi on hasaBYTE value, the DOUBLE function appends 8 high-order zero
bits to convert the expr essi on to an HAORD value and returns this HWORD value. If
expr essi on has an HAORD val ue, the DOUBLE function appends 16 high-order zero
bits to convert the expr essi on to a WORD value and returns thisWORD value. If
expr essi on hasaWORD or OFFSET value, the DOUBLE function appends 32
high-order bits to convert it to a DWORD value and returns this DADRD value. |If

expr essi on has a DWORD value, the DOUBLE function returns this DWORD value
unchanged.

The FLOAT Function

FLOAT isabuilt-in REAL function that converts a signed integer to the real number
datatype. Itisactivated by afunction reference with the following form:

FLOAT (expression)
Where:
expressi on isasigned integer.

FLOAT converts the signed integer to the corresponding real number data type and
returns the real number. FLOAT can be replaced with
REAL (expr essi on).

The FIX Function

FI X isabuilt-in | NTEGER function that converts a REAL valueto an | NTEGER value.
It is activated by a function reference with the following form:

FI X (expression)
Where:
expressi on has a REAL value.

FI X rounds the REAL valueto the nearest | NTEGER. If both | NTEGER values are
equally near, FI X roundsto the even value. Theresulting | NTEGER value is then
returned.

PL/M-386 Programmer's Guide Chapter 9 145

For example:

Fl X(1. 4) /* would result in the | NTEGER val ue 1, */
FI X(-1. 8) /* in -2, */

FI X(3.5) /* in 4, and */

FI X(6.5) /* in 6. */

If the result calculated by FI X is not within the implemented range of | NTEGER
values, the result is undefined.

|:| Note

FI X is affected by the rounding mode; see Chapter 10. The default
mode (round to the nearest or even value) is used in the previous
examples.

FI X can be replaced with | NTEGER (expr essi on) .

The INT Function

I NT isabuilt-in | NTEGER function that converts an unsigned binary value, excluding
DWORD values, to the signed integer datatype. It isactivated by afunction reference
with the following form:

I NT (expression)
Where:
expr essi on has an unsigned binary data type, excluding DWORD.

| NT interprets the expr essi on value as a positive number and returns the
corresponding | NTEGER value.

If the result calculated by | NT is not within the implemented range of | NTEGER
values, the result is undefined (see Chapter 5 for ranges for | NTEGER values).

The SIGNED Function

146

For PL/M-386, SI GNEDisa built-in | NTEGER function that converts a BYTE, HADRD,
or WORD valueto an | NTEGER value. SI GNED is activated by a function reference
with the following form:

SI GNED (expr essi on)
Where:

expressi on has an unsigned binary number data type, excluding DWORD.

Chapter 9 Built-in Procedures, Functions, and Variables

If expr essi on hasaBYTE or HAORD value, it will be extended by 24 or 16
high-order 0 bits, respectively, to produce a WORD value.

SI GNED interprets the WORD value as a 32-bit two's-complement number and returns
the corresponding integer value.

If the highest-order (most significant) bit of the WORD valueis a0, SI GNED interprets
the WORD value as a positive number and returns the corresponding | NTEGER value.
For example:

S| GNED (0000$0000$0000$0100B)
returns an | NTEGER value of 4.

If the highest-order bit of the WORD valueisa 1, SI GNED returns a negative | NTEGER
value whose absolute magnitude is the two's complement of the WORD value. For
example:

SI GNED(1111$1111$1111$1100B)
returns an | NTEGER value of -4.
SI GNED can be replaced by | NTEGER (expr essi on) .

The UNSIGN Function

The UNSI GN built-in function converts a signed integer to aWORD value. Itis
activated by a function reference with the following form:

UNSI GN (expressi on)
Where:
expressi on isasigned integer.
UNSI GN convertsthe | NTEGER value to a WORD value.

If the | NTEGER valueis positive, the WORD value will be numerically the same as the
| NTEGER value. However, if the | NTEGER value is negative, the WORD value will be
the two's complement of the absolute magnitude of the | NTEGER value. For
example:

UNSI G\(- 4)
returns a WORD val ue of:
1111$1111$1111$1100B
UNSI GN can be replaced by WORD (expr essi on).

PL/M-386 Programmer's Guide Chapter 9 147

The Unsigned Binary Data Type Built-in Functions

The unsigned binary data type built-in functions convert any expression to the
specified unsigned binary data type. For example, the WORD and DWORD built-in
functions convert any expression to a WORD or DWORD value, respectively.

The built-in functions are activated with the form:
built-in (expression)
Where:

built-in is the name of the data type to which the given expression is
converted (e.g., BYTE or WORD).

expressi on has any value.
For example, WORD (I NT1) convertsthe value of | NT1 to a WORD value.

If expr essi on isan unsigned binary number, it is converted by truncation or zero
extension, if necessary. If expr essi on isasigned integer, it is converted by
truncation or sign extension, if necessary. If expr essi on isaselector, itis
converted by truncation or zero extension. If expr essi on isapointer, the offset
portion of the pointer is converted by truncation or zero extension; the selector
portion of the pointer is discarded. If expr essi on isarea number, itisfirst
converted to a signed integer using the numeric coprocessor's real to integer
conversion, then the resulting value is converted to the unsigned binary number data
type by truncation, if necessary.

Signed Integer Data Type Built-in Function

148

The signed integer data type built-in function converts any expression to a signed
integer datatype. It hasthe form:

| NTEGER (expressi on)
For example:
| NTEGER (D)
converts the value of Dto an | NTEGER value within the | NTEGER range.

If expr essi on isan unsigned binary number or selector, it is converted by
truncation or zero extension. If expr essi on isa pointer, the offset portion of the
pointer is converted by truncation or zero extension; the selector portion of the
pointer isdiscarded. If expr essi on isareal number, it is converted using the
numeric coprocessor's real to integer conversion.

Specific to PL/M-386, if expr essi on isasigned type, it is converted by sign
extension. Shorter data types are converted into longer data types by sign extending

Chapter 9 Built-in Procedures, Functions, and Variables

the shorter data type value. Longer data types are converted into shorter data types
by sign extension of the bits equivalent to the shorter datatype. For example, if a
CHARI NT built-in is used to convert an | NTEGER value, the least significant 8 bits are
sign extended and the value returned is guaranteed to be in the CHARI NT range.

REAL Built-in Functions

The REAL built-in function converts an expression to a REAL value. Expressions of
type SELECTOR, OFFSET, and POl NTER cannot be converted. The conversion is
done using the numeric coprocessor's | NTEGER to REAL conversion. |f the
expression is an unsigned binary number it is zero extended, if necessary, and
interpreted as a signed value.

The SELECTOR Built-in Function

The SELECTOR built-in function converts any expression (except the real number
datatype) to a SELECTOR value. If the expression is any unsigned binary number,
except OFFSET, it istruncated or zero extended to 16 bits. If the expressionisa
signed integer, it istruncated or sign extended to 16 bits. If the expression is of type
PO NTER, the selector portion of the pointer is returned. If the expressionis of type
OFFSET, the current data segment selector isreturned. Expressions of type REAL
cannot be converted.

The POINTER Built-in Function

The PO NTER built-in function converts any expression (except real numbers) to a
PO NTERvalue. If the expression isany unsigned binary number or signed integer, it
is converted to type OFFSET by truncation, zero, or sign extension, if necessary. This
OFFSET value is combined with the SELECTOR value of the current data segment to
create the PO NTER value. If the expressionis of type SELECTOR, it is combined
with an OFFSET value of zero to create the PO NTER value. Expressions of type
REAL cannot be converted.

PL/M-386 Programmer's Guide Chapter 9 149

The OFFSET Built-in Function

The OFFSET built-in function converts any expression (except real numbers) to an
OFFSET value. If the expression is any unsigned binary number or signed integer
datatype, it is converted to type OFFSET by truncation, or by zero or sign extension.
If the expression is of type SELECTOR, an OFFSET value of zero isreturned. If the
expression is of type PO NTER, the offset portion of the pointer is returned. ADDRESS
values are equivalent to OFFSET. Expressions of type REAL cannot be converted.

The ABS and IABS Functions

The ABS built-in function returns the absolute value of areal number. |t is activated
by afunction reference with the following form:

ABS (expressi on)
Where:
expressi on isareal number.

If the value of expr essi on ispositive, ABS returnsit unchanged. If the value of
expr essi on isnegative, ABS returns -(expr essi on) .

The | ABS built-in function returns the absolute value of asigned integer. Itis
activated by a function reference with the following form:

| ABS (expression)
Where:
expr essi on isasigned integer.

If the value of expr essi on ispositive, | ABS returns it unchanged. If the value of
expr essi on isnegative, | ABS returns -(expr essi on).

150 Chapter 9 Built-in Procedures, Functions, and Variables

Shift and Rotate Functions

With the shift and rotate functions, bit patterns can be moved to the right and to the
left. Inashift, bits moved off one end of the pattern are lost, and zero bits moveinto
the pattern from the other end (except in the case of the algebraic shift right function,
SAR). Inarotate, bits moved off one end of the pattern are moved onto the other end
of the pattern. It isnot possible to perform arotate on a signed integer algebraic
pattern.

In PL/M-386, avalueis handled as a pattern of 8 bitsfor aBYTE or CHARI NT value,
16 bits for a HWORD or SHORTI NT value, 32 hits for WORD, OFFSET, or | NTEGER
values, or 64 bits for a DWORD value. The pattern is moved to theright or left by a
specified number of bits called the bit count.

Rotation Functions

The type of the rotate left (ROL) and rotate right (ROR) built-in functions depends on
the type of expression given as an actual parameter. These built-ins are activated by
function references with the following forms:

ROL (pattern, count)
ROR (pattern, count)

Where:
pattern andcount areunsigned binary numbers.

If count isany unsigned binary number data type except BYTE, all but the low-order
bitswill be dropped to produce aBYTE value. If the value of count is 0, no rotation
OCCurs.

The value of pat t er n is handled as an 8-bit, 16-bit, 32-bit, or 64-bit quantity. The
type of pat t er n determines which of the unsigned binary number data typesis used.
This, in turn, determines the value of pat t er n. The number of bit positions by
which pat t er n isrotated is specified by count .

The following are examples of the action of these procedures:

ROR (10011101B, 1) returns a value of 11001110B
ROL (10011101B, 2) returns a value of 01110110B
ROR (1101011010011010B, 9) returns a value of 0100110101101011B

PL/M-386 Programmer's Guide Chapter 9 151

Logical-shift Functions

The type of the logical-shift left (SHL) and logical-shift right (SHR) built-in functions
depends on the type of the expression given as an actual parameter. SHL and SHR are
activated by function references with the forms:

SHL (pattern, count)
SHR (pattern, count)

Where:
patternandcount areexpressions usingan unsigned binary number data type.

If count isany unsigned binary number data type except BYTE, al but the 8
low-order bits will be dropped to produce a BYTE value. If the value of count isO,
no shift occurs.

Thevalue of pat t er n can be aBYTE, HWORD, WORD, or DWORD value and the value
will not be converted. If patt ernisaBYTE value, the function will return aBYTE
value. If pat t er n isan HWORD value, the function will return an HWORD value. If
pat t er n isaWORD value, the function will return aWORD valug; if patternisa
DWORD value, the function will return a DWORD value.

The value of pat t er n is shifted left (by SHL) or right (by SHR), with the bit count
given by count .

A shift operation can force one bit out of the pattern. For example:
SHL(1000$00018B, 1)

returns 0000$0010B, losing the former high-order bit, and:
SHR(1000$0001B, 1)

becomes 0100$0000B, losing the former low-order hit.

If the specified pat t er n and count do not lose information, a shift of one bit
position has the effect of multiplication by two for aleft shift, or division by two for a
right shift. For example, suppose that VAR is a BYTE variable with avalue of eight.
Thisisrepresented as 0000$1000B. SHL(VAR, 1) would return 0001$0000B, which
represents 16, and SHR(VAR, 1) would return 0000$0100B, which represents four.

Casting can be used to ensure that no information is lost in a shift, asin the following
example:

SHL(WORD(LI TSMASK) , 3)

152 Chapter 9 Built-in Procedures, Functions, and Variables

Algebraic-shift Functions

The type of the algebraic-shift left (SAL) and algebraic-shift right (SAR) built-in
functions depends on the type of the expression given as an actual parameter. SAL
and SAR are activated by function references with the following forms:

SAL (pattern, count)
SAR (pattern, count)

Where:
pattern isanexpression using asigned integer datatype.
count is an expression using an unsigned binary data type.

If count isany unsigned binary data type except BYTE, al but the 8 low-order bits
will be dropped to produce aBYTE value. If the value of count iszero, no shift
occurs.

For PL/M-386, the type of pat t er n can be a CHARI NT, SHORTI NT, or | NTEGER
value. All values are converted to | NTEGER before the shift operations, and an
| NTEGER valueis returned.

In aleft shift (SAL), zero-bits move into the pattern from the right (asin SHL and
SHR).

In aright shift (SAR), either zero-bits or one-bits move into the pattern from the left.
If the original value of pattern is positive, the sign bit (leftmost bit) isa 0, and zero-
bits move in from the left. If the original value is negative, the sign bitisa 1, and
one-bits move in from the | eft.

In some instances (asin logical shifts), an algebraic shift of one bit position can have
the effect of multiplication by two for aleft shift or division by two for aright shift.
For example, suppose that VAL isan | NTEGER variable with avalue of -8. Thisvalue
is1111$1111$1111$1000B. SAL(VAL, 1) would return 1111$1111$1111$0000B,
whichis-16, and SAR(VAL, 1) would return 1111$1111$1111$1100B, whichis-4.

PL/M-386 Programmer's Guide Chapter 9 153

Concatenate Functions

154

The concatenate functions (SHLD and SHRD) are built-in WORD doubl e-shift functions
that concatenate two WORD values to form a 64-hit string, shift the concatenated
pattern left (SHLD) or right (SHRD) by count bits, and return the destination WORD.
These built-ins are activated by function references with the following form:

keyword (high pattern, |ow pattern, count)
Where:

keyword iSSHLD or SHRD.
hi gh pattern

isaWORD value.

| ow pattern
isaWoORD value.

count isaBYTE, HWORD, or WORD value that determines how many bits to shift
the concatenated pattern.

SHL D concatenates the bit pattern of the WORD value hi gh pat t er n with the bit
pattern of the WORD value | ow pat t er n to form a 64-bit string. hi gh patternis
placed in the high 32 bitsand | ow patt er n isplaced in the low 32 bits. The
concatenated pattern is shifted left by the number of bits given by count MODULO32.
These operands are taken MODULO 32 to provide a number between 0 and 31 by
which to shift. This hasthe effect of shifting the high order bitsof | ow pattern
into the low order bits of hi gh patt er n. SHLD returns the high 32 bits of the
shifted pattern.

SHRD concatenates the bit pattern of the WORD value hi gh pat t er n with the bit
pattern of the WORD value | ow pat t er n to form a64-hit string. hi gh patternis
placed in the high 32 bitsand | ow pat t er n isplaced in the low 32 bits. The
concatenated pattern is shifted right by the number of bits given by count MODULO
32. These operands are taken MODULO 32 to provide a number between 0 and 31 by
which to shift. This hasthe effect of shifting the low order bits of hi gh pattern
into the high order bits of | ow pat t er n. SHRD returns the low 32 bits of the shifted
pattern.

Chapter 9 Built-in Procedures, Functions, and Variables

String Manipulation Procedures and Functions

Theterm string is used here in a broader sense than previously, in which string was
used to refer to aBYTE string. In this section, a string is any contiguously stored set
of unsigned binary number data type values (excluding DWORD and OFFSET). A
string can be regarded asif it were an unsigned binary number type (excluding
DWORD and OFFSET) array, and the array items can be referred to as elements.

The word index refersto the position of a given element within astring. Theindex is
similar to the subscript of an array reference. Thus, the index of the first element of a
string is O, the index of the second element is 1, and so on.

In the following descriptions, the location of a string always means the location of its
first element. In each string manipulation procedure, the location of astring is
specified by a parameter called sour ce or dest i nat i on, which isan expression
with aPQO NTERvalue. The sour ce pointsto the lowest element. For example, with
MOVB and MOVW the lowest element (element 0) is the first element to be processed.
With MOVRB and MOVRW the lowest element is the last element to be processed, as
discussed in the following sections.

The length of a string isthe number of elementsit contains. In each string
manipulation procedure, the number of elements to be processed is specified by a
parameter called count .

|:| Note

If thesour ce or desti nati on string addressisin SELECTOR or
WORD form, use the @operator of a variable based on the address.
Otherwise, the built-in function BUI LD$PTR can be used to
construct the pointer-parameter for the string built-in.

In PL/M-386, each of the string-manipulation procedures described in the following
sections (except XLAT) isavailable for BYTE, HWORD, and WORD strings.

PL/M-386 Programmer's Guide Chapter 9 155

The Copy String in Ascending Order Procedure

MOVxx is an untyped procedure that copies a string of length count from one
location to another. It is activated by a CALL statement with the following form:

CALL keyword (source, destination, count);

Where:
keywor d MOVB, MOVHW MOVW

sour ce and dest i nati on
expressions with POl NTER values

count expression with BYTE, HWORD, OFFSET, or WORD value

MOVB copies a BYTE string, MOVHWcopies an HWORD string, and MOVWcopies a WORD
string.

The string elements are copied in ascending order (i.e., element O is copied first, then
element 1, etc.). Thisorder issignificant if the sour ce string and thedest i nati on
string overlap. If the value of dest i nat i on ishigher than the value of sour ce, and
the two strings overlap, elementsin the overlap areawill be overwritten before they
are copied. To avoid the overwriting, use MOVRxx instead of MOVxx.

The Copy String in Descending Order Procedure

MOVRxx is an untyped procedure that copies a string of length count from one
location to another. It is activated by a call statement with the following form:

CALL keyword (source, destination, count);

Where:
keywor d MOVRB, MOVRHW MOVRW

sour ce and dest i nati on
expressions with POl NTER values

count expression with BYTE, HWORD, OFFSET, or WORD value

156 Chapter 9 Built-in Procedures, Functions, and Variables

The MOVRB built-in procedure is similar to the MOVB procedure except that the
elementsin the MOVRB sour ce string are copied to thedest i nat i on stringin
descending order (i.e., element (count-1) is copied first, then element (count-2), and
so on, with element O copied last). This order is significant when the two strings
overlap. If thevalue of dest i nat i on ishigher than the value of sour ce, and an
overlap exists, elements in the overlap areawill not be overwritten until they have
been copied. However, if the value of sour ce is higher than the value of

desti nati on, elementsin the overlap areawill be overwritten before they are
copied.

MOVHWperforms the same function as MOVRB except that MOVHWcopi es an HWORD
string.

MOVRWperforms the same function as MOVRB, except MOVRWcopies a WORD string
instead of a BYTE string.

|:| Note

If two strings overlap, use a procedure such as the following to
make the correct choice between MOVB and MOVRB. This ensures
that elements in the overlap areawill not be overwritten until after
they have been copied.
MOVBYTES: PROCEDURE (SRC, DST, CNT);
DECLARE (SRC, DST) PO NTER, CNT HWORD;
| F (OFFSET(SRC)) > (OFFSET(DST)) THEN
CALL MOVB (SRC, DST, CNT);
ELSE CALL MOVRB (SRC, DST, CNT);
END MOVBYTES

This procedure can be activated without the need to consider whether overlap may
occur or whether sour ce or dest i nati on ishigher.

The Compare String Function

CMPxx is a built-in WORD function that compares two strings of length count . Itis
activated by a function reference with the following form:

keyword (sourcel, source2, count)

Where:
keywor d CwPB, CWVPHW CMPW

sourcel source2
expressions with PO NTER values

count expression with BYTE, HWORD, OFFSET, or WORD value

PL/M-386 Programmer's Guide Chapter 9 157

CMPB compares two BYTE strings of length count whose locations are sour cel and
sour ce2. It remains a 32-bit instruction even if the WORD16 control isin effect.

If every element in the string at sour cel isequal to the corresponding element in the
string at sour ce2, CMPxx returns a WORD value, OFFFFFFFFH, for PL/M-386.
Otherwise, CMPxx returns the index (position within the strings) of the first pair of
elements found to be unequal .

CvPHWperforms the same function as CVPB, except that CMPHWcompares two HWORD
strings. CMPWperforms the same as function as CMPB except that CMPWcompares
two WORD strings instead of two BYTE strings.

The Find Element Functions

158

FI NDis a built-in WORD function that searches a string to find an element that has a
specified value. It isactivated by afunction reference of the following form:

keyword (source, target, count)

Where:
keywor d FI NDB, FINDHW FI NDW FI NDRB, FI NDRHW FI NDRW

sour ce expression with PO NTER value
t ar get expression with BYTE, HWORD, or WORD value
count expression with BYTE, HWORD, OFFSET, or WORD value

FI NDB examines each element of the source string (in ascending order) until it finds
an element whose value matches the BYTE value of t ar get , or until count elements
have been searched, with none of them having matched thet ar get . If the searchis
successful, FI NDB returns the index of the first element of the string that matches

tar get . If the search isunsuccessful, FI NDB returns a WORD value.

FI NDHWperforms the same function as FI NDB, except that FI NDHWsearches an
HWORD string. If t ar get hasaBYTE value, it is extended by 8 high-order, O-bitsto
produce an HWORD value. If t ar get hasaWORD value, it istruncated by 16
high-order bits to produce an HWORD value.

FI NDWperforms the same function as FI NDB, except that FI NDWsearches a WORD
string. If t ar get hasaBYTE or HAORD value, t ar get is extended appropriately to
produce a WORD value.

Chapter 9 Built-in Procedures, Functions, and Variables

FI NDRB performs the same function as FI NDB, except that FI NDRB searches the
sour ce string in descending order. Thus, if each search is successful, FI NDRB
returns the index of the last (highest subscript) element that matches the BYTE value
of t ar get . FI NDRHWperforms the same function as FI NDRB, except that FI NDRHW
searches an HWORD string (in descending order). FI NDRWsearches a WORD string (in
descending order).

The Find String Mismatch Function

SKI PBis a built-in WORD function that searches the BYTE string of length count at a
specified location (given by sour ce) for the first BYTE value that does not match the
target BYTE. This search beginswith the first BYTE value of the string. Theresultis
aWORD value, either OFFFFFFFFH if the string contains only BYTE values equal to
the target BYTE, equal to the index of the first BYTE value not equal to the target
BYTE.

The function is activated by a function reference of the following form:
keyword (source, target, count)

Where:
keywor d SKI PB, SKI PHW SKIPW SKIPRB, SKIPRHW SKIPRW

sour ce expression with PO NTER value
t ar get expression with BYTE, WORD, or HWORD value
count expression with BYTE, HWORD, OFFSET, or WORD value

SKI PwWperforms the same function as SKI PB, except that SKI PWsearches a WORD
source string to find the first element that does not match the WORD value of t ar get .
SKI PHWperforms the same function as SKI PB, except that SKI PHWsearches an
HWORD source string to find the first element that does not match the HWORD val ue of
target.

SKI PRB searches a BYTE string of the length specified by count , at the location
given by sour ce, for the last BYTE value that does not match the target BYTE. This
search begins with the last BYTE value in the string. The result is a WORD value
(OFFFFFFFFH) if the string contains only BYTE values equal to the target BYTE, or
the index of the last BYTE value, if the last BYTE value in the string is not equal to the
target BYTE.

SKI PRWperforms the same function as SKI PRB, except that SKI PRwWsearches for the
last element in the WORD source string that does not match the WORD value of the
target. SKI PRHwWsearches for the last element in the HWORD source string that does
not match the HWORD value of the target.

PL/M-386 Programmer's Guide Chapter 9 159

The Translate String Procedure

160

XLAT is an untyped procedure that uses a trandation table to translate a BYTE string
to produce another BYTE string. It isactivated by a CALL statement of the form:

CALL XLAT (source, destination, count, table)
Where:

source, destination,table
expressions with POl NTER values

count expression with BYTE, HWORD, OFFSET, or WORD value

XLAT tranglates the count BYTE elementsin the sour ce string, placing the
trandated elementsinthedest i nati on string. Thevalue of t abl e isassumed to
be the location of a BYTE string of up to 256 elements. Thisstringisused asa
trandlation table.

The value of an element in the sour ce string is used as an index into the trandation
table. Theindex selects one element from the trandation table; this element is then
copied into the dest i nat i on string.

For example, if the fifth element in the sour ce string is 202, then 202 is used as an
index for the trandation table. The 203rd element of the table is copied into the fifth
positioninthedest i nati on string.

The elements of the sour ce string are trandated into thedest i nat i on stringin
ascending order.

Chapter 9 Built-in Procedures, Functions, and Variables

The Set String to Value Procedure

The SET built-in is an untyped procedure that sets each element of a BYTE string, the
length of which is specified by count , to asingle specified value. SET is activated
by a CALL statement with the following form:

CALL keyword (newal ue, destination, count)

Where:
keywor d SETB, SETHW SETW

newal ue expressonwith BYTE, HWORD, OFFSET, or WORD value -- the
high-order bits are dropped to produce aBYTE WORD, or HWORD value

destination
expression with PO NTER value

count expression with BYTE, HWORD, OFFSET, or WORD value
SETB assigns the BYTE value of newal ue to each element of a BYTE string.

SETWperforms the same function as SETB except that SETWassigns a single WORD
value to each element of aWORD string. If newval ue hasaBYTE or an HWORD val ue,
it will be extended by 24 or 8 high-order 0 bits, respectively, to produce a WORD
vaue.

For information on WORD32| WORD16 mapping, see Tables 9-3, 10-1, and 11-3.

PL/M-386 Programmer's Guide Chapter 9 161

PL/M-386 Bit Manipulation Built-ins

The Copy Bit String Procedure

MOVBI T isan untyped built-in procedure that copies a bit string of length count from
one location to another. MOVBI T is activated by a CALL statement with the following
form:

CALL MOVBIT (sbase, sbitoffset, dbase, dbitoffset, count);
Where:

sbase and dbase
are expressions with POl NTER values.

sbi t of f set
are expressions with BYTE, HWORD, OFFSET,

dbi t of f set and count
are WORD values.

The MOVBI T built-in procedure moves the number of bits specified by count from
the bit location given by the base address shase, and the bit offset shi t of f set , to
the location given by the base address dbase and the bit offset dbi t of f set . These
bits are moved beginning with the low-order bit (least significant bit).

The MOVRBI T built-in procedure performs the same function as MOVBI T, except that
MOVRBI T moves hits in descending order, beginning with the high-order bit (most
significant bit).

The Find Set Bit Function

162

SCANBI T is a built-in WORD function that searches a bit string to find a set bit (i.e., a
bit with the value of 1). SCANBI T is activated by a function reference with the
following form:

SCANBI T (sbase, sbitoffset, count)
Where:
sbhase isan expression with a PO NTER value.

sbi t of f set and count
are expressions with BYTE, HWORD, OFFSET, or WORD values.

Chapter 9 Built-in Procedures, Functions, and Variables

The SCANBI T built-in function searches the bit string of length count at the bit
location given by the base address shase and the bit offset sbi t of f set for the first
set bit, beginning with the low-order bit (least significant bit) in the string. The result
of SCANBI T is either a WORD value of OFFFFFFFFH if the string contains all O bits, or
theindex of the first set bit.

SCANRBI T performs the same function as SCANBI T, except that SCANRBI T starts at
the high-order bit (most significant bit) in the string and searches for a set bit, in
descending order, and returns the location of the first set bit it encounters. The result
of SCANRBI T is either a WORD value of OFFFFFFFFH if the string contains all 0-bits,
or theindex of the first set bit encountered.

PL/M-386 Programmer's Guide Chapter 9 163

Miscellaneous Built-ins

The Move Bytes Procedure

164

MOVE is an untyped procedure that moves the number of bytes specified by count to
the location given by the value of dest i nat i on, starting at the location given by the
value of sour ce. If thesour ce and dest i nati on fields overlap, theresult is
undefined. MOVE is provided for compatibility with PL/M-80 programs. MOVE is
activated by a CALL statement with the following form:

CALL MOVE (count, source, destination)
Where:
count expression with BYTE, HWORD, OFFSET, or WORD value

sour ce and desti nati on
expressions with OFFSET values

If either sour ce or dest i nat i on isavalue other than the value OFFSET, the value
will be extended by high-order O bits to produce the OFFSET value. The values of
sour ce and dest i nat i on are assumed to be the addresses of the sour ce string
and the dest i nat i on string.

The operation of the MOVE procedure differs from the MOVB procedure, as follows:

* Thesource anddesti nati on parameters must be OFFSET values or they will
be converted. PO NTER values cannot be used, nor can values be supplied with
the @operator. Thus, MOVE can handle only strings whose locations can be
expressed as OFFSET addresses.

* The parameter order is different from the one used by the other built-in string
functions.

* Theresults are always undefined if the sour ce and dest i nat i on strings
overlap.

Chapter 9 Built-in Procedures, Functions, and Variables

The Time Delay Procedure

TI ME isan untyped built-in procedure that causes atime delay specified by its actual
parameter. Tl ME isactivated by a CALL statement with the following form:

CALL TI ME (expression);

where the expr essi on isconverted, if necessary, to an HANORD quantity. The length
of time measured by the procedure is a multiple of 100 microseconds. If the actual
parameter evaluates to n, then the delay caused by the procedure is 100n
microseconds. For example, the statement:

CALL TIME (45);

causes adelay of 4.5 milliseconds. For PL/M-386, the maximum delay is 12 hours.
If required, longer delays can be obtained by repeated activations. The following
block takes one second to execute:

DOl = 1 TO 40
CALL TIME (250);
END;

The TI ME procedure is based on the microprocessor's CPU cycletimes. The TI ME
procedure assumes 16 MHz for Intel 386 and | ntel 486 microprocessors.

Note that in generating code for acall to Tl ME, the computer generates aloop rather
than using interrupt processing. If atask containing atime delay is swapped outin a
multi-tasking environment, the time delay of that task stops executing.

The Lock Set Function

LOCKSET is abuilt-in BYTE function that enables implementation of asimple
software synchronization lock. It iscalled by afunction reference with the following
form:

LOCKSET (| ockptr, newal ue)
Where:
| ockptr expression with PO NTER value
newal ue expression with BYTE, HAORD, or WORD value -- the high-order bits are
dropped to produce a BYTE value

The action of LOCKSET isasfollows: thel ockpt r parameter isused as a pointer to
aBYTE variable; the value of newval ue isassigned to this variable, and LOCKSET
returns the original value of the variable. During this transaction, the CPU prevents
any other process from accessing the same memory location.

PL/M-386 Programmer's Guide Chapter 9 165

166

To see how thisfacility can be used, assume a system has more than one
microprocessor using the same memory, and has a program in one of these
microprocessors. This program uses memory locations that are also used by other
microprocessors in the system.

Within certain critical regions of the program, it is critical that no other
microprocessor can access the shared memory locations. To achieve this, declare a
global BYTE variable called LOCK, and establish a convention that if LOCK=0, any
microprocessor in the system can access the shared memory locations. However, if
LOCK=1, ho microprocessor can access the shared memory locations except for the
microprocessor that set LOCK to 1.

Write the function reference LOCKSET(@ OCK, 1) . The value 1 will be assigned to
LOCK. If the value returned by LOCKSET is O, then LOCK has not been set, and this
microprocessor isthe onethat set it. At the end of the critical region, the lock must
be released by writing LOCK=0.

If LOCKSET returns avalue of 1, then LOCK has been set and this microprocessor was
not the one that set LOCK. Wait until a LOCKSET(@.OCK, 1) function reference
returns a value of 0 before accessing the shared memory locations.

Chapter 9 Built-in Procedures, Functions, and Variables

Thus, the program could contain the following construction:

/*Begin critical region*/
DO WHI LE LOCKSET(@ OCK, 1) ;
/*Do nothing but repeat until LOCKSET returns 0*/

END;
/*Now LOCK has been set to 1 by this mcroprocessor*/
/*Critical region of program where shared
nmenory | ocations are accessed*/
LOCK=0;

/*End critical region*/

In the simple case just described, only one software lock is used. It isrepresented by
the variable LOCK. If more than one set of memory locations need protection at
different times, it is possible to establish as many different software locks as
necessary, with each lock using a different BYTE variable.

Also, note that a software lock can be used for purposes other than protecting
memory locations. LOCKSET provides a mechanism that can be used to implement
various types of synchronization in a multiprocessor system.

The Lock Bit Functions

The Bl TLOCK functions are built-in BYTE functions similar to the LOCKSET built-in
described in the previous section. They are called by a function reference with the

form:
keyword (bbase, boffset)
Where:
keywor d isBI TLOCKSET, Bl TLOCKRESET, or Bl TLOCKCOVPLEMENT.
bbase isan expression with a PO NTER value.

bof f set isan expression with a BYTE, HWORD, or WORD value.

The action of Bl TLOCKSET isasfollows. thebbase and bof f set parameters are
used as the base address and bit offset to point to a certain bit in memory. The value
lisassigned to thisvariable, and Bl TLOCKSET returnsaBYTE. The returned valueis
TRUE (OFFH) if the original content of the bit was 1, otherwiseit is FALSE. During
this transaction, the CPU prevents any other process from accessing the same
memory location. Bl TLOCKRESET performs the same function as BI TLOCKSET,
except that BI TLOCKRESET assigns the value 0 to the bit variable.

Bl TLOCKCOVPLENMENT performs the same function as Bl TLOCKSET, except that

Bl TLOCKCOVPLENMENT complements the BYTE variable; that is, if the value was
initially O, itisset to 1 and vice versa.

PL/M-386 Programmer's Guide Chapter 9 167

POINTER and SELECTOR-related Functions

With the following built-in functions, programs can manipulate PO NTER and
SELECTOR values that serve as location addresses in the microprocessor's memory.

The Return POINTER Value Function

BUI LD$PTRis abuilt-in PO NTER function that takes the specified segment and
offset value and returns a PO NTER value. It is activated by a function reference with
the following form:

BUI LD$PTR (segnent, offset)
Where:
segnent expression with SELECTOR value

of f set expression with OFFSET value

The Return Segment Portion of POINTER Function

SELECTOR$OF is a built-in SELECTOR function that returns the segment portion of a
PO NTER. Itisactivated by afunction reference with the following form:

SELECTOR$OF (poi nter)
Where:

poi nt er isan expression with aPQ NTER value.

The Return Offset Portion of POINTER Function

OFFSET$OF returns the offset portion of a PO NTER. For PL/M-386, OFFSET$CF is
abuilt-in OFFSET function. It isactivated by afunction reference with the following
form:

OFFSET$OF (poi nter)
Where:

poi nt er isan expression with a PO NTER value.

168 Chapter 9 Built-in Procedures, Functions, and Variables

The Set POINTER Bytes to Zero Variable

NI L isabuilt-in PO NTER pseudo-variable that represents a pointer with all bytes set
to zero. NI L isactivated by a function reference with the following form:

NI L

The pointer value NI L pointsto no object. The value NI L can be assigned to a
pointer to indicate, for instance, the end of alinked list.

Note that pointer values equal to NI L cannot be used to de-reference data values. For
example, if aprogram contains the following statements:

DECLARE P PO NTER,
DECLARE B BASED P BYTE;
P = NL;

any subsequent referencesto B are invalid and will cause atrap.
The NI L PO NTER variable also has the property that @I L isequal to NI L.

PO NTER variables can beinitialized to NI L by using @I L with | NI TI AL. For
example:

DECLARE ENDOFLI ST POl NTER
INNTIAL (@I L);

initializes ENDOFLI ST with the value of NI L (i.e., all zeros). OFFSET$OF(NI L) and
. NI L are also equal to zero.

WORD16 Built-in Mapping

The native machine word for Intel 386 and I ntel486 microprocessorsis WORD32 (a
32-bit WORD). The WORD16 control affects the semantics of some data types and
built-insas listed in Table 3-3. In PL/M-386, WORD16 keywords are mapped to the
equivalent WORD32 keyword. SELECTOR, POl NTER, OFFSET (ADDRESS) are the
same under both WORD32 and WORD16. Table 11-5 in the discussion of the
WORD32| WORD16 controls shows the correspondence between default (WORD32)
built-ins and those avail able when WORD16 isin effect. For example, Table 11-5
shows that HAWORD under WORD32 corresponds to WORD under WORD16.

PL/M-386 Programmer's Guide Chapter 9 169

170 Chapter 9 Built-in Procedures, Functions, and Variables

Features Involving the Target CPU 1 O
and Numeric Coprocessor

The PL/M features described in this chapter make direct or indirect use of the target
microprocessor and numeric coprocessor hardware.

Microprocessor Hardware-dependent Statements

The ENABLE and DISABLE Statements
These statements enable and disable the microprocessor interrupt mechanism.
The ENABLE statement has the following form:
ENABLE;

ENABLE generates an STI instruction, causing the microprocessor to enable interrupts
after the next machine instruction is executed.

The DI SABLE statement has the following form:
DI SABLE;

DI SABLE generates aCLI instruction, causing the microprocessor to disable
interrupts.

PL/M-386 Programmer's Guide Chapter 10 171

The CAUSESINTERRUPT Statement

The CAUSE$| NTERRUPT statement causes a software interrupt to be generated. It has
the form:

CAUSES$| NTERRUPT (constant);
Where:
constant isawhole-number constant in the range O to 255.

CAUSE$| NTERRUPT generates an | NT instruction with the constant as the interrupt
type, causing the microprocessor to transfer control to the appropriate interrupt
vector. Appendix G contains more information on run-time interrupt processing.

The HALT Statement

The HALT statement causes a microprocessor halt. It hasthe form:
HALT;

HALT generates an STI instruction followed by an HLT instruction, causing the
microprocessor to halt with interrupts enabled.

172 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

Microprocessor Hardware Flags

Optimization and the Hardware Flags

To produce an efficient machine-code program from a PL/M source program, PL/M
compilers perform extensive optimizations of the machine code. This means that the
exact sequence of machine code produced to implement a given sequence of PL/M
source statements cannot be predicted.

Consequently, the state of the microprocessor hardware flags cannot be predicted for
any given point in the program. For example, suppose that a source program contains
the following fragment:

SUM = SUM + 250;

Where:
SUM iSaBYTE variable.

Now, if the value of SUMbefore this assignment statement is greater than five, the
addition will cause an overflow and the hardware CARRY flag will be set.

If there were no optimization of the machine code, this assignment statement could
be followed with one of the PL/M features described in the following sections. This
would ensure that the feature would operate in a certain fashion depending on
whether or not the addition caused the CARRY flag to be set. However, because of
the optimization, some machine code instructions could occur immediately after the
addition and change the CARRY flag. It cannot be safely predicted whether this will
happen or not.

|:| Note
Accordingly, any PL/M feature that is dependent on the CARRY
flag (or any of the other hardware flags) can cause the program to
runincorrectly. These features must therefore be used with
caution, and any program that uses them must be checked carefully
to make sure that it operates correctly.

PL/M-386 Programmer's Guide Chapter 10 173

The CARRY, SIGN, ZERO, and PARITY Functions

These built-in BYTE functions return the logical values of the microprocessor
hardware flags. These functions take no parameters, and are activated by function
references with the following forms:

CARRY
ZERO

SI GN
PARI TY

An occurrence of one of these activations (in an expression) generates atest of the
corresponding condition flag. If theflagis set (=1), avalue of OFFH isreturned. If
the flag isclear (=0), avalue of O isreturned.

The PLUS and MINUS Operators

In addition to the arithmetic operators described in Chapter 5, PL/M has two more:
PLUS and M NUS.

PLUS and M NUS perform similarly to + and -, and have the same precedence.
However, PLUS sums two numbers and adds the CARRY bit to the result and M NUS
subtracts two numbers and subtracts the CARRY bit from the result.

Carry-rotation Functions

174

SCL and SCR are built-in rotation functions whose types depend on the type of the
expression given as an actual parameter. They are activated by function references
with the following forms:

keyword (pattern, count);

Where:
keywor d SCL, SCR
pat t ern and count

expressions with BYTE, HWORD, WORD, OFFSET, or DWORD value --
for count the high-order bits are dropped to produce BYTE values

If the value of count is 0, no shift occurs.

For PL/M-386, the value of pat t er n is handled as an 8-bit, 16-bit, 32-hit, or 64-hit
binary quantity. This quantity is rotated to the left (by SCL) or to the right (by SCR).
Thisissimilar to the ROL and ROR functions described in Chapter 9. The type of
pat t er n determines the type of rotate that is performed. The number of bit
positions by which the value of pat t er n isrotated is specified by count .

Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

The bit rotated off one end of pattern isrotated into the CARRY flag, and the old
value of CARRY isrotated to the other end of pattern. In effect, SCL and SCR
perform 9-bit rotations on 8-bit values, 17-bit rotations on 16-bit values, and so on.

For example, if the value of CARRY is0, then:
SCL(11001010B, 2) returns avalue of 00101001B and CARRY issetto 1
SCR(11001010B, 1) returns avalue of 01100101B and CARRY remains 0

The Decimal Adjust Function

DEC isabuilt-in BYTE function that performs adecimal adjust operation on the actual
parameter value and returns the result of this operation. For PL/M-386, DEC uses the
value of the hardware AUXILIARY CARRY flaginternally. Itisactivated by a
function reference with the following form:

DEC (expression);
Where:

expressi on is converted, if necessary, to aBYTE value.
Microprocessor Hardware Registers

The Flags Register Access Variable

FLAGS is abuilt-in WORD variable that provides access to the microprocessor's
hardware flags register (see Figure 10-1, which also has flags registers for the 8086
and 286 registers for comparison). The hardware flags register contains the hardware
flags that are altered by the execution of various instructions. The hardware flags
register for the Intel 386 and I ntel486 microprocessors are 32 bits long.

The FLAGS register is assigned to change the setting of the various flags. It can also
be read to determine the current flag settings.

For more information on setting the hardware register flags, see the appropriate
microprocessor programmer's reference manual.

PL/M-386 Programmer's Guide Chapter 10 175

|x|x|x|x |OF|DF|IF|TF|SF|ZF|X |AF|X|PF| x [cF|

|x |NT| 1oPL |OF|DF|IF|TF|SF|ZF|X |AF| X |PF| X |CF|

XX

X |VM|RF| X |NT| I0PL |OF|DF| IF |TF|SF|ZF| X |AF| X |PF| X |CF|

X Denotes Intel Reserved

Figure 10-1. The Hardware Flags Register

The STACKPTR and STACKBASE Variables

176

8086

286

386

Carry Flag

Parity Flag

Aucxiliary Carry Flag
Zero Flag

Sign Flag
Single-step Trap Flag
Interrupt Enable
Direction

Overflow
I0PL

Nested Task
Resume Flag

Virtual 8086 Mode

OSD535

For PL/M-386, STACKPTRis an OFFSET variable and STACKBASE isa SELECTOR
variable. They provide access to the microprocessor's hardware stack pointer and
stack base registers.

When setting these registers (that is, using STACKPTR or STACKBASE on the left side
of an assignment), care must be exercised because this takes control of the stack
away from the compiler. Thus, the compile-time checks on stack overflow and
assumptions by the compiler about the run-time status of the stack may be invalid.

Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

Microprocessor Hardware 1/0O

Input from an /O port of asingle BYTE, HWORD, OFFSET, or WORD is performed by
the input built-ins as a function invocation in an expression on the right-hand side of
an assignment statement. Single BYTE, HWORD, OFFSET, or WORD output is achieved
by filling the appropriate element of the output array corresponding to the desired
output port of the target microprocessor.

Multiple BYTE, HWORD, OFFSET, or WORD input is performed as a procedure
invocation, reading in a string from the microprocessor's CPU port and storing it in a
user-specified memory location. Multiple BYTE, HWORD, OFFSET, or WORD output is
also performed as a procedure invocation, using a CALL statement to send a string
from memory into the target microprocessor port.

The Find Value in Input Port Function

The following built-in functions return the values in the specified input port. They
are activated by function references with the form:

keyword (expression);
Where:
keywor d I NPUT, | NHWORD | N\ORD
expressi on expression with BYTE, HWORD or WORD value

The value of expr essi on specifies one of the input ports of the target
Mi Croprocessor.

The value returned by keywor d isthe expr essi on quantity found in the specified
input port.
PL/M-386 aso has an | NDWORD function when the WORD16 control is used.

The Access Output Port Array

For PL/M-386, OUTPUT, QUTHWORD, and QUTWORD are built-in BYTE, HWORD, and
WORD arrays, respectively. They are activated by a function reference with the
following form:

keyword (expression);
Where:
keywor d QUTPUT, OUTHWORD, OUTWORD

expressi on expression with BYTE, HWORD, or WORD value

PL/M-386 Programmer's Guide Chapter 10 177

These functions can access any port from 0 to 65,535, corresponding to the number
of output ports on the target CPU. Referencesto these arrays cause the specified
expr essi on quantity to be latched to the specified hardware output port.

A reference to keywor d islegal only asthe left part of an assignment statement or
embedded assignment. For PL/M-386, the right-hand side of the assignment must
have a BYTE, HAORD, or WORD value.

Specifying OQUTPUT in the assignment statement places the BYTE value of the
expression on the right side of the assignment into the specified output port. (Since
OUTPUT isaBYTE built-in, the value of the expression is converted automatically to a
BYTE type if necessary.)

Specifying OQUTWORD in the assignment statement places the WORD (or OFFSET)
value of the expression on the right side of the assignment into the specified output

port.

Similarly, of QUTHWORD places the HAWORD value of the expression on the right side of
the assignment into the corresponding output port. PL/M-386 also has an OUTDWORD
built-in when the WORD16 control is used.

The Read and Store String Procedure

178

The read and store string procedures are built in. For PL/M-386, these built-ins read
the BYTE, HWORD, OFFSET, or WORD string val ues latched to the specified hardware
input port. The read values, of the length specified by count , are then stored at the
location specified by dest i nati on. These procedures are activated by a CALL
statement with the following form:

CALL keyword (port, destination, count);

Where:
keywor d BLOCKI NPUT, BLOCKI NHWORD, BLOCKI NWWORD
port expression with BYTE or HWORD value

destination
expression with PO NTER value

count expression with BYTE, HWORD, OFFSET or WORD value

The keywor d specifies the type of string found in the specified input port. The value
of port specifies one of the input ports of the CPU. Thedest i nat i on specifiesthe
location (in memory) at which to store the string. The value of count specifiesthe
length of the string.

PL/M-386 also has a BLOCKI NDWORD procedure when the WORD16 control is used.

Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

The Write String Procedure

The write string procedures are built-in procedures. For PL/M-386, these built-ins
write a BYTE, HWORD, OFFSET, or WORD string to the specified output hardware port.
These built-ins are activated by a CALL statement with the following form:

CALL keyword (port, source, count);

Where:

keywor d BLOCKQUTPUT, BLOCKOUTHWORD, BLOCKOUTWORD
port expression with BYTE or HWORD value

sour ce expression with PO NTER value

count expression with BYTE, HWORD, OFFSET, or WORD value

The keywor d specifies the type of string. The value of por t specifies one of the
output ports of the microprocessor CPU. The sour ce value specifiesthe location (in
memory) where the string is currently stored. The value of count specifies the string
length.

PL/M-386 also has a BLOCKOUTDWORD procedure when the WORD16 control is used
(see Chapter 10).

The Hardware Protection Model

The Intel 386 and I ntel 486 microprocessors protection mechanism provides up to four
privilege levels within each task. The highest privilege level (level 0) isreserved for
the operating system kernel. Below the kernel level, systems can be configured to
include a system service level (level 1), an applications service level (level 2), and an
application program level (level 3).

The following hardware protection built-in procedures and variables allow access to
the protection architecture of these microprocessors.

The Task Register

The TASK$REGISTER Variable

TASK$REG STERisabuilt-in SELECTOR variable that provides access to the task
state register. Thisregister pointsto atask state segment for the currently executing
task.

PL/M-386 Programmer's Guide Chapter 10 179

The format of the task register for the Intel 386 microprocessor is:

T RPL
|

31

24 23 16 15 8 7 210

0OSD579

Values are assigned to TASK$REG STER to reset the task state segment for the
current task or to enter the protected mode of the microprocessor. However, the
selector stored in TASK$REG STER must point to avalid task state segment. Note
that values can be assigned to TASK$REG STER only if the program is executed in
protection mode at level O.

TASK$REG STER can also be read to determine the task state segment of the
currently executing task.

The Global Descriptor Table Register

The global descriptor table register (GDTR) is a system-wide register used for
protected virtual address mode. The GDTR describes a memory areathat contains an
array of descriptorsfor the global address space. The register occupies 6 bytes.

Its format for Intel 386 and I ntel486 microprocessors follows:

BASE LIMIT
| | | |

47

180

39 38 32 31 24 23 16 15 8 7 0

0OSD580

LIMIT size of the GDT segment (up to 64K bytes)
BASE physical memory base address of the GDT segment
ACCESS accesscontrol byte

Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

The SAVE$SGLOBALS$TABLE Procedure

SAVE$SGLOBALS$TABLE isabuilt-in procedure. It isactivated by a CALL statement
with the form:

CALL SAVE$GLOBALS$TABLE (Il ocation);
Where:
| ocati on isanexpressionwithaPO NTER value.
SAVE$GLOBAL$TABLE saves the contents of the hardware global descriptor table
register in the 6-byte save area pointed to by | ocat i on.
The RESTORE$GLOBALSTABLE Procedure

RESTORE$GLOBALS$TABLE isabuilt-in procedure. It is activated by a CALL
statement with the form:

CALL RESTORE$G.OBALS$TABLE (I ocati on);
Where:
| ocati on isanexpressionwith aPO NTER value.

RESTORE$GLOBAL$TABLE restores the contents of the hardware global descriptor
table register from the save area pointed to by | ocat i on. This save area can be the
same area used in a preceding call to SAVESGLOBAL$STATUS.

SAVE$SGLOBAL$TABLE saves the value of the GDTR in a 6-byte memory area
RESTORE$GLOBALS$TABLE restores the value of the GDTR.

PL/M-386 Programmer's Guide Chapter 10 181

The Interrupt Descriptor Table Register

Theinterrupt descriptor table register (IDTR) is a system-wide register that is used
for interrupt processor management. The IDTR describes a segment that contains the
linear base address and the size of the interrupt descriptor table (IDT), and a segment
containing an array of gate descriptors for the interrupt handlers. The register
occupies 6 bytes.

Its format for Intel 386 and I ntel486 microprocessors follows:

I [
BASE LIMIT
| | | |
47 39 38 32 31 24 23 16 15 8 7 0

0OSD580
LIMIT size of the segment (up to 64K bytes)
BASE physical memory base address of the IDT segment
ACCESS accesscontrol byte

The SAVESINTERRUPTS$TABLE Procedure

SAVES$I NTERRUPT$TABLE is abuilt-in procedure that is activated by a CALL
statement with the following form:

CALL SAVES$| NTERRUPT$TABLE (| ocati on);
Where:
| ocati on isanexpressionwith aPO NTER value.

SAVES$I NTERRUPT$TABLE saves the contents of the hardware interrupt descriptor
table register in the 6-byte save area pointed to by | ocat i on.

182 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

The RESTORES$INTERRUPT$TABLE Procedure

RESTORE$| NTERRUPT$TABLE is a built-in procedure that is activated by a CALL
statement with the following form:

CALL RESTORES$! NTERRUPT$TABLE (1 ocation);
Where:
| ocati on isanexpressionwithaPO NTER value.

RESTORE$! NTERRUPT$TABLE restores the contents of the hardware interrupt
descriptor table register from the save area pointed to by | ocat i on. Thissave area
can be the same area used in a preceding call to SAVE$I NTERRUPT$TABLE.

A descriptor can be built that will initialize the interrupt processor operations.
RESTORE$GLOBALS$STATUS can then be called with a pointer to this descriptor.

The user must ensure that the save area contains a valid descriptor. Note that values
can be assigned to the IDTR only if the program is executed in protection mode at
level O.

The Local Descriptor Table Register

The LOCALS$TABLE Variable

LOCAL$TABLE isabuilt-in SELECTOR variable that provides access to the local
descriptor table register (LDTR). The format of the register is a selector pointing to
anLDT inthe GDT. The use of the local descriptor tableis like the use of the
GDTR, except that it defines the local address space.

By assigning a value to LOCAL$TABLE, the local address space of the current task is
altered. If atask switch occurs, the new contents are not saved in the task state
segment. (To ensure proper operation, interrupts must be disabled.)

LOCAL$TABLE can be read to determine the current active descriptor array segment
for the current task.

The user must ensure that the selector in LOCAL$TABLE points to a valid descriptor
segment. Note that values can be assigned to the LDTR only when the program is
executed in protection mode at level 0.

PL/M-386 Programmer's Guide Chapter 10 183

The Machine Status Register

The MACHINE$STATUS Variable

For PL/M-386, MACHI NE$SSTATUS is a built-in HWORD variable. MACHI NESSTATUS
provides access to the machine status word (MSW). The MSW register defines the
current status of the processor protection model and the real math unit support. The
format of MACHI NE$SSTATUS is:

|X| X .. X|TS|EM|MP|PE|
15 14 4 3 2 1 O

L Protection Enable

Real Math Unit (IAPX 287) Present

Emulation Mode

Task Switched

(Reserved)

(Reserved)

(Reserved) 0SD536

MACHI NE$STATUS enables access to the protected mode of the microprocessor.
When avalue is assigned to this register, the compiler generates a short jump to the
next instruction to clear the instruction queue. (Note, however, that values can be
assigned to MACHI NE$STATUS only if the program is executed in protection mode at
level 0.)

The contents of MACHI NESSTATUS can also be read to determine the current status of
various system components.
The CONTROL$REGISTER, DEBUG$REGISTER, and TEST$REGISTER
Built-in Arrays

The CONTROL$REG STER s a built-in WORD array that provides access to the Intel 386
and Intel 486 microprocessors 32-bit control registers that define the current status of
the processor and contain page table and page fault information.

184 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

The format of CONTROL$REG STER (0) is:

I
P d EITIE/MP
G | Reserve‘ | TIsimlplE
31 24 23 16 15 8 7 43210

OSD575
where:

PG = paging enabled

ET = extension type

TS = task switched

EM = emulate coprocessor

MP = numeric coprocessor present
PE = protection enable

MSW is contained in the low-order 16 bits of CONTROLSREG STER (0) . However,
assigning a value to the MACHI NE$STATUS built-in does not change the ET
(extension type) bit.

CONTROL$REG STER (2) contains the 32-bit linear address that caused the last
detected page fault.

CONTROL$REG STER (3) contains the physical page base address for the first level
of the page table structure. Thisaddressisin the high 20 bits (bits 12 to 31) of
CONTROL$REGQ STER (3) . Thelower 12 bits are ignored when assigning to
CONTROL$REG STER (3) and are undefined when reading CONTROL$REG STER
(3) . Notethat the control registers are accessible only during execution at protected
mode level 0. Also note that CONTROL$REG STER (1) isnot accessible.

The DEBUGSREGQ STER built-in WORD array provides accessto six of the eight 32-bit
debug registers; DEBUGSREG STER(4) and DEBUGSREG STER(5) are not
accessible. The debug registers are accessible only during execution at protected
mode level 0.

TEST$REG STERisabuilt-in WORD array that provides access to the 32-bit test
registers of the microprocessor. Of these test registers, only TEST$REG STER (6)
and TEST$REGQ STER (7) are accessible; these registers are accessible only when
executing in protection mode at level 0.

PL/M-386 Programmer's Guide Chapter 10 185

The CLEAR$TASK$SWITCHEDS$FLAG Procedure

CLEAR$STASK$SW TCHED$FLAG s a built-in procedure that is activated by a CALL
statement with the form:

CALL CLEARSTASK$SW TCHED$FLAG

This procedure is used to clear the task switched flag in the machine status word.
The processor sets the task switched flag every time atask switch occurs. It can be
used to manage the sharing of the math coprocessor.

CLEAR$TASK$SW TCHED$FLAG can be called only when the program is executed in
protection mode at level O.

Segment Information

The GET$ACCESS$RIGHTS Function

CET$ACCESSS$RI GHTS isa built-in WORD function; it is activated by afunction
reference with the form:

GET$ACCESS$RI GHTS (sel ector);
Where:
sel ector isanexpression with a SELECTOR value.

If the segment pointed to by sel ect or isvisible at the current privilege level, then
the hardware ZERO flag is set and a WORD value isreturned. |If the segment is not
visible, or if it is of the wrong type, the hardware ZERO flag is reset, and the returned
value is undefined.

|:| Note
The setting of the ZERO flag is guaranteed only if it is tested
immediately, before being altered by another operation. (For
example, if the value of the function is assigned to an array element
indexed by an expression, the value of the ZERO flag may be
incorrect.)

186 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

Specific to Intel 386 and I1ntel 486 microprocessors, the format of the return valueis:

g 0 oeo‘o\?x‘x‘x‘x ACCESS 0 0
31 2423 16 15 8 7 0
OSD576
X reserved
G granularity bit
AVL available for software use

ACCESS accessrights byte

The following example illustrates how the GET$ACCESS$RI GHTS function can be
used:

DECLARE RI GHTS WORD,
DECLARE SEGVENT SELECTOR;
RI GHTS = GET$ACCESS$RI GHTS (SEGVENT) ;
| F ZERO THEN
/* The segnent pointed to by SEGVENT is visible */
/* and RI GHTS contai ns the proper access
/* rights to it. */
ELSE
/* SEGMENT is not visible and the contents of */
/* RIGHTS is undefined. */

The GET$SEGMENTS$LIMIT Function

For PL/M-386, GET$SEGVENT$LI M T isabuilt-in OFFSET function.
CGET$SEGVENTS$LI M T isactivated by afunction call of the form:

GET$SEGQVENTSLI M T (sel ector);
Where:
sel ector isanexpression with a SELECTOR value.

If the segment pointed to by sel ect or isvisible at the current protection level, then
the hardware ZERO flag is set and the value returned by GET$SEGVENTSLI M T is
the size of the segment. |f the segment is not visible, the ZERO flag isreset and the
returned value is undefined.

Set the ZERO flag with caution. See the note in section for the
CET$ACCESSS$RI GHTS function.

PL/M-386 Programmer's Guide Chapter 10 187

The following example illustrates how the GET$SEGVENTS$LI M T function can be
used:

DECLARE LIM TS OFFSET;
DECLARE SEGVENT SELECTOR;
LIMTS = GET$SEGVENT$LI M T (SEGVENT) ;
| F ZERO THEN
/* The segnent pointed to by SEGVENT is visible */
/* and LIMTS contains its proper size.*/
ELSE
/* SEGMENT is not visible and the contents of*/
/* LIMTS is undefined.*/

Segment Accessibility

It is sometimes helpful to know if the segment pointed to by a selector is readable or
writable from the current address space. This becomes particularly important when
the selector is a parameter that is passed to the current task.

If an attempt is made to access a segment that isinaccessible, an interrupt will occur.
To avoid thisinterrupt, segment readability and writability can be tested before the
segment is accessed.

The SEGMENT$READABLE Function

SEGVENT$READABLE isabuilt-in BYTE function. It is activated by afunction
reference with the form:

SEGVENT$READABLE (sel ector);
Where:
sel ector isanexpression with a SELECTOR value.

SEGVENT$READABLE returns a value of TRUE (OFFH) if the segment pointed to by
selector is reachable and readable from the current privilege level; FALSE (0), if itis
not.

The SEGMENT$WRITABLE Function

188

SEGMVENT$WRI TABLE isabuilt-in BYTE function. It is activated by a function
reference with the form:

SEGMVENT$WRI TABLE (sel ector);
Where:

sel ector isanexpression with a SELECTOR value.

Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

SEGMVENT$WRI TABLE returns avalue of TRUE (OFFH) if the segment pointed to by
sel ect or isreachable and writable from the current privilege level; FALSE (0), if it
is not.

Adjusting the Requested Privilege Level

The ADJUST$RPL Function

ADJUST$RPL isabuilt-in SELECTOR function that returns the argument of the
adjusted requested privilege level (RPL). It isactivated by afunction reference with
the form:

ADJUST$RPL (selector);
Where:
sel ector isanexpression with a SELECTOR value.

If the requested privilege level (RPL) field of the argument selector isless than the
RPL field of the code segment selector for the routine calling the procedure that
invoked ADJUSTS$RPL, then the hardware ZERO flag is set and the value returned is
the argument of an adjusted RPL field. Otherwise, the ZERO flag isreset, and the
value returned is the origina value of the argument.

Setting the ZERO flag should be done cautiously; see the note in section on the
CET$ACCESSS$RI GHTS function.

The following example illustrates how the ADJUST$RPL function can be used:

P: PROCEDURE (SEGVENT)
DECLARE SEGVENT SELECTOR;

SEGVENT = ADJUST$RPL (SEGVENT) ;
| F ZERO THEN
/* The RPL of SEGMENT was | ess than the RPL of */
/* the routine that called P; SEGVENT now has*/
/* the RPL of the caller.*/
ELSE
/* The RPL of SEGMENT was not |less than the RPL */
/* of the routine that called P; SEGQVENT is unchanged */
END P;

PL/M-386 Programmer's Guide Chapter 10 189

The REAL Math Facility

REAL math support for PL/M is provided by the numeric coprocessor. In relation to
the program, the REAL math facility consists of the following:

» TheREAL stack, used to hold operands and results during REAL operations.

e TheREAL error byte (see Figure 10-2), consisting of seven exception flags
initialized to al 0s. (The reserved hit is set to 1 by the numeric coprocessor.)

Thefirst six bitsin this byte correspond to the possible errors that can arise
during REAL operations (see Appendix G). When an error occurs, the facility
sets the corresponding bit to 1. A program can invoke a built-in procedure
(described in the next section) that reads and clears the REAL error byte.

The exception/error categories are discussed in Appendix G.

» The REAL mode word (see Figure 10-3), consisting of 16 bitsinitialized to
03FFH (or 7FFH for the Intel387™ numeric coprocessor).

1. Bits0-7 determine whether the corresponding error condition isto be
handled with the default recovery (described next) or with the
programmer-supplied exception procedure (see Appendix G for details on
writing these). When the bit is 1, the default is used; wheniit is 0, the user
routineis used. In either case, the facility records the error by setting the
corresponding bit of the REAL error byte. For most uses, the default
recovery is appropriate and less work.

7 0
||R | |PE|UE|OE|ZE|DE| IE | Exception Flags (1 = Exception Has Occurred)

Invalid Operation

Denormalized Operand

Zerodivide

Overflow

Underflow

Precision

(Reserved)

Interrupt Request 0SD537

Figure10-2. The REAL Error Byte

190 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

15 7 0
||c | RC | PC ||EM| |PM|UM|OM|ZM|DM| |M| Exception Masks (1 = Exception is Masked)

Invalid Operation

Denormalized Operand

Zerodivide

Overflow
Underflow

Precision

(Reserved)
1
Interrupt-Enable Mask (IEM)

Precision Control

3
Rounding Control

- 4
Infinity Control

(Reserved)

@ Interrupt - Enable Mask:
0 Interrupts Enabled
1 Interrupts Disabled (Masked)

@ Precision Control:
00 24 Bits
01 (Reserved)
10 53 Bits
11 64 Bits

@) Rounding Control:
00 Round To Nearest Or Even
01 Round Down (Toward ~ oo)
10 Round Up (Toward ~— <o)
11 Chop (Truncate Toward Zero)

@) Infinity Control:

0 Projective
1 Affine 0SD539

Figure 10-3. The REAL Mode Word

PL/M-386 Programmer's Guide Chapter 10 191

This mode word is often called a mask; that is, it lets some signal s through
(to interrupt processing), but not others. If one of the bits0-5isa0, the
corresponding error is said to be unmasked (see the next section for setting
the mode word).

If the interrupt is enabled (IEM = 0), one of the masked bitsis 0, and the
corresponding error occurs during floating point processing, then the REAL
math facility interrupts the host CPU. The numeric coprocessor's interrupt
number is dependent on the internal configuration. The exception condition
isthus reported and control is passed to the user-written error handling
routine. Thissituation is called an unmasked error. Chapter 8 and
Appendix G discuss aspects of interrupt procedures.

Conversely, amasked error means the mode bit corresponding to that error
is1. Masked errors do not cause an interrupt, but are handled as described
in Appendix G.

2. Bits8and 9 control precision. All intermediate results are heldin an
internal format of 64-bit precision. The most-significant 24 bits of the final
result are returned (plus sign and 7-bit exponent) as the PL/M answer, and
rounded, if needed, according to the user-specified control. The default
precision setting preserves extended precision and operates dlightly faster
than the other settings.

3. Bits10and 11 control rounding. Rounding introduces an error of less than
one unit in the last place to which the result was rounded. Statistically, the
default provides the most accurate and unbiased estimate of the true result
(i.e., the 64-bit result). In al rounding modes except round down,
subtracting a number from itself yields +0; round down yields -0.

4. Bit 12 controls how infinity is handled, as shown below.

oo
— O + co
_ + oL l >
0
Affine Closure
0
Projective Closure 0SD538

Bits 13, 14, and 15 are reserved and are not for PL/M use.

192 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

Built-ins Supporting the REAL Math Unit

The INITSREAL$SMATHSUNIT Procedure

I NI TSREAL$MATHSUNI T is a built-in untyped procedure activated by a CALL
statement, as follows:

CALL | NI TSREAL$SMATHSUNI T;
Thiscall isrequired as the first access to the math coprocessor.

This call initializes the REAL math unit for subsequent operations. Thisincludes
setting a default value into the control (REAL mode) word, namely 03FFH or
0000001111111111B. This setting masks all exceptions and interrupts, sets precision
to 64 hits, and sets the rounding mode to nearest, with even preferred. This means no
interrupts will occur from the REAL math facility regardiess of what errors are
detected.

Procedures activated after this call has taken effect do not need to do such
initialization.

The SET$REALSMODE Procedure

This procedure should only be invoked to change the default mode word
(for example, to unmask the invalid exception).

SET$REAL$MODE is a built-in untyped procedure, activated by a CALL statement with
the following form:

CALL SET$REAL$MODE (nodeword);
Where:
modeword expression with HWORD value

The value of modewor d becomes the new contents of the REAL mode word (see
Figure 10-3). The suggested value for nodewor d is 033EH, (0000001100111110B).
This value provides maximum precision, default rounding, and masked handling of
all exception conditions except an invalid operation, which can alert the user to errors
of initialization or stack usage (see Appendix G for facts and references on writing an
interrupt handling procedure).

PL/M-386 Programmer's Guide Chapter 10 193

The GET$REAL$ERROR Function

CET$REAL$ERROR is a built-in BYTE function activated by a function reference with
the following form:

GET$REAL$SERROR

The BYTE value returned is the current contents of the REAL error byte (see Figure
10-2). Thisfunction also clearsthe error byte in the REAL math facility.

Saving and Restoring REAL Status

If an interrupt procedure performs any floating-point operation, it will change the
REAL status. If such an interrupt procedure is activated during a floating-point
operation, the program will be unable to continue the interrupted operation correctly
after returning from the interrupted procedure. Therefore, it isfirst necessary for any
interrupt procedure that performs a floating-point operation to save the REAL status
and subsequently restore it before returning. The built-in procedures
SAVESREAL$STATUS and RESTORESREAL$STATUS make this possible.
SAVESREAL$STATUS aso initializes the numeric coprocessor.

Additionally, these procedures can be used in a multi-tasking environment where a
running task using the numeric coprocessor can be preempted by another task that
also uses the numeric coprocessor. The preempting task must call
SAVESREAL$STATUS before it executes any statements that affect the numeric
coprocessor, that is, before calling SET$REAL$MODE and before any arithmetic or
assignment of REALS (other than GET$REAL$ERROR, if needed).

New vectors will be required for the interrupt handlers appropriate to each new task
(e.g., to handle unmasked exception conditions). These vectors must be initialized by
the operating system.

After its processing is complete and it is ready to terminate, the preempting task must
call RESTORE$REAL$STATUS to reload the state information that applied at the time
the former running task was preempted. This enables that task to resume execution
from the point where it relinquished control.

D Note

REAL functions without REAL parameters should not call
CET$REAL$ ERRORS or SAVE$REALS$STATUS before executing at
least one floating-point instruction. To do so may result in loss of
processor synchronization.

194 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

The SAVESREAL$STATUS Procedure

SAVESREAL$STATUS is a built-in untyped procedure activated by a CALL statement
with the form:

CALL SAVE$REAL$STATUS (| ocati on);
Where:

| ocati on isapointer to amemory area 108 bytes long where the REAL status
information will be saved.

The REAL statusis saved at the specified location, and the REAL stack and error bytes
arereinitialized.

If the state of the REAL math unit is unknown to this procedure when it iscalled, asin
the case previously mentioned for preempting tasks, then an initialization will destroy
existing error flags, masks, and control settings. To avoid this, the appropriate action
(except for error-recovery routines, discussed in Appendix G) isto issue:

CALL SAVE$REAL$STATUS (@ocation_1);
before any REAL math usage, and
CALL RESTORE$REAL$STATUS (@ ocation_1);

prior to the procedure's return. The save automatically reinitializes the math unit and
the error byte.

This protects the status of preempted tasks or prior procedures and establishes a
known initialization state for the current procedure's actions. The microprocessor
interrupts are disabled during the save.

|:| Note

The microprocessor must be able to acknowledge numeric
coprocessor interrupts or loss of synchronization occurs.

PL/M-386 Programmer's Guide Chapter 10 195

The RESTORE$REALS$STATUS Procedure

RESTORE$REALS$STATUS isa built-in untyped procedure activated by a CALL
statement with the form:

CALL RESTORE$REAL$STATUS (I ocation);
Where:

| ocati on isapointer to amemory area where the REAL status information was
previously saved by acall to the SAVE$SREAL$STATUS procedure.

This procedure should be called prior to returning from an interrupt procedure where
the real math unit's status was saved using SAVE$SREAL$STATUS.

Interrupt Processing

The WAIT$FORSINTERRUPT Procedure

WAl TSFOR$I NTERRUPT is abuilt-in procedure that is activated by a CALL statement
with the form:

CALL WAl TFORSI NTERRUPT;

This procedure is used to generate an IRET instruction in a nested interrupt task; if it
is used elsewhere, the results are undefined. The IRET instruction causes the
microprocessor to perform atask switch, saving the status of the outgoing task in its
TSS. The next time the interrupt task is activated, execution will begin at the
instruction immediately following the IRET, with all the registers unchanged.

The following example illustrates how the WAl TSFOR$I NTERRUPT procedure can be
used:

NEWS| NTERRUPT:
CALL | NI TI ALI ZE$SI NTERRUPTS$LI ST;
/* Start of a list of interrupts */
DO WHI LE 1,
CALL WAl TSFORS$I NTERRUPT;
/* Wait for next interrupt within list */
CALL PROCESS$! NTERRUPT;
| F END$SOFS$I NTERRUPTS$LI ST THEN DO,
CALL WAI TFORI NTERRUPT;
/* Wait for start of next interrupt sequence */
GOTO NEWSI NTERRUPT;
END;
END;

196 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

WORD16 Mapping for Built-ins

Table 11-5, in the discussion of the WORD32| WORD16 control, shows the
correspondence between default (WORD32) machine built-ins and those available
when WORD16 isin effect. For example, Table 11-5 shows that HWORD (WORD32)
corresponds to WORD under WORD16.

Intel486 Processor Built-ins

The following are built-ins specific to the Intel486 processor. Specify the MOD486
control for the PL/M-386 compiler to use these functions:

* BYTE$SWAP: This function generates an Intel486 processor instruction that
swaps bytesin a 32-bit expression to convert between big and little endian. The
BYTE$SWAP function takes a 32-bit expression and returns a value of the same
data type as the argument. An argument of less than 32 bits produces a semantic
error. To pass a pointer value, use a data type of WORD or OFFSET instead of
PO NTER.

Invoke BYTE$SWAP as in the following example:
DECLARE (a, b) WORD;
a = BYTE$SSWAP(b);
b = BYTE$SWAP(b + 10);

TEST$REG STER: Thisvariableisan array of 8 elements. Each element isa 32-
bit unsigned scalar datatype. The available registers of TEST$REG STER
include elements (6) and (7). When the compiler control MOD486 is specified,
elements (3) through (5) are also available.

Use TEST$REGQ STER asin the following example:
DECLARE a WORD;
a = TEST$REG STER (4);

See also: Test Registers, 1486 Microprocessor Programmer's Reference Manual

* | NVALI DATE$DATA$SCACHE: Thisfunction generates the Intel486 processor
instruction to clear the entire data cache.

Invoke | NVALI DATE$DATA$CACHE as in the following example:
CALL | NVAL| DATE$DATA$CACHE;

PL/M-386 Programmer's Guide Chapter 10 197

* WB$I NVALI DATE$DATASCACHE: This function generates the Intel486 processor
instruction to first write out all changed lines to memory and then clear the entire
data cache.

Invoke WB$I NVALI DATE$DATA$CACHE asin the following example:
CALL WAB$I NVALI DATE$DATA$CACHE;

* | NVALI DATETLBENTRY: This function generates the Intel486 processor
instruction to clear a specified entry in the paging cache (TLB). Specify the
entry to be cleared as an argument, preceded by an @sign.

Invoke | NVALI DATE$TLBS$ENTRY asin the following example:
DECLARE a(10) BYTE;
DECLARE b WORD;
CALL | NVALI DATE$STLBSENTRY (@(5));
CALL | NVALI DATESTLBSENTRY (@);

198 Chapter 10 FeaturesInvolving the Target CPU and Numeric Coprocessor

Compiler Invocation and Controls

This chapter describes compiler controls, optimization, and invocation. There are
differences in invocation, depending on whether you are running on iRMX or DOS.
This chapter covers both operating systems.

Invocation Syntax on iRMX Systems
The general form of the invocation command is:
[:1ogical _nane:]PLM386 filenane [control]...

Where:

1 ogi cal _nane:
isthe optional logical name for the directory or device containing the
PL/M-386 compiler.

PLMB86 is the name of the compiler.

filename isthefull filename (with directory path) of the file containing the
source code. The compiler accepts only one source file per invocation.

control is zero or more of the compiler controls described later in this chapter.
Separate multiple controls with spaces to extend the invocation
command over multiple lines, use the ampersand (&) as a continuation
character.

The I NCLUDE control must be the last control.

Errors detected in the invocation command cause the compiler to abort without
processing the sourcefile.

The portion of the path set off with colons (:) isaniRMX logical name. A logical
name identifies the directory or device that contains the compiler files. Inthe
examples used here, the compiler residesin the :lang: directory. The subdirectory
mydir resides in the directory source. sourceresidesin :home:. When you are
logged on as the user world, :home: isthe logical name for the directory /user/world.

If the logical name is omitted from the invocation command, the operating system
automatically searches several directories for the invocation command. The

PL/M-386 Programmer's Guide Chapter 11 199

200

directories searched and the order of the search are defined in the operating system
configuration.

Slashes (/) and carets (*), which are also called circumflexes, are used to move up or
down the directory tree. To identify afile, start with alogical name (or assume the
default). Continue through the directory tree using the slash to search down one level
or the caret to search up one level.

For example, if the source file textfile.plmisin directory source, and sourceisin the
directory identified by logical name :home:, use the following pathname:

- HOVE: SOURCE/ TEXTFI LE. PLM

If the default directory is :home: source/mydir, then the same source file can be
identified by specifying the path name as follows:

- ATEXTFI LE. PLM
The caret instructs the operating system to go up one level to find the file.

When you continue an invocation command over multiple lines by entering an
ampersand (&) before the line-feed character, the next line automatically appears with
the continuation prompt (**). The ampersand can also be used to insert comments.
The PL/M-386 compiler ignores characters that appear after an ampersand. For
example:

- PLMB86 : HOME: SOURCE/ TEXTFI LE. PLM & Run conpi |l er
** TITLE (" PRQIECT SUPERVI SOR') & for this file.
** OPTIM ZE(2) CODE XREF

Chapter 11 Compiler Invocation and Controls

Invocation Examples and Sign-on/Sign-off Messages under
the iRMX OS

The following exampl e specifies compilation of a PL/M-386 source file named
myprog.src. Thelist file is sent to myprog.lst, with the heading TEST 24 on each
new page of output. Both the list and object files are written to the directory
Juser/world/source.

- : LANG PLM386 / USER/ WORLD/ SOURCE/ MYPROG. SRC &
** TITLE(" TEST 24")

Thelogical name :home: can be used in place of the directory pathname /user/world
if you are currently logged on as the user WORLD. One of these two specifications
must be used if your current directory is not /user/world. If your default, or current,
directory is/user/world/source only the actual file name, not including the directory
pathname, must be specified in the invocation command. To change the default
directory, use the ATTACHFI LE command. Refer to the iRMX System Call Reference
for additional information on the ATTACHFI LE command.

The :lang: logical name can be omitted if the default IRM X search path is used
(which automatically searches :lang: for commands).

When invoked, the compiler signs on with the following message:

host PL/M 386 COWPILER Vx.y
Copyright Intel Corporation, years

Where:

host identifies the host system.

X.y identifies the compiler version.
years are the copyright years.

When compilation is complete, the compiler signs off with the following message:
PL/ M 386 COVPLETE. n WARNI NGS, m ERRORS.

where n and mare the numbers of warning and error messages generated during
compilation.

PL/M-386 Programmer's Guide Chapter 11 201

Invocation Syntax on DOS Systems
The general form of the invocation command is:

PLM386 fil enane[control]. ..
Where:

PLMB86 is the name of the compiler. The directory containing the compiler
should be in your DOS PATH.

filename isthefull filename (with directory path) of the file containing the
source code. The compiler accepts only one source file per invocation,
unless you use the | NCLUDE control.

control is zero or more of the compiler controls described later in this chapter.
Separate multiple controls with spaces.

Note that DOS limits the command line to 128 characters. Y ou can extend the
command over multiple lines with the ampersand (&) continuation character.

The | NCLUDE control (if used) must be the last control. Subsystem controls and
certain other controls, identified in this chapter, cannot be part of the invocation
command.

Invocation Examples and Sign-on/Sign-off Messages under
DOS

The first example specifies compilation of a PL/M-386 source module called progl.
The XREF contral is used.

PLM386 PROGL. SRC XREF
The second example specifies compilation of a PL/M-386 source module called
myprog. Thelist fileis sent to othrfile.lst, in which the heading TEST 24 appearson
each new page of output.

PLMB86 MYPROG Tl TLE(" TEST 24') PRI NT(OTHRFI LE. LST)
When invoked, the compiler signs on with the following message:

host PL/M 386 COWPI LER Vx.y

Copyright Intel Corporation, years

Where:

host identifies the host system.

X.y identifies the compiler version.
years are the copyright years.

202 Chapter 11 Compiler Invocation and Controls

When compilation is complete, the compiler signs off with the following message:

PL/ M 386 COWPLETE. n WARNI NGS, m ERRORS.

where n and mare the numbers of warning and error messages generated during
compilation.

File Usage under DOS and the iRMX OS

The PL/M-386 compiler accepts a single source file asinput. The compiler creates
and deletes work files, as further described below. By default, the compiler creates
two files: aprint (or list) file and an object file.

Input Files

The pathname used in the invocation command identifies the source file to be
compiled. Other files containing source code can be included with the | NCLUDE
control. The source file name and format must follow the file conventions of the OS.

Work Files

The PL/M-386 compiler uses temporary work files that are deleted after compilation.
All of these files are located on the device : WORK: under theiRMX OS. Under
DOS, use the set command for selecting an alternate drive for the work files. The
following example specifies that the work files be sent to directory d:.

SET : WORK: = d:\

|:| Note
Using the set command to relocate work filesis useful when the
DOS device driver has created avirtual disk. To change the default
location of work files, place the work files drive specification
command in the autoexec.bat file.

All work files have a .tmp extension. Avoid using .tmp as the extension on any
device used by the compiler. It ispossiblethat an existing file with a .tmp extension
could be deleted or overwritten by the compiler.

The space required for work filesis approximately equal to the space required for the
source file plus any included files. Be sure that the selected device provides adequate
disk space for the compiler work files.

PL/M-386 Programmer's Guide Chapter 11 203

Print Files

Thelist file (also called the print file) contains alisting of the source program, the
messages collected during compilation, and other printed output specified by the
listing selection controls. By default, the list file has the same base name as the
source file and an .Ist extension. Unless otherwise specified, the list fileis located on
the same drive and in the same directory as the sourcefile.

When the PRI NT control is used, the compiler creates alist file with the same base
name as the source file. If another file exists with the same name, the existing file is
overwritten. To save the existing file use the PRI NT control with a parameter; this
saves the new list file under another file name.

Object Files

The object file (also called the object code file or object module) contains the object
module format trandation of the source code. By default, the object file has the same
base name as the source file and an .obj extension. Unless otherwise specified, the
object fileislocated on the same drive and in the directory as the sourcefile.

The output of a PL/M-386 compiler is an object file containing a compiled module.
This object module may be linked with other object modules using the appropriate

linker or binder. A knowledge of the makeup of an object module is not necessary

for PL/M programming, but can aid in understanding the controls for program size
and linkage.

Object modules output by the PL/M-386 compilers contain three sections:
* Code Section

» Data Section

» Stack Section

These sections can be combined in various ways into memory segments for
execution, depending on the size of the program.

204 Chapter 11 Compiler Invocation and Controls

Code Section

This section contains the instruction code generated for the source program. If either
the LARGE control or the ROMcontrol is used, this section also contains all variables
initialized with the DATA attribute, all REAL constants, and all constant lists.

In addition, the code section for the main program module contains a main program
prologue generated by the compiler. This code precedes the code compiled from the
source program, and sets the microprocessor for program execution by initializing
various registers.

Data Section

All variables are allocated space in this section with the exception of parameters,
based variables, and variables located with an AT attribute or local to a REENTRANT
procedure. If the RAMcontrol is used, this section also contains all variables
initialized with the DATA attribute, aswell as all REAL constants and all constant lists.

If anested procedure refers to any parameter of its calling procedure, then all
parameters of that calling procedure will be placed in the data section during
execution. The compiler reserves enough space during compilation to prepare for
this.

Stack Section

The stack section is used in executing procedures, as explained in Appendices F and
G. Itisaso used for any temporary storage used by the program but not explicitly
declared in the source module (such as temporary values generated by the compiler).

The exact size of the stack is automatically determined by the compiler except for
possible multiple invocations of reentrant procedures. Y ou can override this
computation of stack size and explicitly state the stack requirement during the
binding (linking) process.

|:| Note

When using reentrant procedures or interrupt procedures, be sure to
allocate a stack section large enough to accommodate all possible
storage required by multiple invocations of such procedures. The
stack space requirement of each procedure is shown in the listing
produced by the SYMBOLS or XREF control. Thisinformation can
be used to compute the additional stack space required for reentrant
or interrupt procedures.

PL/M-386 Programmer's Guide Chapter 11 205

Executable Programs

206

After the source file is compiled, related object modules must to be combined to form
executable modules. The libraries that provide the necessary run-time support for the
application must also be combined with the object modules. To do thisyou use the
BND386 utility, described in the Intel 386 Family Utilities User's Guide.

DOS offers two ways of automatically invoking and executing multiple programs:

batch files and command files. For more information, refer to your DOS operating
system manuals.

Chapter 11 Compiler Invocation and Controls

Introduction to Compiler Controls

Use the compiler controls described in this chapter either in the command that
invokes the compiler or as control lines in the source input file.

A control line contains adollar sign ($) in the left margin. Normally, the left margin
isset at column one, but you can change this with the LEFTMARG N control. Control
lines allow selective control over sections of the program. For example, it may be
desirable to suppress the listing for certain sections of the program, or to cause page
gjects at certain places.

A linein asourcefileis considered to be a control line by the compiler if thereisa
dollar signinthe left margin, even if the dollar sign appears to be part of a PL/M
comment or character string constant. Control lines within the source code must
begin with adollar sign and can contain one or more controls, each separated by at
least one blank. Only the left margin column of a control line should contain adollar
sign.

The following are examples of control lines:

$NOCCODE XREF
$EJECT CODE

There are two types of controls: primary and general. Primary controls must occur
either in the invocation command or in a control line that precedes the first
noncontrol line of the source file. Primary controls cannot be changed within a
module. General controls can occur either in the invocation command or in a control
line anywhere in the source input, and can be changed freely within amodule.
Certain controls can be negated by prefacing the control word with aNO. The control
descriptions in this chapter indicate that option by showing both optionsin the
headings.

Many controls are available, but a set of defaultsis built into the compilers. The
controls are summarized in a phabetic order in Table 11-1.

A control consists of a control-name and, in some cases, a parameter. Parametersin
control lines must be enclosed in parentheses. Enclosing control parameters on the
invocation line in parentheses may beillegal, depending on the host operating system.

PL/M-386 Programmer's Guide Chapter 11 207

Therest of this chapter is organized in the following manner:
» Controls, default settings, abbreviations, and effects are listed in Table 11-1.

» Compiler controls are categorized and an overview for each of the categoriesis
provided.

e Compiler control descriptions are provided in aphabetical order, aslisted in
Table 11-1. For example, the NOSYMBOLS description is located with the
SYMBOLS description.

* A sample program listing is provided with a description of the listing.

208 Chapter 11 Compiler Invocation and Controls

Table 11-1. Compiler Controls

Control Default Abbreviation Effect

CODE NOCODE Cco Enables or disables listing of

NOCODE NOCO pseudo-assembly code.

COND COND none Determines whether text skipped

NOCOND none during compilation appears in the
listing.

“DEBUG NODEBUG DB Generates debug records in the

*NODEBUG N ODB object module.

EJECT automatic paging EJ Forces a new print page.

IF not applicable none Enables the conditional

ELSEIF compilation capability by testing

ELSE for conditions that use the value

ENDIF of compile-time switches.

INCLUDE not applicable IC Includes other source files as
input to the compiler.

“INTERFACE none ITF Enables calls to other high-level
languages and to source code
translators.

LEFTMARGIN LEFTMARGIN(1) LM Specifies that only input
beginning at position n should be
processed by the compiler.

LIST LIST LI Enables or disables listing of

NOLIST NOLI source program.

*MODA486 none none Enables use of the Intel486
instruction set.

“OBJECT OBJECT oJ Specifies a filename for an object

“NOOBJECT (source.obj) NOOJ module, or prevents creation of
an object module.

*OPTIMIZE OPTIMIZE(1) oT Determines the optimization level

during code generation.

* Denotes primary control

PL/M-386 Programmer's Guide

continued

Chapter 11 209

Table 11-1. Compiler Controls (continued)

Control Default Abbreviation Effect

OVERFLOW NOOVERFLOW oV Enables or disables overflow

NOOVERFLOW NOOV detection during signed
arithmetic.

*PAGELENGTH PAGELENGTH(60) PL Specifies the maximum number
of lines per page.

*PAGEWIDTH PAGEWIDTH(120) PW Specifies the maximum number
of characters per line.

PAGING PAGING Pl Specifies whether the program

NOPAGING NOPI listing should be page formatted
with a heading that identifies the
compiler and page number. A
user-specified title can also be
included (see TITLE).

PRINT PRINT PR Enables or disables printed

NOPRINT NOPR output, or selects the device or
file to receive the printed output.

“RAM *RAM none Specifying RAM places the

“ROM CONSTANT section within the
DATA segment in all
segmentation. Specifying ROM
places constants in the CODE
segment.

SAVE none SA Enables the settings of certain

RESTORE RS controls to be saved on the
stack and restores the control
settings after the included file.

SET RESET(0) none Controls the value of switches.

RESETaaa SET establishes a value.

RESET restores the value to 0.

* Denotes primary control

210 Chapter 11

continued

Compiler Invocation and Controls

Table 11-1. Compiler Controls (continued)

Control Default Abbreviation Effect

*SMALL SMALL SM Determines the segmentation

“COMPACT CcP model.

“FLAT MD

*MEDIUM FL

“LARGE LA

*SUBTITLE no subtitle ST Puts a subtitle on each page of
printed output and causes a page
eject.

*SYMBOLS NOSYMBOLS SB Specifies to the compiler whether

*NOSYMBOLS NOSB or not to produce a listing of
identifiers and attributes.

*TITLE module namein TT Places a title on each page of the

the source code printed output.

*TYPE TYPE TY Specifies whether or not to

*NOTYPE NOTY include type records in the object
module.

*WORD16 WORD32 w16 Defines the data type

*WORD32 W32 terminology.

*XREF NOXREF XR Enables or disables a

“NOXREF NOXR cross-reference listing of source

program identifiers.

* Denotes primary control

PL/M-386 Programmer's Guide

Chapter 11 211

Input Format Control

The LEFTMARG N control specifies the left margin of the sourcefile.

Code Generation and Object File Controls

These controls determine what type of object file isto be produced and in which
directory it isto appear. Object file controlsinclude the following:

DEBUG NODEBUG

| NTERFACE

MOD486

OBJECT| NOOBJECT

OPTI M ZE

OVERFLOW NOOVERFLOW

RAM ROM

SMALL| COVPACT| FLAT| MEDI UM LARGE
TYPE| NOTYPE

WORD32| WORD16

Segmentation Controls

212

For PL/M-386, the segmentation controls influence how locations are referenced in
the compiled program, which leads to certain programming restrictions for each of
the segmentation controls. These are primary controls. They have the following
form:

SMALL

COVPACT

MEDI UM

LARCE

FLAT

The segmentation controls SMALL and COVMPACT determine the maximum allowable
size of the segments produced in the object program as well as the grouping of object
types (code, data, constants, and stack). These controls affect the operation of the
compiler in various ways and impose certain constraints on the source module being
compiled.

The MEDI UMcontrol is equivalent to the SMALL control. The LARGE control is
equivalent to the COVPACT control except when LARGE is used to indicate a
subsystem whose name is unknown at compile time.

The FLAT control generates an object module containing separate code, data, and
stack segments, with constants in the code segment. Y ou can usethe BLD386 FLAT
contral to link the segments together in a single segment up to 4 GB.

Chapter 11 Compiler Invocation and Controls

For maximum efficiency of the object code, the smallest possible size should be used
for any given program. Also, all modules of a program should be compiled with the
same segmentation control.

The segmentation controls are described later in this chapter; extensions to these
controls, i.e., the use of subsystems, are described in Chapter 13.

Listing Selection and Content Controls

These controls determine what types of listings are produced and where they appear.
The controls are as follows:

CODE| NOCCDE
LI ST| NOLI ST

PRI NT| NOPRI NT
SYMBOLS| NOSYMBOLS
XREF| NOXREF

Listing Format Controls

Format controls determine the format of the listing output of the compiler. These
controls are as follows:

EJECT
PACELENGTH
PAGEW DTH

PAG NG NOPAG NG
SUBTI TLE

TI TLE

Source Inclusion Controls

With these controls, the input source can be changed to a different file. The controls
are

| NCLUDE
SAVE| RESTORE

PL/M-386 Programmer's Guide Chapter 11 213

Conditional Compilation Controls

214

These controls cause selected portions of the source file to be skipped by the
compiler if specified conditions are not met. Figure 11-1 shows an example program

using conditional compilation and Figure 11-2 shows the same example program
using the NOCOND control.

The conditional compilation controls are:

COND| NOCOND
| F| ELSEI F| ELSE| ENDI F
SET| RESET

Chapter 11 Compiler Invocation and Controls

PL/ M 386 COWPI LER EXAMPLE

mm dd/yy hh: mm ss PAGE 1

systemid PL/M 386 Vx.y COWILATI ON OF MODULE EXAMPLE
OBJECT MODULE PLACED | N cex. obj
COWPI LER | NVOKED BY: pl n886 cex.src PW 78) SET(DEBUG=3)

1
2

i

10
11

12
13

14

1

N

1

EXAVPLE: DO
DECLARE BOOLEAN LI TERALLY ' BYTE',
TRUE LI TERALLY ' OFFH ,
FALSE LI TERALLY '0';
PRI NT$DI AGNOSTI CS: PROCEDURE (SW TCHES, TABLES) EXTERNAL;
DECLARE (SW TCHES, TABLES) BOCLEAN;
END PRI NT$DI AGNOSTI CS;

DI SPLAY$PROVPT: PROCEDURE EXTERNAL; END DI SPLAY$PROWPT;
AVWAI TSCR: PROCEDURE EXTERNAL; END AWAI T$CR;

$| F DEBUG = 1
CALL PRI NT$DI AGNOSTI CS (TRUE, FALSE):
$ RESET (TRAP)
$ELSEI F DEBUG = 2
CALL PRI NT$DI AGNOSTI CS (TRUE, TRUE):
$ RESET (TRAP)
$ELSEI F DEBUG = 3
CALL PRI NT$DI AGNOSTI CS (TRUE, TRUE):
CALL PRI NT$DI AGNOSTI CS (TRUE, TRUE):
$ SET (TRAP)
$SENDI F

$I F TRAP
CALL Dl SPLAY$PROWPT;
CALL AVAI T$CR;

$ENDI F

END EXAMPLE;

Figure 11-1. Sample Program Using Conditional Compilation (SET control)

PL/M-386 Programmer's Guide Chapter 11

215

PL/ M 386 COWPI LER EXAMPLE mm dd/yy hh: mm ss PAGE 1

systemid PL/M 386 Vx.y COWILATI ON OF MODULE EXAMPLE
OBJECT MODULE PLACED | N cex. obj
COWPI LER | NVOKED BY: pl n886 cex.src PW 78) SET(DEBUG=3) NOCOND

1 EXAMPLE: DO,
2 1 DECLARE | S LI TERALLY ' LI TERALLY",

BOOLEAN | S ' BYTE',
TRUE | S ' OFFH

FALSE IS ' 0';
3 1 PRI NT$DI AGNOSTI CS: PROCEDURE (SW TCHES, TABLES) EXTERNAL;
4 2 DECLARE (SW TCHES, TABLES) BOOLEAN;
5 2 END PRI NT$DI AGNOSTI CS;
6 2 DI SPLAY$PROMPT: PROCEDURE _EXTERNAL; END DI SPLAY$PROVPT;
8 2 AWAI TSCR. PROCEDURE EXTERNAL; END AVAI T$CR:
$I F DEBUG = 1
$ELSEI F DEBUG = 3
10 1 CALL PRI NT$DI AGNOSTI CS (TRUE, TRUE);
1 1 CALL PRI NT$DI AGNOSTI CS (TRUE, TRUE);
$ SET (TRAP)
$ENDI F
$I F TRAP
12 1 CALL DI SPLAY$PROMPT;
13 1 CALL AWAI T$CR;
$ENDI F
14 1 END EXAMPLE;

Figure 11-2. Sample Program Showing the NOCOND Control

216 Chapter 11 Compiler Invocation and Controls

Language Compatibility Control

The | NTERFACE control enables PL/M to call procedures written in other languages
and vice versa. For PL/M-386, this control also enables the use of external
procedures compiled with PL/M-286 (or another OMF286 compiler).

Predefined Switches

If one of the switch names (in the following list) appearsin an| F or ELSEI F
condition and has not been explicitly assigned a value using the SET or RESET
control, its default value isits primary control value.

SVALL VEDI UM WORD16
COVPACT RAM WORD32
LARGE ROM

If apredefined switch is assigned a value using the SET or RESET control, it functions
from that point on like any other switch. A primary control value is not affected by
setting or resetting the predefined switch with the same name.

The four model switches are distinct. Even though the primary controls SMALL and
MEDI UMhave the same control interpretation, specifying the MEDI UMcontrol sets the
MEDI UMswitch only, and specifying the SMALL control setsthe SMALL switch only
(similarly for COVPACT and LARGE).

For example, given the following sequence of PL/M-386 control lines:
$RAM WORD16 MEDIUM ; line 1
$| F RAM o line 2

$ELSEI F WORD32
$ELSEI F SVALL
$ENDI F

$SET (SMALL, WORD32) ; line x

At line 2, the switches RAMand WORD16 are true and their counterparts ROMand
WORD32 arefalse. The switch MEDI UMis true and the switches SMALL, COMPACT, and
LARGE arefalse. Therefore, thel F condition is true and the two ELSEI F conditions
arefalse. After line x, the switches RAM WORD16, MEDI UM SMAL L, and WORD32 are
true; ROM COVPACT, and LARGE remain false. The setting of SMALL and WORD32
compile time switches (whether set or reset) does not affect the existing segmentation
control or any of the other switches.

PL/M-386 Programmer's Guide Chapter 11 217

Compiler Control Encyclopedia

The following sections present each of the PL/M-386 compiler controls. Note that
the segmentation controls are grouped under the SMALL control.

CODE | NOCODE

Form CODE| NOCODE
Default NOCODE
Type General

The CODE control specifiesthat listing of the generated object code in
pseudo-assembly language format isto begin. Thislisting is placed at the end of the
program listing in thelisting file. Note that the CODE control cannot override a
NOPRI NT control.

The NOCCDE control specifies that listing of the generated object codeisto be
suppressed until the next occurrence, if any, of a CODE control.

COND | NOCOND

218

These controls determine whether text within an IF element will appear in the listing
if it is skipped during compilation.

Form COND| NOCOND
Default COND
Type General

The COND control specifiesthat any text that is skipped isto be listed (without
statement or level numbers). Note that a COND control cannot override aNOLI ST or
NOPRI NT control, and that a COND control will not be processed if it iswithin text that
is skipped.

The NOCOND control specifies that text within an | F element that is skipped is not to
be listed; however, the controls that delimit the skipped text will be listed. This
provides an indication that something has been skipped. Note that a NOCOND control
will not be processed if it iswithin text that is skipped.

Figure 11-1 shows an example in which the program was compiled using the COND
(by default) and SET controls with the SET switch assignment DEBUG=3. Figure 11-2
is the same program, but it was compiled using the NOCOND control. These figures
demonstrate the use of conditional compilation. See also the description of

SET| RESET.

Chapter 11 Compiler Invocation and Controls

DEBUG | NODEBUG
Form DEBUG NODEBUG
Default NODEBUG
Type Primary

The DEBUG control specifies that the object module is to contain the statement
number and relative address of each source program statement, information about
each local symbol (including based symbols and procedure parameters), and block
information for each procedure. Thisinformation may be used later by a source level
debugging toal.

|:| Note

OPTI M ZE(0) isthe only level of optimization that does not
optimize code between program lines. Thus, it isthe only one that
gives guaranteed results when debugging programs.

EJECT
Form EJECT
Default None
Type General
EJECT stops printing on the current page and starts a new page of printed output.

IF | ELSE | ELSEIF | ENDIF

These controls provide conditional compilation capability based on the values of
switches.

These controls cannot be used in the invocation of the compiler, and each must be the
only control on its control line. There are no default settings or abbreviations for
these contrals.

PL/M-386 Programmer's Guide Chapter 11 219

220

An |F control and an ENDIF control delimit an |F element, which can have several
different forms. The simplest form of an IF element is:

$I F condition
t ext
$ENDI F

Where:

condi ti on isalimited form of aPL/M expression in which the only valid
operators are OR, XOR, NOT, AND, <, <=, =, < >, >=, and >, and the only
valid operands are switches and whole-number constants with arange
of 0to 255. If the switch does not appear in a SET control, a value of
false (0) isassumed (except for predefined switches). Parenthesized
subexpressions cannot be used. Within these restrictions, condi ti on
is evaluated according to the PL/M rules for expression evaluation.
Notethat condi t i on must be followed by an end-of-line.

t ext istext that will be processed normally by the compiler if the least
significant bit of the value of condi ti on isal, or skipped if the bit is
a0. Note that text can contain any mixture of PL/M source and
compiler controls. If thetext is skipped, any controls within it are not
processed.

The second form of the |F element contains an EL SE element:

$IF condition
text 1

$ELSE

text 2

$ENDI F

In this construction, t ext 1 will be processed if the least significant bit of the value
of conditionisal, andtext 2 will beskipped. If thebitisaO,text 1 will be
skipped andt ext 2 will be processed.

Only one EL SE control can be used within an IF element.

Chapter 11 Compiler Invocation and Controls

With the most general form of the |F element, one or more EL SEIF controls can be
introduced before the EL SE (if any):

$IF condition 1
text 1

$ELSEIF condition 2
text 2

$ELSEIF condition 3
text 3

$ELSEIF condition n
text n

$ELSE
text n+l

$ENDI F

where any of the ELSEI F elements can be omitted, as can the EL SE element.

The conditions are tested in sequence. As soon as one of them yieldsavaue withal
asitsleast significant bit, the associated text is processed. All other textinthe | F
element is skipped. If none of the conditions yields aleast significant bit of 1, the
text in the ELSE element (if any) is processed and all other text inthe | F element is
SKkipped.

Parentheses cannot be used on a conditional control line. For example, the following
lineisillegal:

$I F A+(B+Q

INCLUDE
Form | NCLUDE(pat hnane)
Default None
Type General

An | NCLUDE control must be the right-most control in a control line or in the
invocation command.

The | NCLUDE control causes the specified file to be included during compilation.
Input continues from this file until an end-of-file is detected, and then processing
resumes in the file containing the | NCLUDE control.

An included file may also contain I NCLUDE controls. Note that such nesting of
included files cannot exceed the depth given in Appendix B.

PL/M-386 Programmer's Guide Chapter 11 221

INTERFACE

I NTERFACE isaprimary control that enhances the compatibility of PL/M with other
programming languages. The | NTERFACE control enables PL/M programsto call
procedures written in other languages, such asiC-386, if those procedures use the
variable parameter list (VPL) calling convention. Additionally, with the | NTERFACE
control, procedures written in PL/M can be called by procedures written in other
languages. The calling conventions for procedures written in Pascal, FORTRAN,
and PL/M areidentical.

There are two types of calling conventionsin iC-386. Oneisthe FPL and the other is
VPL. Thefixed parameter list (FPL) type is the default calling convention of the
iC-386 compiler. So whenever the C procedures are defined to be FPL, no special
designation is needed. But whenever the C procedure is defined to follow the VPL
convention, you must use the | NTERFACE control. Note that | NTERFACE cannot be
part of an invocation command.

For PL/M-386, | NTERFACE is aprimary control that enables PL/M-386 programsto
call or be called by procedures compiled with an Intel 386 trand ator, such asiC-386
or ASM386. It can also be used to provide compatibility with procedures compiled
by a 286 trandlator, such as Fortran-286 or Pascal-286.

The | NTERFACE control has the following form:

Form | NTERFACE(| ang[/ machi ne[/ nmodel [/ran roni]]
[=id[id]...])

Default None

Type Primary

Where:

| ang isthe name of the language, eg. C, that requires a different calling

convention for VPL procedures.

machi ne isIntel386 when calling VPL iC-386 procedures, and 286 when calling
VPL procedures compiled using a 286 trandator. Only referencesto
286 ids from Intel 386 modules are supported; Intel 386 ids cannot be
referenced from 286 modules. Therefore, if nachi ne is 286 then all
theidentifiersinthei d list must be declared EXTERNAL. If machi ne is
286 and ani d isPUBLI C, itisan error.

222 Chapter 11 Compiler Invocation and Controls

model iS SMALL, COMPACT, MEDI UM or LARGE and defines the model of
segmentation for the specified i ds. nodel determines whether
Intel386 PO NTER variables are offset-only or select-offset, as defined
by the PL/M-386 models of segmentation (see Chapter 13, Table 13-1).
If machi ne is286, nodel defaultsto LARGE. nodel should be
specified as the same model of segmentation used to compile the 286
code being referenced. If machi ne isIntel 386, nodel isignored.

ram rom isRAMor ROMand defines the placement of constant variablesin either
the code or data segment. When used with the SMALL model, r anj r om
also defines whether POl NTER variables are offset-only or
selector-offset. The default is RAMunless nodel isLARGE, in which
case the default isROM r anj r omisignored if machi ne is Intel 386.

id specifies the procedures and variables that are implemented using the
specified language interface convention.

When the | NTERFACE control is used to call procedures compiled with a 286
trandator, the program switches from using 32-bit stack offsetsto 16-bit offsets.
Therefore, the stack pointer for the called procedure must point within the lowest
64K of the stack segment, or else a gate must be used to switch to such a stack
segment. Parameters must fit within this boundary as well.

Except as noted above, the calling conventions for | ntel 386-based languages other
than VPL iC-386 procedures are identical to PL/M-386 and therefore do not require
the use of the | NTERFACE control. Because the calling conventions differ for iC-386,
| NTERFACE must be used to call or to be called for VPL iC-386 procedures. The C
(VPL) interface convention differs from the PL/M calling convention in the
following ways:

» Parameters are evaluated and pushed onto the stack in reverse order.

* A parameter whose size is less than two bytes (for Intel 386 and I ntel 486
processors, four bytes) is zero-extended or sign-extended according to its type.

* Real parametersfor iC-386 are always 64-bit double floating-point numbers and
are passed on its stack.

» Thecaller clears the parameters of f the stack after return and the callee does not
pop parameters off the stack.

PL/M-386 Programmer's Guide Chapter 11 223

If you define a function to be a C calling convention procedure, you can call it with
more arguments than the number of parameters you specify in the externa
declaration. Thus, you can make variable parameter list (VPL) procedure callsto
functions such asthe C function pri nt f . Thisfeatureissimilar tothe ANSI C
prototyped function declarations using ellipses (, . . .) . Type checking occurs for
arguments passed to the parameters you specify in the external declaration, not for
any additional arguments. For example, no type checking isdone on acall to a
procedure declared with no parameters.

For example, the following is valid:

/* Define SAMP as a C Calling Convention procedure. */
$I NTERFACE (C=SAMP)
/* Decl are SAMP; specify a parameter of type WORD. */
SAMP: PROCEDURE (P) EXTERNAL;
DECLARE P WORD;

END SAMP;
/* Declare variables to pass to SAWP. */
DECLARE (A, B, C WORD;
/* Pass arguments to SAMP. Type checki ng occurs */
/* for the argunent A (paranmeter P) but not for */
/* argunents B and C. */

CALL SAMWP (A, B, O);

224 Chapter 11 Compiler Invocation and Controls

Constant arguments are typed asin PL/M. Thistyping can affect the value of an
argument passed to a C routine, as demonstrated in the following example, where
SAMP2 and SAMP3 are C interface functions:

SAMP2: PROCEDURE (D) EXTERNAL;
DECLARE D | NTEGER;

END SAMP2;

SAMP3: PROCEDURE EXTERNAL;

END SAMP3;

CALL SAMP2 (113);
/* passes 113 as an I NTECGER since Dis
decl ared as type | NTEGER */

CALL SAMP3 (115);
/* passes 115 as a BYTE
(since 0 < 115 < 255), but high
byte(s) are undefined since C
does integer pronotion, even if
the first argument of SAMP3 is
an unsigned char argument stack. */

CALL SAMP3 (| NTEGER(115));
/* uses an explicit cast to
ensure the constant is passed correctly. */

The following example demonstrates the use of the | NTERFACE control to call a
PL/M-386 procedure:

$WVORD32
$I NTERFACE(PLM 386/ FLAT/ ROVEEXAMP)

EXAMP: PROCEDURE(A, B) EXTERNAL;
DECLARE A WORD, B PO NTER;

END EXAMP;

DECLARE X WORD, Y PO NTER;

CALL EXAMP(X, Y);

PL/M-386 Programmer's Guide Chapter 11 225

In the preceding example, the | NTERFACE control specifies the procedure EXAMP to
be defined as Intel 386-compatible. The actual parameters X and Y will be
automatically converted to a 32-bit WORD and an Intel 386 (48-bit) PO NTER,
respectively.

Variables and formal parameters of Intel 386-based procedures should be declared the
same asin the PL/M-386 code. The PL/M-386 compiler is also able to interpret the
termsin 286 context and perform the following mapping:

Term Used Maps to Data Type

BYTE 8-bit, unsigned

HAORD 8-bit, unsigned

V\ORD 16-hit, unsigned

DWORD 32-bit, unsigned

QWORD 32-bit, unsigned

CHARI NT 8-bit (interpretation dependent on 286 code)
SHORTI NT 8 bit (interpretation dependent on 286 code)
I NTEGER 16-hit, signed integer

LONG NT 32-bit(interpretation dependent on 286 code)
REAL 32-bit, real

SELECTOR 16-bit, selector

PO NTER see the following paragraphs

OFFSET 16-bit, unsigned

The PL/M-386 compiler converts Intel 386-style 48-bit long POl NTERS to 286
PO NTERs by truncating the offset portion to 16 bits. In SMALL RAM aPO NTER s
the same as an OFFSET, and is treated as such by the compiler.

Note that this mapping is independent of WORD16| WORD32 (defined in Tables 9-3 and
11-4). This means that there is athird mapping of scalar termsto scalar data types.

226 Chapter 11 Compiler Invocation and Controls

LEFTMARGIN

Thisisthe only control for specifying the format of the source input.

Form LEFTMARG N(n)
Default LEFTMARG N(1)
Type General

All charactersto the left of position n on subsequent input lines are not processed by
the compiler (but do appear on the listing). The first character on alineisin column
1

The new setting of the left margin takes effect on the next input line. 1t remainsin
effect for all input from this source file and any included files until it is reset by
another LEFTMARG N control.

Note that a control lineis one that contains adollar sign in the column specified by
the most recent LEFTMARG N control.

LIST | NOLIST
Form LI ST| NOLI ST
Default LI ST
Type General

The LI ST control specifies that listing of the source program is to resume with the
next source lineread. The PL/M-386 compiler numbers all source lines,
incrementing the line number for each new-line character. Note that the LI ST
control cannot override a NOPRI NT control. If NOPRI NT isin effect, no listing is
produced.

The NOLI ST control specifiesthat listing of the source program is to be suppressed
until the next occurrence, if any, of aLl ST control.

When LI ST isin effect, all input lines (from the source file or from an included file),
including control lines, are listed, provided there is not a NOPRI NT control in effect.
When NOLI ST isin effect, only source lines associated with error messages are
listed.

PL/M-386 Programmer's Guide Chapter 11 227

MODA486

The MOD486 control, recognized by only the PL/M-386 compiler, is aswitch
governing the instruction set available to the compiler. Use this control to compile
source text containing the following built-ins specific to the Intel 486 processor:

NAME
BYTESSWAP

TEST$REG STER

| NVAL| DATE$DATA$CACHE
V\B$S! NVALI DATE$DATAS$SCACHE

| NVALI DATE$STLB$SENTRY

OBJECT | NOOBJECT

Form OBJECT(pat hnane)

NOOBJECT

USAGE

Byte swap function to convert between big and little
endian. The endian of a stored value indicates
whether the most-significant bit is in the highest (big
endian) or lowest (little endian) address of the
location.

Built-in variable extending the number of available
TEST$REGISTER elements

Function to clear the entire data cache

Function to write-back changed lines to memory
and to clear the data cache

Function to invalidate a single entry in the paging
cache

Default OBJECT(sour cefi | ename. OBJ)

Type Primary

The OBJECT control specifies that an object module is to be created during
compilation. The pat hnane is a standard host operating system pat hnane that
specifiesthefile to receive the object module. If the control is absent or if an
OBJECT control appears without apat hname, the object module is directed to afile
that has the same name as the source input file, but with the extension . OBJ.

The NOOBJECT control specifies that no object module is to be produced.

228 Chapter 11

Compiler Invocation and Controls

OPTIMIZE

This control governsthe level of optimization to be performed in generating object
code. The n parameter can be 0-3, representing the lowest to highest levels of
optimization. Figures 11-3to 11-6 illustrate the different levels of optimization. The
same program was compiled for each level, but the source file was printed only for

OPTI M ZE(0) .
Form OPTI M ZE(n)
Where: n=20, 1, 2 or 3

Default OPTI M ZE(1)
Type Primary

OPTI M ZE(0) specifiesonly folding of constant expressions. Folding means
recognizing, during compilation, operations that are superfluous or combinable, and
removing or combining them so as to save memory space or execution time.
Examples include addition with a zero operand, multiplication by one, and logical
expressions with true or false constants.

OPTI M ZE(0) isthe only level of optimization that is guaranteed to not optimize
code between lines. Figure 11-3 illustrates the OPTI M ZE(0) level of optimization.

PL/M-386 Programmer's Guide Chapter 11 229

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 1

systemid PL/M 386 Vx.y COWPI LATI ON OF MODULE
EXAVPLES_OF_CPTI M ZATI ONS
OBJECT MODULE PLACED | N exanpl e. obj

COWPI LER | NVOKED BY:

© 00N UL WN P

N
=)

12
13
14

NNWWWWNREPERPRREPERPPRP

[EEY

pl m886 exanpl e.src PW78) FLAT CODE OPTI M ZE(0)

EXAVPLES_OF_CPTI M ZATI ONS: DG,

DECLARE (A, B, C) V\ORD,
D(100) WORD,

(PTR_1,

A=A* 2
ABASED(A)
ABASED B)
END;

ELSE A = A +

END;

PTR_2) PO NTER,
ABASED BASED PTR_1 (10) WORD;
DO WH LE D(A+B) < D(A+B+1);
| F (OFFSET(PTR_1) < (OFFSET(PTR_2)) THEN DO

1

ABASED(B) ;
ABASED(C) ;

END EXAMPLES_OF_COPTI M ZATI ONS;

PL/ M 386 COWILER EXAMPLES_OF _OPTIM ZATIONS date time PAGE 2

230

00000000

00000002
00000008
0000000E
00000014
0000001A
0000001B
00000022
00000029

0000002F
00000035

ASSEMBLY LI STI NG OF OBJECT CCDE

8BEC

@a.:
8B050000000
030504000000
8B0D0O0000000
030D04000000
41
8B04850C000000
3B048D0CO00000
0F8375000000

8B059C010000
8BODA0010000

MoV

MoV
ADD
MoV
ADD
I NC
MoV
awP
JAE

MoV
MoV

EBP, ESP

EAX, A
EAX, B
ECX, A
ECX, B
ECX
EAX, D[EAX* 4]
EAX, D[ECX* 4]
@
. STATEMENT # 7
EAX, PTR 1
ECX, PTR 2

Figure 11-3. Sample Program Showing the OPTIMIZE(Q) Control

Chapter 11

Compiler Invocation and Controls

0000003B
0000003D

3BC1
0F834F000000

00000043
00000049
0000004B

8B0500000000
D1EO
890500000000

00000051
00000057
0000005D
00000060
00000066
0000006C

8B059C010000
8B0D04000000
8B0488
8B0D9C010000
8B1500000000
890491

0000006F
00000075
0000007B
0000007E
00000084
0000008A
0000008D

8B059C010000
8B0D0O8000000
8B0488
8B0D9C010000
8B1504000000
890491
E90DO00000

@3:
00000092 8B050000000
00000098 40
00000099 890500000000

@
E95EFFFFFF
@:

0000009F

JAE

SHL

I NC

JwWP

EAX, ECX
@
. STATEMENT # 8
EAX, A
EAX, 1
A, EAX
. STATEMENT # 9
EAX, PTR 1
ECX, B
EAX, [EAX] . ABASED] ECX* 4]
ECX, PTR 1
EDX, A
[ECX] . ABASED] EDX* 4] , EAX
. STATEMENT # 10
EAX, PTR 1
ECX, C
EAX, [EAX] . ABASED] ECX* 4]
ECX, PTR 1
EDX, B
[ECX] . ABASED] EDX* 4] , EAX
@
. STATEMENT # 12

EAX, A
EAX

A, EAX
; STATEMENT # 13

a

; STATEMENT # 15

Figure 11-3. Sample Program Showing the OPTIMIZE(0) Control (continued)

PL/M-386 Programmer's Guide

Chapter 11

231

OPTI M ZE(1) specifies strength reduction, elimination of common subexpressions
and short-circuit evaluation of some Boolean expressions, as well asthe
optimizations of level (0).

Strength reduction means substituting quick operations (e.g., shifting by 1 instead of
multiplying by 2). Thisinstruction requires less space and executes faster. Adding
identical subexpressions may also generate left shift instructions.

Elimination of common subexpressions means that if an expression reappearsin the
same block, its value is re-used rather than recomputed. The compiler also
recognizes commutative forms of subexpressions (e.g., A + B and B + A are seen as
the same). Intermediate results during expression evaluation are saved in either
registers or on the stack for later use. For example:

A=B+C* D/ 3;

C=E+D* C/ 3

The value of C ¥ 3 will not be recomputed for the second statement.

Optimizing the evaluation of Boolean expressions uses the fact that in certain cases
some of the terms are not needed to determine the value of the expression. For
example, in the expression:

(A>BANDI >J)

if the first term (A>B) isfalse, the entire expression isfalse, and it is not necessary to
evaluate the second term. The use of PL/M built-in procedures does not change this
optimization. However, if a user-written function or an embedded assignment is part
of the expression, this short evaluation is not done. For example:

(A>BAND (UFUN (A) >J))
is evaluated in full.

Figure 11-4 illustrates the OPTI M ZE(1) level of optimization.

232 Chapter 11 Compiler Invocation and Controls

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 1

systemid PL/M 386 Vx.y COWPILATI ON OF MODULES
EXAMPLES_OF_OPTI M ZATI ONS
OBJECT MODULE PLACED I N exanpl e. obj
COWPI LER | NVOKED BY: pl nB86 exanpl e.src PW78) FLAT MODE

OPTIM ZE(1) NOLI ST

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 2
ASSEMBLY LI STI NG OF CBJECT CODE

00000000

00000002
00000008
0000000E
00000010
00000011
00000012
00000013
0000001A
00000021

00000027
0000002D
00000033
00000035

0000003B
00000041
00000043

00000049
0000004F
00000052

00000055
0000005B

8BEC

a.:
8B050000000
8B0D04000000
03C1
50
40
5A
8B14950C000000
3B14850C000000
0F8356000000

8B059C010000
8B15A0010000
3BC2

0F8337000000

8B0500000000
D1EO
890500000000

8B159C010000
8BOC8BA
890C82

8B059C010000
8B0D0O8000000

ADD
PUSH
I NC
POP

JAE

JAE

SHL

MoV
MoV

; STATEMENT # 6
EBP, ESP

EAX, A
ECX, B
EAX, ECX
EAX 1
EAX
EDX ;1
EDX, D EDX* 4]
EDX, D[EAX* 4]
@
; STATEMENT # 7
EAX, PTR 1
EDX, PTR 2
EAX, EDX
@
; STATEMENT # 8
EAX, A
EAX, 1
A, EA
; STATEMENT # 9
EDX, PTR 1
ECX, [EDX] . ABASED[ECX* 4]
[EDX] . ABASED] EAX* 4] , ECX
; STATEMENT # 10
EAX, PTR 1
ECX, C

Figure 11-4. Sample Program Showing the OPTIMIZE(1) Control

PL/M-386 Programmer's Guide

Chapter 11

233

00000061
00000064
0000006A
0000006D

00000072

00000078

MODULE | NFORVATI ON:

CCDE AREA S| ZE
CONSTANT AREA S| ZE
VARI ABLE AREA SI ZE

8B0C88 MOV
8B1504000000 MOV
890C90 MOV
E906000000 JMP
@3:
FFO050000000 I NC
@:
E985FFFFFF JMP
@:
= 0000007DH
= 00000000H
= 000001A4H

MAXI MUM STACK SI ZE = 00000004H
15 LI NES READ

0 PROGRAM WARNI NGS
0 PROGRAM ERRORS

DI CTlI ONARY SUMVARY:

410KB MEMORY AVAI LABLE
8KB MEMORY USED (1%
OKB DI SK SPACE USED

END OF PL/ M 386 COWPI LATI ON
Figure 11-4. Sample Program Showing the OPTIMIZE(1) Control (continued)

234

Chapter 11

ECX, [EAX] . ABASED] ECX* 4]
EDX, B
[EAX] . ABASED] EDX* 4] , ECX

@
; STATEMENT # 12

; STATEMENT # 13

; STATEMENT # 15

125D
0D
420D
4D

Compiler Invocation and Controls

OPTI M ZE(2) includes OPTI M ZE(0) and OPTI M ZE(1), plusthe following:
» Machine code optimizations (e.g., short jumps, moves)

» Elimination of superfluous branches

* Reuse of duplicate code

* Removal of unreachable code and reversal of branch conditions

Optimizing machine code means saving space by using shorter forms for identical
machine instructions. Thisis possible because some instructions have multiple
forms. For example:

MOV RESLT1, AX; /* nove accunul ator value to |ocation RESLT1*/

can be generated by using three or four bytes for PL/M-86 and PL/M-286, and using
five or six bytesfor PL/M-386. The former choice saves a byte of storage for the
program. Similarly, jumps that the compiler can recognize as within the same
segment or closer (within 127 bytes) permit the use of fewer byte instructions.

Elimination of superfluous branches means optimizing consecutive or multiple
branches into a single branch. For example:

JZ LABL; /* junp on zero to LAB1l */
JWP LAB2; /* unconditional junmp to LAB2 */
LABL:
LAB2:

will be transformed into:

INZ LABZ; /* junp on non-zero to LAB2 */
LABL

LAB2:
Similarly, multiple branches like the following are eliminated:

LABO: JIMP LAB1

LAB1: JPM LAB2

PL/M-386 Programmer's Guide Chapter 11 235

and transformed into:

LABO: JMP LAB2

LABL1: IMP LAB2

Reuse of duplicate code can refer to identical code at the end of two converging
paths. In such acase, the code isinserted in only one path, and ajump to that path is
inserted in the other path. For example:

DECLARE A BYTE, SPOT PO NTER;
DECLARE S BASED SPOT STRUCTURE (B BYTE, C BYTE);

IF A =1 THEN

S.C = INPUT (OF7H) AND O7FH;

ELSE

S.C = INPUT (OF9H) AND O7FH;

Before After

CWVP A, 1H CWVP A, 1H
JZ & + 5H JMP a
JMP a

I'N OF7H I'N OF7H
AND AL, 7FH JMP @

MOV BX, SPOT
MOV S [BX+1H, AL

I @

a: IN OF9H @: IN OF9H
AND AL, 7FH @: AND AL, 7FH
MOV BX, SPOT MOV BX, SPOT
MOV S [BX+1H, AL MV S [BX+1H, AL

@:

236 Chapter 11 Compiler Invocation and Controls

Reuse of duplicate code can also refer to machine instructions, immediately
preceding aloop, that are identical to those ending the loop. A branch can be
generated to reuse the code generated at the beginning of the loop. For example:

Before
ADD
MOV
LABO: MOV
CVP
JNZ

ADD
MoV
JWP
LABL1:

After
AX, BX LABO: ADD AX, BX
ANS, AX MOV ANS, AX
AL, DUML MOV AL, DUML
AL, DUWR CVMP AL, DuUM2
LAB1 JNZ LAB1
AX, BX JVP LABO
ANS, AX LAB1:
LABO

Thisis safe so long as LABO is not the target of ajump instruction. The compiler
normally handles a whole procedure at atime, and is aware of such a condition. This
optimization cannot be safely applied to labelsin the outer level of the main program
module. This optimization will not change the program and will save code space.

Second level optimization removes unreachable code, takes a second ook at the
generated object code, and finds areas that can never be reached due to the control
structures created earlier.

For example, if the following code were generated before optimization:

PL/M-386 Programmer

MoV
RCR
JB

JWP

MoV
QUTW
JWP
MoV
ADD
JWP

'sGuide

AX, A
AL, 1
a
@

AX, OFFFFH
OF6H

8@>2Q
2w

Chapter 11 237

Then the removal of unreachable code would produce:

MoV AX, A
RCR AL, 1
JB @1
JWP @

@: MW AX, OFFFFH
OUTW OF6H
W @

This can be further optimized by reversing the branch condition in the third
instruction and removing the unnecessary IMP @:

MoV AX, A
RCR AL, 1
JNB @

@: MWV AX, OFFFFH
OUTW OF6H

Figure 11-5 illustrates the OPTI M ZE(2) level of optimization.

238 Chapter 11 Compiler Invocation and Controls

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 1

systemid PL/M 386 Vx.y COWPILATI ON OF MODULES
EXAMPLES_OF_OPTI M ZATI ONS
OBJECT MODULE PLACED I N exanpl e. obj
COWPI LER | NVOKED BY: pl nB86 exanpl e.src PW78) FLAT MODE

OPTIM ZE(2) NOLI ST

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 2
ASSEMBLY LI STI NG OF CBJECT CODE

00000000

00000002
00000007
0000000D
0000000F
00000010
00000011
00000012
00000019
00000020

00000022
00000027
0000002D
0000002F

00000031
00000036
00000038

0000003D
00000043
00000046

00000049
0000004E
00000054

8BEC

@a.:
A100000000
8B0D04000000
03C1
50
40
5A
8B14950C000000
3B14850C000000
7348

A19C010000
8B15A0010000
3BC2

7331

A100000000
D1EO
A300000000

8B159C010000
8BOC8BA
890C82

A19C010000
8B0D0O8000000
8B0C88

MoV

MoV
MoV
ADD
PUSH
I NC
POP
MoV
cawP
JNB

JNB

SHL

MoV
MoV

; STATEMENT # 6
EBP, ESP

EAX, A
ECX, B
EAX, ECX
EAX 1
EAX
EDX ;1
EDX, D EDX* 4]
EDX, D[EAX* 4]
@
; STATEMENT # 7
EAX, PTR 1
EDX, PTR 2
EAX, EDX
@
; STATEMENT # 8
EAX, A
EAX, 1
A, EAX
; STATEMENT # 9
EDX, PTR 1
ECX, [EDX] . ABASED[ECX* 4]
[EDX] . ABASED] EAX* 4] , ECX
; STATEMENT # 10
EAX, PTR 1
ECX, C
ECX, [EAX] . ABASED[ECX* 4]

Figure 11-5. Sample Program Showing the OPTIMIZE(2) Control

PL/M-386 Programmer's Guide

Chapter 11

239

00000057

0000005D

00000060

00000062

00000068

MODULE | NFORVATI ON:

CCODE AREA Sl ZE

CONSTANT AREA S| ZE
VARI ABLE AREA SI ZE
MAXI MUM STACK SI ZE

8B1504000000 MOV
890C90 MOV
EBAO JMP
@3:
FFO050000000 I NC
EB98 JMP
@:
= 0000006AH
= 00000000H
= 000001A4H
= 00000004H

15 LI NES READ
0 PROGRAM WARNI NGS
0 PROGRAM ERRORS

Di CTlI ONARY SUMVARY:

410KB MEMORY AVAI LABLE
8KB MEMORY USED (1%
OKB DI SK SPACE USED

END OF PL/M 386 COWPI LATI ON

240

EDX, B
[EAX] . ABASED] EDX* 4] , ECX

a
; STATEMENT # 12

; STATEMENT # 13

; STATEMENT # 15

106D
0D
420D
4D

Figure 11-5. Sample Program Showing the OPTIMIZE(2) Control (continued)

Chapter 11

Compiler Invocation and Controls

OPTI M ZE(3) includes all of the preceding optimizations. It also optimizes
indeterminate storage operations (e. g., those using based variables or variables
declared with the AT attribute).

|:| Note

The assumption validating this new optimization is that based
variables (or AT variables) do not overlay other user-declared
variables.

On this optimization level, all Boolean expressions are short-circuited except those
containing embedded assignments. (For a description of how this optimization
occurs, see OPTI M ZE(1))

The benefits of this optimization level include more efficient use of code space only
if needed values are not overlaid.

Caution in variable-declaration and usage is essential. For example, the sequence:

DECLARE (1, J) WORD,

DECLARE THETA (19) AT (@);
DECLARE A BASED J (10);
STRUCTURE (FI BYTE, F2 WORD);

J=.1;

A.(I).F1=7;
A(l).F2 = 99;

THETA(l) = 31;

violates this caution because it causes the values being used as pointers and subscripts
to be overlaid. The compiler normally takes steps to avoid the difficultiesimplied
here. But, in OPTI M ZE(3) , these steps are omitted due to the implicit requirement
that such situations must not be present at this level of optimization.

Figure 11-6 illustrates the OPTI M ZE(3) level of optimization.

PL/M-386 Programmer's Guide Chapter 11 241

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 1

systemid PL/M 386 Vx.y COVWPILATI ON OF MODULES
EXAMPLES_OF_OPTI M ZATI ONS
OBJECT MODULE PLACED I N exanpl e. obj
COWPI LER | NVOKED BY: pl nB86 exanple.src PW78) FLAT MODE

OPTIM ZE(3) NOLI ST

PL/ M 386 COWILER EXAMPLES_OF_OPTIM ZATIONS date time PAGE 2
ASSEMBLY LI STI NG OF CBJECT CODE

00000000

00000002
00000007
0000000D
0000000F
00000010
00000011
00000012
00000019
00000020

00000022
00000027
0000002D
0000002F

00000031
00000036
00000038

0000003D
00000043
00000046

00000049
0000004E
00000051
00000054

8BEC

a:
A100000000
8B0D04000000
03C1
50
40
5A
8B14950C000000
3B14850C000000
733C

A19C010000
8B15A0010000
3BC2

7325

A100000000
D1EO
A300000000

8B159C010000
8B1C8A
891C82

A108000000
8B0482
89048A
EBAC

MoV

MoV
MoV
ADD
PUSH
I NC
POP
MoV
awP
JNB

JNB

SHL

MoV
MoV
MoV
JWP

; STATEMENT # 6
EBP, ESP

EAX, A
ECX, B
EAX, ECX
EAX
EAX
EDX c 1
EDX, D EDX* 4]
EDX, D] EAX* 4]
@

. STATEMENT # 7
EAX, PTR 1
EDX, PTR 2
EAX, EDX
@

. STATEMENT # 8
EAX, A
EAX, 1
A, EAX

. STATEMENT # 9
EDX, PTR 1
EBX, [EDX] . ABASED] ECX* 4]
[EDX] . ABASED] EAX* 4] , EBX

. STATEMENT # 10
EAX, C
EAX, [EDX] . ABASED] EAX* 4]
[EDX] . ABASED] ECX* 4] , EAX
a

Figure 11-6. Sample Program Showing the OPTIMIZE(3) Control

242

Chapter 11

Compiler Invocation and Controls

@3:
00000056 FF050000000 I NC

0000005C EBA4 JMP
@:

MODULE | NFORVATI ON:

CCODE AREA Sl ZE
CONSTANT AREA Sl ZE = 00000000H
VARI ABLE AREA SI ZE = 000001A4H
MAXI MUM STACK SI ZE = 00000004H
15 LI NES READ

0 PROGRAM WARNI NGS

0 PROGRAM ERRORS

0000005EH

DI CTI ONARY SUMVARY:
410KB MEMORY AVAI LABLE
8KB MEMORY USED (1%
OKB DI SK SPACE USED

END OF PL/M 386 COWPI LATI ON

Figure 11-6. Sample Program Showing the OPTIMIZE(3) Control (continued)

PL/M-386 Programmer's Guide

94D
0D
420D
4D

STATEMENT # 12

STATEMENT # 13

STATEMENT # 15

Chapter 11

243

OVERFLOW | NOOVERFLOW

Form OVERFLOW NOOVERFLOW
Default NOOVERFLOW
Type General

These controls specify whether to detect overflow when performing signed
arithmetic. If the NOOVERFLOWCcontral is specified, no overflow detection is
implemented in the compiled module and the results of overflow in signed arithmetic
are undefined. If the OVERFLOWCcontrol is specified, overflow in signed arithmetic
results in a nonmaskable interrupt 4, and it is the programmer's responsibility to
provide an interrupt procedure to handle the interrupt. Failure to provide such a
procedure may result in unpredictable program behavior when overflow occurs.

If this control is nested within a program statement, overflow detection will begin
when the next complete statement is evaluated.

Note that the use of the OVERFLOWcontrol results in some expansion of the object
code.

Specific to the Intel 386 and Intel486 microprocessors, in-line checking code is
inserted for detecting machine overflow (32-bit arithmetic overflow) on signed
expressions, and value overflow on assignments to SHORTI NT or CHARI NT variables.

To save code space and execution time, avoid using SHORTI NT and CHARI NT when
compiling with the OVERFL Owcontrol.

PAGELENGTH

244

Form PAGELENGTH(n)
Default PAGELENGTH(60)
Type Primary

Pagelength is a non-zero, unsigned number specifying the maximum number of lines
to be printed per page of listing output. This number includes the page headings
printed on the page.

The minimum value for n is 5; the maximum value is 255.

Chapter 11 Compiler Invocation and Controls

PAGEWIDTH
Form PAGEW DTH(n)
Default PAGEW DTH(120)
Type Primary

Pagewidth is a non-zero, unsigned number specifying the maximum line width, in
characters, to be used for listing output. The minimum value for n is 60; the
maximum valueis 132.

PAGING | NOPAGING
Form PAG NG NOPAG NG
Default PAG NG
Type Primary

The PAG NG control specifiesthat the listed output isto be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and
possibly a user-specified title.

The NOPAG NG control specifies that page ejecting, page heading, and page
numbering are not to be performed. Thus, the listing appears on one long page as
would be suitable for aslow serial output device. If NOPAG NGis specified, a page
gject isnot generated if an EJECT control is encountered.

PRINT | NOPRINT

Form PRI NT(pat hnane)
NOPRI NT

Default PRI NT(sour cefi | ename. LST)
Type Primary

The PRI NT control specifies that printed output isto be produced. The parameter isa
standard host operating system pathname that specifies the file to receive the printed
output. Any output-type device, including a disk file, can also be given. If the
control is absent, or if a PRI NT control appears without a pathname, printed output is
sent to afile that has the same name as the source input file but with the extension

. LST.

The NOPRI NT control specifies that no printed output is to be produced, even if
implied by other listing controls such as LI ST and CODE.

PL/M-386 Programmer's Guide Chapter 11 245

RAM | ROM

Form RAM ROM
Default RAM
Type Primary

For PL/M-386, the RAMsetting places the CONSTANT section within the DATA
segment in all segmentation models.

For all targets, the ROMsetting places constants in the CODE segment. Under this
setting, the | NI TI AL attribute on a variable produces a warning message. Do not use
the dot operator for variable references under the ROMoption because constants and
variables will be relative to different segment registers. If SMALL is specified with
the ROMcontrol, then PL/M-386 pointers will be six bytesinstead of four (see also
Appendix F).

If the keyword DATA isused in a PUBLI C declaration when compiling with the ROV
control, DATA must also be used in the EXTERNAL declaration of program modules
that referenceit. However, no value list is then permitted because the data is defined
elsewhere.

SAVE | RESTORE

246

Form SAVE| RESTORE
Default None
Type General

With these controls the settings of certain general controls can be saved on a stack
and then restored. The main usage of these controls is saving the controls before an
included file and restoring them after inclusion of that fileis complete. The controls
whose settings are saved and restored are:

CODE| NOCODE
COND| NOCOND
LEFTMARG N

LI ST| NOLI ST
OVERFLOW NOOVERFLOW

The SAVE control saves all of these settings on a stack. The maximum capacity of
this stack corresponds to the maximum nesting depth for the | NCLUDE control (the
maximum nesting depth is given in Appendix B).

The RESTORE control restores the most recently saved set of control settings from the
stack.

Chapter 11 Compiler Invocation and Controls

SET | RESET

These are general controls. The SET control has the following general form:
SET (switch_assignnment _|ist)
Where:

swi tch_assi gnment _|i st
consists of one or more switch assignments separated by commas.

A switch assignment has the form:

swi t ch[=val ue]

Where:

switch isaname which isformed according to the PL/M rules for identifiers.
Note that a switch name exists only at the compiler control level, and
therefore a switch can have the same name as an identifier in the
program; no conflict is possible. Note however that no PL/M reserved
word other than a predefined switch can be used as a switch name.

val ue isawhole-number constant in the range 0 to 255. Thisvalueis

assigned to the switch. If the value and the equal sign (=) are omitted
from the switch assignment, the default value OFFH (true) is assigned to
aswitch.

The following is an example of a SET control line:
$SET(TEST, | TERATI ON = 3)

This example sets the switch TEST to true (OFFH) and the switch | TERATI ON'to 3.
Switches do not need to be declared.

Figure 11-1 and 11-2 are examples of a program that was compiled using the SET
control.

The RESET control has the form:
RESET (switch_Ilist)
Where:

switch_list
consists of one or more switch names that have aready occurred in SET
controls.

Each switch in the switch list is set to false (0).

PL/M-386 Programmer's Guide Chapter 11 247

SMALL | COMPACT | MEDIUM | LARGE | FLAT

The following sections describe the SMALL, COVPACT, MEDI UM LARGE and FLAT
controls (also called the segmentation controls). For application development under
the iIRMX Operating System, see the note under the COMPACT model description.

SMALL

248

Form SMALL
Default SMALL
Type Primary

Modules compiled with the SMALL control have three sections: code, data, and stack
(see the OBJECT control). When these modules are bound (linked), similar sections
from each module are combined to form two segments: code and data. For the

Intel 386 and Intel 486 microprocessors, the maximum size of each segment is 4G
bytes.

In the default SMALL case (RAM), the code sections from all modules are allocated
space within the code segment, which is addressed relative to the CSregister.
Constants are combined with all the data and stack sectionsin the data segment. For
the Intel 386 and I ntel 486 microprocessors, this segment is addressed relative to the
DSregister, with an identical copy in the SS and ES registers. None of the segment
registers are changed during the course of program execution except ES, whichis
used to perform string operations, and FS and GS, which are used to address data
exported by another subsystem. Subsystems are described in Chapter 13.

Therefore, the SMALL control can be used only if the total size of all code sections
does not exceed 4G bytes. The total size of the constants plus all data and stack
sections also cannot exceed 4G bytes.

If the ROMcontrol is used, the constants from all the modules are placed with the code
in the code segment. The data segment then contains only the data and stack sections
from all the modules.

Because only one code segment exists, its segment selector (the CS register) is never
updated during program execution. (However, an interrupt will update the CS
register.) Likewise, when RAMiIs used, only one segment exists for all constant, data,
and stack sections. The segments’ selectors (the DS and SSregisters) are never
updated (except when an interrupt occurs, as explained in Appendix G). Therefore,
when any location is referenced, a 32-hit offset is calculated and used in conjunction
with the appropriate segment selector. PO NTER valuesin the SMALL (RAM) case are
32-hit values for the Intel 386 and Intel 486 microprocessors.

The following restrictions must be observed:

Chapter 11 Compiler Invocation and Controls

1. Do not use the @and dot operations with variables based on SELECTOR. For
example:
DECLARE SEL SELECTOR;
DECLARE R BASED SEL BYTE;
DECLARE PO PO NTER;
PO = @ /* invalid under SMALL RAM */

2. Do not use the built-in function BUI LD$PTR (see Chapter 9).

COMPACT
|:| Note
TheiRMX Operating System supports only the COMPACT
model.
Form COWPACT

Default SMALL
Type Primary

Modules compiled with the COVPACT control have three sections: code, data, and
stack (see the OBJECT control). When these modules are linked, similar sections
from each module are combined to form three segments. code, data, and stack. The
maximum size of each segment is 4G bytes for the Intel 386 and I ntel486

Mi Croprocessors.

In the default COMPACT case (RAM), the code sections from all modules are allocated
space within the code segment, which is addressed relative to the CSregister.
Constants and all data sections are combined in the data segment, which is addressed
relative to the DSregister and an identical copy is stored in the ESregister. The
stack is addressed relative to SS. None of the segment registers are changed, except
ES, which is used to perform string operations, aswell as FS and GS, which are used
to address data exported by another subsystem.

If the ROMcontrol is used, the constants from all the modules are placed with the code
in the code segment. The data segment then contains only the data sections from all
the modules.

Since the code, data, and stack segments are fully defined by the time the program is
loaded, the segment selectorsin the CS and SSregisters are never changed.

PL/M-386 Programmer's Guide Chapter 11 249

All six segment registers are initialized by the loader, with ES, FS, and GSinitialized
to DS. The DS and ES registers are also saved and reinitialized in each interrupt
procedure prologue and epilogue to enable distinct interrupt environments. The FS
and GS registers are volatile after initialization. References to any location require
only a 32-bit offset against these segment selectors.

Observe the following restrictions when using COVPACT.

1. When an exported procedure isindirectly activated, a PO NTER variable must be
used in the CALL statement. For example:

$COMPACT(SUBSYS HAS MOD1, MOD2, MOD3; EXPORTS PROC)
MOD: DO

DECLARE P PO NTER, W W\ORD,

PROC: PROCEDURE PUBLI C,

END PRCC,

P = @RQCC; CALL P; /* PO NTER nust be used */
W= .PROC, CALL W /* not allowed */
END MOD1;

2. When aprocedure that is not exported isindirectly activated, an OFFSET variable
must be used. Note that OFFSET variables do not range over the entire

microprocessor address space, but are restricted to offsets within the current code
segment. For example:

DECLARE P PO NTER, O OFFSET;

LPRCC: PROCEDURE; /* local */
END LPRCC;

P = @PRCC;, CALL P; /* not allowed */
O = .LPRCC, CALL O /* OFFSET nust be used */

250 Chapter 11 Compiler Invocation and Controls

MEDIUM
Form MEDI UM
Default SMALL
Type Primary

For PL/M-386, the MEDI UMcontrol is provided for PL/M-86 and PL/M-286
compatibility. The MEDI UMcontrol isinterpreted exactly like the SMALL control. For
more information, refer to the SMALL control entry in this chapter.

LARGE
Form LARGE
Default SMALL
Type Primary

The LARGE control is provided for PL/M-86 and PL/M-286 compatibility. The
LARGE control isinterpreted exactly like the COMPACT control in most cases. For
more information, refer to the COMPACT control entry in this chapter. When the
LARGE control is used in a PL/M-386 subsystem definition, it behaves differently
from the COVMPACT control. For more information about subsystems, see Chapter 13.

FLAT

The FLAT control is amember of the group of segmentation controls including
SMALL and COMPACT. Compiling with the FLAT control generates an object module
containing separate code, data, and stack segments, with constants included in the
code segment. The FLAT control overrides the RAMor ROMcontrol. Using the

- CONST | N CODE- or - CONST | N DATA- attribute for extended segmentation
definition does not result in an error when you specify the FLAT control; however,

- CONST | N CODE- isredundant and - CONST | N DATA- isignored when FLAT isin
effect.

Linking object modules compiled with the FLAT control produces the following
linked segments:

* A single code segment (CODE32) containing all the code segments of the object
modules

* A single data segment (DATA32) containing all the data segments of the object
modules

* A single stack segment (STACK) containing all the stack segments of the object
modules

PL/M-386 Programmer's Guide Chapter 11 251

Use the BLD386 FLAT control to map the three linked segments together to asingle
segment of up to 4 Gigabytes.

Since only one segment exists during run-time, all pointers are short (a 32-bit offset
with no selector).. Also, compiling the following code with the FLAT control does
not result in the semantic error generated when compiling this code with the ROM
control and any other segmentation control:

DECLARE B W\ORD;
DECLARE A WORD AT (@) DATA (10);

SUBTITLE

Form SUBTI TLE("subtitle")
Default No subtitle
Type General

The subtitle character sequence (truncated on the right to fit, if necessary) is printed
on the subtitle line of each page of listed output. Note that a subtitle specified on the
invocation line must be enclosed in quotation marks.

The maximum length for subtitle is 60 characters, but a narrow pagewidth may
restrict this number.

When a SUBTI TLE control appears before the first noncontrol line in the sourcefile,
it causes the specified subtitle to appear on the first page and all subsegquent pages
until another SUBTI TLE control appears.

A subsequent SUBTI TLE control causes a page gect, and the new subtitle appears on
the next page and all subsequent pages until the next SUBTI TLE contral.

SYMBOLS | NOSYMBOLS

252

Form SYMBCLS| NOSYMBOLS
Default NOSYMBOLS
Type Primary

The SYMBOLS control specifiesthat alisting of all identifiersin the PL/M source
program and their attributesis to be produced in thelisting file.

The NOSYMBOLS control suppresses such alisting.
Note that the SYMBOLS control cannot override a NOPRI NT control.

Chapter 11 Compiler Invocation and Controls

TITLE
Form TITLE("title")
Default TI TLE (" nodul enane")
Type Primary

The title character sequence, truncated on the right to fit, if necessary, is placed on
thetitle line of each page of listing output. Note that the character sequence for a
title must be enclosed in quotation marks when entered on the invocation line.

The maximum length for thetitle is 60 characters, but a narrow pagewidth may
restrict this number.

TYPE | NOTYPE
Form TYPE| NOTYPE
Default TYPE
Type Primary

The TYPE control specifies that the object module is to contain information on the
variable types output in symbol records. TYPE records provide a mechanism for
promoting type compatibility between subprograms. This information may be used
later for type checking when the program modules are combined, or by a debugger.

The NOTYPE control specifiesthat such type definitions are not to be placed in the
object module.

WORD32 | WORD16
Form WORD32| WORD16
Default WORD32
Type Primary

The WORD32| WORD16 control determines how the compiler interprets the unsigned
binary number and signed integer scalar types (as well as the built-ins that specify
these data types) in the code being compiled.

When compiling PL/M-286, PL/M-86, or PL/M-80 source code with the PL/M-386
compiler, there are several pointsto consider before accepting the default (WORD32)
or choosing WORD16. See Chapter 3 for a discussion of these points.

PL/M-386 Programmer's Guide Chapter 11 253

Table 11-4 lists the data types as interpreted by the compiler under WORD32 and
WORD16. The WORD16 control does not mean creating PL/M-286 code, but rather that
PL/M-386 data types are mapped to the equivalent PL/M-286 datatype. It affects
only the data types, it does not affect the operation of PL/M-386 functions.

Table 11-4. WORD32 | WORD16 Data Type M apping

Unsigned Binary Number WORD32

Data Types (default) WORD16
BYTE 8-hit 8-hit
HWORD 16-bit 8-bit
WORD 32-bit 16-bit
DWORD 64-bit 32-bit
QWORD 64-bit 64-bit
Signed Integer

Data Types WORD32 WORD16
CHARINT 8-bit 8-bit
SHORTINT 16-bit 8-bit
INTEGER 32-bit 16-bit
LONGINT 32-bit 32-bit

Note that all built-ins that specify data types are different for WORD16. Table 11-5
lists the WORD32| WORD16 mapping for these built-ins. For example, the HWORD
built-inis a 16-bit, unsigned binary number under WORD32, whereas under WORD16,
the 16-bit, unsigned binary type is WORD.

254 Chapter 11 Compiler Invocation and Controls

Table 11-5. WORD32 | WORD16 Built-in Mapping

WORD32 WORD16

(type conversions) (type conversions)
BYTE BYTE, HWORD
HWORD WORD

WORD DWORD

DWORD, QWORD QWORD

CHARINT SHORTINT, CHARINT
SHORTINT INTEGER
INTEGER LONGINT
BLOCKINPUT BLOCKINPUT
BLOCKOUTPUT BLOCKOUTPUT
MOVB MOVB, MOVHW
MOVRB MOVRB, MOVRHW
FINDB FINDB, FINDHW
FINDRB FINDRB, FINDRHW
INPUT INPUT, INHWORD
OUTPUT OUTPUT, OUTHWORD
SKIPB SKIPB, SKIPHW
SKIPRB SKIPRB, SKIPRWH
CMPB CMPB, CMPHW
SETB SETB, SETHW
BLOCKINHWORD BLOCKINWORD
BLOCKOUTHWORD BLOCKOUTWORD
MOVHW MOVW

MOVRHW MOVRW

FINDHW FINDW

FINDRHW FINDRW
INHWORD INWORD
OUTHWORD OUTWORD
SKIPHW SKIPW

SKIPRHW SKIPRW

CMPHW CMPW

SETHW SETW

PL/M-386 Programmer's Guide

continued

Chapter 11

255

Table 11-5. WORD32 | WORD16 Built-in Mapping (continued)

WORD32 WORD16

(type conversions) (type conversions)
BLOCKINWORD BLOCKINDWORD
BLOCKOUTWORD BLOCKOUTDWORD
MOVW MOVD

MOVRW MOVRD

FINDW FINDD

FINDRW FINDRD

INWORD INDWORD
OUTWORD OUTDWORD
SKIPW SKIPD

SKIPRW SKIPRD

CMPW CMPD

SETW SETD

XREF | NOXREF
Form XREF| NOXREF
Default NOXREF
Type Primary

The XREF control specifies that a cross-reference listing of source program identifiers
isto be produced in the listing file.

The NOXREF control suppresses the cross-reference listing.

Note that the XREF control cannot override a NOPRI NT control.

256 Chapter 11 Compiler Invocation and Controls

Program Listing

Sample Program Listing

During the compilation process, a listing of the source input is produced. Each page
of the listing carries a numbered page-header that identifies the compiler, prints a
time and date as designated by the host operating system, and optionally gives atitle
and a subtitle, and/or a date (see Figure 11-7).

Thefirst part of the listing contains a summary of the compilation, beginning with the
compiler identification and the name of the source module being compiled. The next
line names the file receiving the object code. The next line contains the command
used to invoke the compiler. The listing of the program itself is shown in Figure
11-7.

The listing contains a copy of the source input plus additional information. Two
columns of numbers appear to the left of the sourceimage. The first column
provides a sequential numbering of PL/M statements. (Note that the PL/M-386
compiler treats each new-line character as aline terminator; therefore, blank lines are
counted.) Error messages, if any, refer to these statement numbers. The second
column gives the block nesting depth of the corresponding statement.

Linesincluded with the I NCLUDE control are marked with an equal sign (=) just to
the left of the source image. If the included file contains another | NCLUDE control,
linesincluded by this nested | NCLUDE are marked with an =1. For yet another level
of nesting, =2 is used to mark each line, and so forth up to the compiler's limit of
nesting levels (see Appendix B). These markings make it easy to see where included
text begins and ends.

PL/M-386 Programmer's Guide Chapter 11 257

PL/ M 386 COWPI LER Stack Modul e date tine PACE 1

systemid PL/M 386 Vx.y COWPI LATI ON OF MODULE STACK
OBJECT MODULE PLACED I N st ack. obj
COWPI LER | NVOKED BY: pl n886 stack.src CODE XREF TI TLE(" Stack Mbdul e")

1
2

10

11
12

258

STACK: DG,

/* This nmodul e inplements a BYTE stack with
push and pop */

DECLARE S(100) BYTE,

/* Stack Storage */

T BYTE PUBLIC I NI TIAL(-1);

/* Stack |

ndex */

PPUSH: PROCEDURE (B) PUBLI C;

/* Pushes
DECLARE B
S(T: =T+1)

B onto the stack */
BYTE;
= B,

/* Increnment T and store B */

END PPUSH;

PPOP: PROCEDURE BYTE PUBLI C;

/* Returns val ue popped from stack */
RETURN S((T:=T-1)+1);

/* Decrenment T, return S(T+1) */

END PPOP;
END STACK;
/* Modul e

Chapter 11

ends here */

Figure 11-7. Program Listing

Compiler Invocation and Controls

Should a source line be too long to fit on the page in oneling, it is continued on the
following line. Such continuation lines are marked with a hyphen (-) just to the left
of the source image.

The CODE control can be used to obtain the assembly code produced in the trandlation
of each PL/M statement. Figure 11-8 shows the assembly code listing for the
program given in Figure 11-7. This code listing appearsin six columns of
information in a pseudo-assembly language format:

1. Location counter (hexadecimal notation)
Resultant binary code (hexadecimal notation)
Label field

Opcode mnemonic

Symbolic arguments

Comment field

o s~ WD

PL/M-386 Programmer's Guide Chapter 11 259

PL/ M 386 COWILER Stack Modul e

260

00000000
00000001

00000003
00000009
0000000B
00000011
00000014
00000017

0000001D
0000001E

00000024
00000025

00000027
0000002D
0000002F
00000035
00000037
0000003A
00000040
00000041

PPUSH
55
8BEC

8A0564000000
FECO
880564000000
OFB6CO
8A4D08
888800000000

5D
C20400
PPUSH

PPOP
55
8BEC

8A0564000000
FEC8
880564000000
FECO

0FB6CO
8A8000000000
5D

c3

PPOP

date tinme PAGE 2
ASSEMBLY LI STI NG OF OBJECT CODE

; STATEMENT # 5

PROC NEAR
PUSH EBP
MV EBP, ESP
. STATEMENT # 7
MV AL T
INC AL
MV T, AL
MOVZX EAX, AL
MV CL,[EBP].B
MV [EAX].S,CL
. STATEMENT # 8
POP EBP
RET 4H
ENDP
. STATEMENT # 9
PROC NEAR
PUSH EBP
MV EBP, ESP
. STATEMENT # 10
MV AL T
DEC AL
MV T, AL
INC AL
MOVZX EAX, AL
MV AL [EAX.S
POP EBP
RET
. STATEMENT # 11
ENDP

; STATEMENT # 12

Figure 11-8. Code Listing (continued)

Not all six of the columns will appear on all lines of the code listing. Compiler

generated labels (e.g., those that mark the beginning and ending of a DO WHI LE loop)

are preceded by an AT sign (@. The comments appearing on PUSH and POP
instructions indicate the stack depth associated with the stack instruction.

Chapter 11

Compiler Invocation and Controls

Symbol and Cross-reference Listing

Specifying the XREF or SYMBOLS control adds a summary of all identifier usagein
the program listing. Figure 11-9 shows the cross-reference listing of the program
givenin Figure 11-7. The addresses in ADDR have four leading zeros.

PL/ M 386 COWPI LER Stack Mdul e date time PAGE 3
CROSS- REFERENCE LI STI NG

DEFN ADDR SI ZE NAME, ATTRIBUTES, AND REFERENCES
5 0008H 1 B BYTE | N PROC(PPUSH) PARAMETER AUTOVATI C 6 7
9 0024H 30 PPOP PROCEDURE BYTE PUBLI C STACK=00000004H
5 0000H 33 PPUSH PROCEDURE PUBLI C STACK=00000008H
3 0000H 100 s BYTE ARRAY(100) 7* 10
1 0000H STACK. MODULE STACK=00000000H
3 0064H R BYTE PUBLIC I NI TI AL 7 7* 10 10*

Figure 11-9. CrossreferenceListing

Depending on whether the SYMBOLS or XREF control was used to request the
identifier usage summary, five or seven types of information are provided in the
symbol or cross-referencelisting. They are asfollows:

1. Statement number where the identifier was defined.
2. Relative address associated with the identifier.

3. Sizeof the object identified (in bytes).

4. Theidentifier.

5. Attributes of the identifier (including expansion for LI TERALLYs and scoping

information for local variables and parameters). These attributes reflect the
WORD32| WORD16 terminology of the sourcefile.

6. Statement numbers where the identifier was referenced (XREF control only).

7. Statement numbers where the identifier was assigned a value (XREF control
only).

PL/M-386 Programmer's Guide Chapter 11 261

262

A singleidentifier can be declared more than once in a source module (i.e., an
identifier defined twice in different blocks). Each such unique object, even though
named by the same identifier, appears as a separate entry in the listing.

The address given for each object is the location of that object relative to the start of
its associated section. The object's attributes determine which section is applicable.

Identifiersin the SYMBOLS or XREF listing are given in aphabetical order with the
following exception: members of structures are listed, in order of declaration,
immediately following the entry for the structureitself. Indentation is used to
differentiate between these entries.

The XREF listing differentiates between items 6 and 7 by adding the asterisk (*)
character to statement numbers where avalueis assigned. For example, if statement
17 reads asfollows:

I =1 + 1;

Thelist of statement numbersfor I would include 17 and 17*, indicating a reference
and an assignment in statement 17.

The AUTOVATI C attribute indicates that the identifier was declared as a parameter or
asalocal variable in a REENTRANT procedure and therefore is allocated dynamically
on the stack.

Chapter 11 Compiler Invocation and Controls

Compilation Summary

Following the listing (or appearing alone if NOLI ST isin effect) isacompilation
summary. Eight pieces of information are provided:

Code area size gives the size in bytes of the code section of the output module
(not including constants, if any).

Constant area size gives the size in bytes of the constant area. The constant area
will be included with either the code or data section in the output module,
depending on the specified compiler controals.

Variable area size gives the size in bytes of the data section of the output module
(not including constants, if any).

Maximum stack size givesthe size, in bytes, of the stack section allocated for the
output module.

Linesread gives the number of source lines processed during compilation.

Program warnings give the number of warning messages issued during
compilation.

Program errors give the number of error messages issued during compilation.

Dictionary summary gives the actual memory and disk space used by the
dictionary during compilation.

Figure 11-10 is an example of the compilation summary.

MODULE | NFORMATI ON:

CODE AREA Sl ZE = 00000042H 66D
CONSTANT AREA SI ZE = 00000000H 0D
VARl ABLE AREA SI ZE = 00000065H 101D
MAXI MUM STACK SI ZE = 00000008H 8D

12 LI NES READ
0 PROGRAM WARNI NGS
0 PROGRAM ERRORS

DI CTlI ONARY SUMVARY:

410KB MENMORY AVAI LABLE
8KB MEMORY USED (1%
OKB DI SK SPACE USED

END OF PL/M 386 COWPI LATI ON

Figure 11-10. Compilation Summary

[y

PL/M-386 Programmer's Guide Chapter 11 263

264 Chapter 11 Compiler Invocation and Controls

Sample Program 1 2

Introduction

This chapter discusses a sample program consisting of three modules named FREQ,
OPEN, and PRI NT. The purpose of this program isto illustrate the use of the PL/M
language. The program iswritten in PL/M-386 and compiled with the PL/M-386
compiler.

The program takes an input file, counts the uppercase and lowercase al phabetic
characters, and determines the percentage of use for each character. Thisis printed
either to the screen or, if oneis specified, to an output file. The program's output lists
the number of times each character is used (for uppercase, for lowercase, and for both
uppercase and lowercase), and the percentage of use for each character. The source
program listings are shown in Figures 12-1 through 12-3.

In addition to the main program modules (FREQ, OPEN, and PRINT), this program
also hastwo include files. The include files, defns.inc and udi.inc (see Figures 12-4
and 12-5), contain definitions that are used in the program modules. The defns.inc
include file consists of global variable definitions. The udi.inc include file consists
of the universal development system interface (UDI) definitions. The UDI
definitions are used for operating system interfaces (e.g., file manipulation). Figure
12-6 is an example of the program output.

The following sections describe the source code in each of the program modules.
The line numbers in the figures are not part of the source code; they have been added
to simplify the discussion of the source code.

FREQ Module
FREQisthe main module. The source codeis shown in Figure 12-1. Asindicated,

the line numbers in the figure have been added to simplify the discussion of the
source code.

The program lines that begin with adollar sign ($) are compiler control lines. Lines
that begin with adollar sign instruct the compiler and are not part of the source
program. In any position other than the first character (or the position specified with

PL/M-386 Programmer's Guide Chapter 12 265

~N o 0o b~

©

10
11
12
13

14
15
16
17
18
19
20
21
22
23

266

the LEFTMARG N control), the dollar sign is an insignificant character and can be
used as a separator to simplify the reading of variable names.

$DEBUG PW 75)
freq: DO

$1 NCLUDE (defns.inc)

$NOLI ST

[*** LI ST of UDI procedures is in OPEN. PLM ***/
$I NCLUDE (udi . i nc)
$LI ST

open$fil es: PROCEDURE EXTERNAL;
END open$fil es;

print $stats: PROCEDURE(arr$ptr, arr$l en) EXTERNAL;
DECLARE arr $ptr PO NTER;
DECLARE arr $l en WORD;
END print $st ats;

DECLARE buf (80) BYTE;

DECLARE consol e CONNECTI ON EXTERNAL;
DECLARE i BYTE;

DECLARE i nfile CONNECTI ON EXTERNAL;
DECLARE | freq(26) Freg_Struc;

DECLARE nunfsread BYTE;

DECLARE outfile CONNECTI ON EXTERNAL;
DECLARE quit$tine BYTE | NI TI AL(Fal se);
DECLARE st at us WORD;

DECLARE total WORD PUBLIC INITIAL (0);

Figure 12-1. Source Code for FREQ Maodule

Chapter 12 Sample Program

24
25
26

27

28
29
30
31
32
33
34
35
36

37
38

39
40
41
42
43

44

45

46

47

48

49

$EJECT

nmai n:

CALL open$files;

CALL init$real $mat h$uni t;

DOi = 0 to LENGTH(Ifreq);
Ifreq(i).let.low = O;
Ifreq(i).let.up = 0;

I freq(i).percent =
END;

0;

/*** Now, read the files ***/
read$file: DO WH LE (NOT quit$tine);
nunread = dq$read(infil e, @uf, LENGTH(buf), @t at us);
I F nuntsread <> LENGTH(buf) THEN quit$tinme = True;

DOi = 0 to nunfread;
total = total + 1; /*** Total keeps track of ALL
characters ***/
/*** Read, not just the letters. ***/
sh_which_letter:IF (buf(i) >="'A AND buf(i) <= 'Z') THEN
I freg(buf(i)-"A).let.up = Ifreq(buf(i)-'A).let.up + 1;
ELSE IF (buf(i) >='a AND buf(i) <= 'z') THEN
I freg(buf(i)-"a').let.low = Ifreq(buf(i)-"a').let.low +
1

END; /[*** Loop i = 0 to nunfread ***/
read$fil e: END;
stats:

CALL print$stats(@freq, LENGTH(Ifreq));

CALL dg$exit(0);

END freq;
Figure 12-1. Source Codefor FREQ Module (continued)

PL/M-386 Programmer's Guide Chapter 12

267

268

Line 1 specifies the DEBUG control and the pagewidth. The DEBUG control instructs
the compiler to collect debug information such as the statement number and relative
address of each source program module. PW(75) specifies an output page 75
characters wide.

Line 2 names the module and establishes the beginning of the module's DOblock. As
stated in Chapter 1, a module must begin with alabeled DO statement and end with an
END statement.

Lines 3 through 6 specify the include files to be used in the program module. Line 4
indicates to the compiler to not list anything until the L1 ST control is encountered,
which happens at line 7.

Line5isauser comment and will not be interpreted by the compiler. User comment
lines begin with a slash/asterisk (/ *) combination and end with an asterisk/slash (*/)
combination.

Lines 8 through 23 are the procedure and variable declarations used in the FREQ
module. Notethe EXTERNAL declarationsin lines 8 through 13. These procedures
are declared EXTERNAL, which means that the procedure is defined in another
module. The calling module must declare the procedure as EXTERNAL. The module
in which these procedures are defined must declare the procedures as PUBLI C.

The variable declarations (see lines 15, 17, and 20) are also EXTERNAL. The same
rules apply for variables as for procedures. The calling module must declare the
variable as EXTERNAL and the defining module must declare the variable as PUBLI C.
If the variable definition isincluded in the calling module, the definition must be
identical to the definition in the declaring module.

Line 18 declaresthel f r eq structure, which is declared in the def ns. i nc file (see
Figure 12-4). Line 21 declaresqui t $ti me asavariable (with the | NI TI AL
attribute) of type BYTE. In an initialization, the initialization attribute must be placed
after the variable attributes. Inline 23, t ot al isdeclared as avariable of type BYTE.
Note also the PUBLI C declaration. Thisindicates that this variable can be used by
other modules within the program (if it is declared EXTERNAL within the module
which usesit).

Line 24 specifies the beginning of a new page (used when the program listing is
printed).

The program begins at line 25. Line 26 callsthe open$fi | es procedure (declared
as EXTERNAL in line 8). This procedure opens the input file, and if oneis specified,
the output file. Line 27 calls the compiler built-in procedure,

i ni t$real $mat h$unit. Thiscall isrequired to initialize the REAL math facility
for subsequent operations.

Lines 28 through 32 consist of more initializations. These lines set (or reset) the
values of the structure variable used in the module. Freq_st ruc isan array of

Chapter 12 Sample Program

nested structures (see Chapter 4). Fr eq_st r uc isa 26 element array (one element
for each letter in the alphabet). Each element of thef r eq_st r uc array contains the
| et structure, which consists of aletter and a percent. Nested within thel et
structure is another structure (I ow and up). This structure holds the count of
uppercase and lowercase characters. To see how f r eq_st r uc isdeclared, refer to
Figure 12-4.

Lines 34 through 45 show an example of a nested DO block. With PL/M, DOblocks

can be nested up to 18 levels. Line 37 begins a second DO block within the DO block
that begins at line 34. The DOblock nested within the first DOblock ends at line 44.

The first DOblock ends at line 45.

Lines 34 through 36 use the UDI function, dg$r ead, to read from afile (i nfi | e).
A specified number of characters are read from thefile into an array. The array is
buf and the number of charactersread is LENGTH(buf). The value of buf was set
inline 14. LENGTH isabuilt-in function (see Chapter 11) that returns the number of
elementsin an array. The UDI function, dg$r ead, returns the number of characters
read (nuntr ead) and an error code (st at us).

The nested loop (lines 37 through 44) keepstotals for all the charactersread, the
uppercase letters read, and the lowercase characters read. This entire loop repeats
until the number of charactersread in from the input fileislessthan 80 (this indicates
that the input file is empty).

Line 47 callsthe external procedure pri nt $st at s. This procedure is defined in the
PRI NT module. Line 48 callsaUDI procedure, dg$exi t . Finaly, line 49 ends the
FREQ module.

OPEN Module

The OPEN module takes care of the magjority of the file-handling procedures for the
program. This module makes extensive use of the UDI procedures provided by the
run-time support library. The source codeis shown in Figure 12-2. Note that the line
numbers in the figure are not part of the source code, nor are they the line numbers
that the compiler would assign. The line numbers have been added to simplify the
discussion of the source code.

PL/M-386 Programmer's Guide Chapter 12 269

10
11

12
13

14
15
16
17
18
19
20
21

22
23

24
25
26
27
28
29

270

$DEBUG PW 75)
open: DO,

$NOLI ST
$1 NCLUDE (defns.inc)
$LI ST

$EJECT
$1 NCLUDE(udi . i nc)

$EJECT

DECLARE consol e CONNECTI ON PUBLI C;
DECLARE i nfile CONNECTI ON PUBLI C;
DECLARE outfil e CONNECTI ON PUBLI C,

DECLARE NeedFile(*) BYTE INITIAL(' Enter input file name: ');
DECLARE QpenError(*) BYTE INITIAL (' Error opening input
file' ,CR LF);

open$fi |l es: PROCEDURE PUBLI C;
DECLARE del i m BYTE;
DECLARE consol e$i n CONNECTI ON;
DECLARE buf fer(80) BYTE;
DECLARE st at us WORD;
DECLARE i n$buf (81) BYTE;
DECLARE i BYTE;
DECLARE nunfsread BYTE;

consol e = dq$create(@4,':CO "), @tatus);
CALL dg$open(consol e, WiteOnly, 0, @tatus);

/*** Process the command line. It consists of three parts,
1) the program nane (If.exe)
2) the input file name, if this is not present then
ask for it
3) the output file nane, if this is not present then
the output goes to the console ***/

Figure 12-2. Source Code for OPEN Maodule

Chapter 12 Sample Program

30
31
32

33
34
35
36
37
38
39

40

41
42
43
44
45
46
47

48
49
50
51

52

53
54
55
56
57

58
59

/*** Read past the program nanme ***/
del i m = dg$get $ar gunent (@uf f er, @t at us) ;
/*** Find out nane of the input file ***/

I F delim= CR THEN
DG,
/*** No input file specified, ask for it ***/

CALL dg$write(consol e, @NeedFi | e, LENGTH(NeedFi | €), @t at us) ;
consol e$in = dg$attach(@4,':Cl:'), @tatus);
CALL dg$open(consol e$i n, ReadOnl y, 0, @t at us) ;
sch001: nuntread =

dq$r ead(consol e$i n, @ n$buf , LENGTH(i n$buf), @t at us) ;
CALL dg$cl ose(consol e$i n, @t at us) ;

/*** Convert the read in buffer to the infile buffer ***/
sh_infile:buffer(0) = nun$read;
DO i = 0 to nunfread;
IF (in$buf (i) <> CR) AND (in$buf(i) <> LF)
THEN buffer(i+1) = in$buf(i);
ELSE
buffer(0) = buffer(0) - 1; /*** Adjust count for
CR/LF ***/
END; /*** End of DO loop to Convert buffer ***/
END;
ELSE
del i m = dqg$get $ar gunent (@uf f er, @t at us) ;

/*** END; get file nane to process ***/

[*** Qpen input file ***/

infile = dg$attach(@uffer, @tatus);
CALL dg$open(infile, ReadOnly, 2, @&t atus);
| F status <> E$OK THEN DG

CALL dg$write(consol e, @penError, LENGTH(OpenError),

@t atus);

CALL dg$exit(1);

END; /** Status is not ok **/

Figure 12-2. Source Code for OPEN Module (continued)

PL/M-386 Programmer's Guide Chapter 12

271

60 /*** Find out if an output file was specified. |If so, ***/

61 /*** open it, if not use the console output ***/
62 I F delim= CR THEN

63 outfile = consol e;

64 ELSE DG,

65 del i m = dg$get $ar gunent (@uf f er, @t at us) ;

66 outfile = dg$create(@uffer, @tatus);

67 CALL dg$open(outfile, WiteOnly, 2, @t atus);

68 END;

69 END open$files;
70 END open;
Figure 12-2. Source Code for OPEN Module (continued)

272 Chapter 12 Sample Program

Line 1 instructs the compiler to collect debug information and sets the page width for
printed output. Line 2 names the module and establishes the beginning of the
module's DOblock. Lines 3 through 8 specify the inclusion of the program'sinclude
files, turn the listing function on and off, and specify afew new pages for printed
output ($EJECT).

Lines 9 through 11 define and declare some PUBLI C variables. Because these
variables are declared PUBLI C, they can be used in another module. The calling
module must declare the variable as EXTERNAL. The variable definition isincluded
in the calling module, and it is the same as the definition in the defining module.

Lines 12 and 13 are error messages to be used by the OPEN module if the necessary
information is not included in the invocation line (which causes an error). Note the
use of the asterisk in each of theselines. The asterisk is used as an implicit
dimension specifier. Theimplicit dimension specifier can be used when the size of
the array is either unknown or insignificant. Inthisinstance, the size of the array is
unknown. The implicit dimension specifier in lines 12 and 13 specifies that the
NeedFi | e array and the OpenEr r or array will have the same number of elements as
the value list (the number of charactersin the message).

Line 14 beginsthe open$f i | es procedure. This procedure isdeclared asPUBLI C
(it is called by the FREQ module) and continues until the end of the module (line 69).

Lines 22 and 23 get and open a connection with the console using predefined UDI
procedures. Note the use of the @operator in these two lines. The first @operator in
line 22 allocates storage for the constants 4 and : CO . The other @operators are for
location references. This means that the value of the reference (e.g., the value of

@t at us) isthe actual run-time location of the variable.

Lines 31 through 51 use the UDI procedure, dg$get $ar gunent , to parse the input
line. Line 31 getsthefirst part of the command line, as well asthe delimiter used to
separate this part of the command line from the next part (if thereisany). Line 33
teststhe delimiter. If the delimiter is a carriage return then lines 34 through 49 are
processed. Lines 34 through 49 request afile name. If the delimiter is not a carriage
return then dg$get $ar gurment iscalled again. Thisroutineisalso called by lines 62
through 68 to determine whether the program output should go to afile or to the
console.

Line 31 passes the invocation line to the following | F/ THEN/ ELSE construct (lines
33 through 51). Thel F/ THEN ELSE construct checks for an input file name. If no
input file is specified, line 36 uses the NeedFi | e string declared in line 12. This
prompts the user to enter an input file name. If noinput file name is specified in
response to the prompt, the program aborts. Otherwise, the string is converted as
discussed in the preceding paragraph.

PL/M-386 Programmer's Guide Chapter 12 273

Lines 43 through 48 convert the file nameto a UDI call.
Lines 50 and 51 are the ELSE clause of | Fdel i m= CR.

Lines 53 through 59 open the input file. Lines 62 through 68 open an output file, if
oneis specified. Otherwise, the program datais sent to the console.

Line 69 is the END statement for the open$f i | es procedure and line 70 is the END
statement for the OPEN module.

PRINT Module

The PRI NT module performs the program calculations and prints the information
(either to the console or to the specified output file). The source codeis shownin

Figure 12-3.

274 Chapter 12 Sample Program

o 01~ W N -

o

10
11
12
13

14
15
16
17
18
19
20

21
22
23
24

25
26
27
28

29
30
31
32
33
34
35
36

PL/M-386 Programmer's Guide

$DEBUG PW 75)
print: DO

$NOLI ST

$1 NCLUDE (defns.inc)
$I NCLUDE (udi . i nc)
$LI ST

DECLARE BLANK$OUTSLI NE LI TERALLY
"DOj = 0 TO LENGTH(line);line(j) = SPACE; END ;
DECLARE LETTER LI TERALLY ' 3';
DECLARE LOVWER LI TERALLY '24';
DECLARE PCT LI TERALLY ' 33';
DECLARE SUM LI TERALLY ' 8';
DECLARE UPPER LI TERALLY '16';

DECLARE out file CONNECTI ON EXTERNAL;
DECLARE topline(*) BYTE I NI TI AL
(' LETTER TOTAL UPPER LOWER %', CR, LF);
[** (A 00000 00000 00000 000. 0
[** (123456789 123456789 123456789 123456789
DECLARE total WORD EXTERNAL;
DECLARE total $str (5) BYTE INITIAL (' TOTAL');

i nt 2asc: PROCEDURE(nunber, st g$ptr, count) BYTE;
DECLARE nunber WORD;
DECLARE st g$ptr PO NTER;
DECLARE count BYTE;

DECLARE i BYTE, j BYTE;

DECLARE max DWORD;

DECLARE string BASED stg$ptr (1) BYTE;
DECLARE t npst g(10) BYTE;

max = 1;

DOi =1 TO count;
max = 10 * nmax;
END;

max = max - 1;

DOi = 0 TO LAST(tnpstg);
tnpstg(i) = SPACE;
END;

Figure 12-3. Source Codefor PRINT Module

123456789 ***/

Chapter 12

275

37 | F nunber <= max THEN DO,

38 i =0;

39 | oop:

40 tnpstg(i) = (nunber MOD 10) " '0';
41 =0 "1

42 nunmber = nunber/ 10;

43 | F nunber O THEN GOTO | oop;

44 DOj =0 TO count;

45 string(count-j) = tnpstg(j);
46 END;

47 END;

48 ELSE DO

49 DOi = 0 to count;

50 string(i) ="'*";

51 END;

52 END;

53 RETURN(i) ;

54 END i nt 2asc;

55 real 2asc: PROCEDURE(nunber, st g$ptr, count);

56 DECLARE nunber REAL;

57 DECLARE st g$ptr PO NTER;

58 DECLARE count WORD;

59 DECLARE i BYTE, | BYTE;

60 DECLARE i nt $l en BYTE;

61 DECLARE string BASED stg$ptr(1) BYTE;

62 DECLARE t npnum DWORD;

63 DECLARE t npst g(10) BYTE;

64 /*** Convert the nunber to an | NTEGER to convert
it, assune one ***/

65 deci mal place ***/

66 t npnum = DWORD(nunber *10. 0) ;

Figure 12-3. Source Codefor PRINT Module (continued)

276 Chapter 12 Sample Program

67
68

69
70
71
72
73
74
75

76
7

78
79
80
81
82
83
84
85
86
87
88

89

90

91
92
93
94

95
96

97

98
99

int$len = int2asc(tnpnum @ npstg, LAST(tnpstg));
IF int$len = 1 THEN DO /*** Handl e the case where
t he nunber ***/
/[*** is less than 1.0 ***/

int$len = 2;
tnpst g(LAST(tnpstg)-1) = '0";
END;
DOi =0 TOint$len-2;
string(count-i) = tnpstg(LAST(tnpstg)-i);
END;

string(count-int$len) ="'.";
string(count-int$len-1) = tnpstg(LAST(tnpstg)-int$len+tl);

END r eal 2asc;
$EJECT
print $stats: PROCEDURE (arr$ptr, arr$len) PUBLIC,
DECLARE arr$ptr PO NTER;
DECLARE arr $l en WORD;
DECLARE array BASED arr$ptr(1) Freqg_Struc;
DECLARE i BYTE, | BYTE;
DECLARE | i ne(50) BYTE;
DECLARE st at us WORD;
DECLARE t nmp BYTE;
DECLARE ii BYTE;

call dg$wite(outfile, @opline, LENGTH(topline), @tatus);

printlines:DOii = 0 TO arr$len-1;

BLANK$OUTSLI NE;
line(LETTER) = ii + "A';

[*** Get the total and convert nunmber to ascii ***/
tnp = int2asc (array(ii).let.low + array(ii).let.up),
@ine(SUM, 5);
tnp = int2asc (array(ii).let.low, @ine(LOVER), 5);
tnp = int2asc (array(ii).let.up, @ine(UPPER),5);

array(ii).percent = REAL((array(ii).let.low) +
(array(ii).let.up)) /

REAL(total) * 100.0;
CALL real 2asc (array(ii).percent, @ine(PCT),5);

Figure 12-3. Source Codefor PRINT Module (continued)

PL/M-386 Programmer's Guide Chapter 12

277

100
101

102
103
104
105
106
107
108
109

110

111

278

line(LAST(line)-1) = CR;
line(LAST(line)) = LF;

CALL dg$write(outfile, @ine, LENGTH(I i ne), @t at us);
END printlines; [*** print | oop ***/
BLANKSOUTSLI NE;
DOi = 0 TO LAST(total $str);
line(LETTER-2"i) = total $str(i);
END;

tnp = int2asc(total, @ine(SUM,5);

call dg$write(outfile, @ine, LENGTH(Iine), @t at us);

END print $st at s;

END print;

Figure 12-3. Source Codefor PRINT Module (continued)

Line 1 instructs the compiler to collect debug information and sets the page width for
printed output. Line 2 names the module and establishes the beginning of the
module's DOblock. Lines 3 through 6 specify the inclusion of the program'sinclude
files and turn the listing function on and off.

Lines7 through 13 areagroup of I i t er al | y definitions; each one creates an
alternate name for a sequence of characters. Lines7 and 8 declare

BLANK$OUTS$LI NE as the alternate name for the DO loop used to blank out the output
line buffer. Additionaly, after line 13, the number 16 will reference UPPER (for
uppercase character). Thisisauseful function to eliminate keystrokes, to make the
program more readable, and to declare quantities that may be fixed in one module,
but subject to change in another module.

Lines 14 through 20 contain more declarations, as well as the header string for the
output (line 16).

Lines 21 through 54 perform an integer-to-ASCI| trandation. Lines 55 through 78
convert real numbersto ASCII characters.

Chapter 12 Sample Program

Line 80 isthe beginning of the pri nt $st at s procedure. Thepri nt $st at s
procedure is called by the FREQ module, therefore it is declared PUBLI Cin this
module. Note the based variablein line 83. Inthisinstance, the location of arr ay is
based on the address of ar r $pt r, which is passed into the pri nt $st at s procedure.
The size of the array is unknown (except through the parameter). The 1 enclosed in
parentheses enables the use of ar r $pt r as an array (any number can be used).

Line 89 callsaUDI procedure that writes to an external connection declared in the
OPEN module. Note the use of BLANK$SOUTSLI NE in line 91.

Lines 90 through 103 are a DOloop that is repeated for each letter in the alphabet.
For each character, thel i ne(LETTER) array isfilled with the letter, the total, the
total uppercase, the total lowercase, and the percent. Thisinformation isthen sent to
the specified output device (the console or afile).

Lines 93 through 96 call the procedure to convert the total into ASCII characters.
Lines 97 and 98 figure the percentage of use for each character. Line 99 callsthe
procedure to convert the percentage to ASCI| characters. Lines 100 and 101 insert a
carriage return and aline feed in the console display or in the output file.

Line 110 endsthepri nt $st at s procedure and line 111 ends the PRI NT module.

PL/M-386 Programmer's Guide Chapter 12 279

Include Files

As stated earlier, there are two include files with this program (see Figures 12-4 and

12-5).

DECLARE DCL LI TERALLY ' DECLARE';

DCL LIT LI TERALLY '
DCL CR LI TERALLY
DCL LF LI TERALLY
DCL True LI TERALLY
DCL Fal se LI TERALLY
DCL Freq_Struc LI TERALLY

s

LI TERALLY" ;

" ODH ;
" OAH ;

' OFFH ;
' 000H ;

" STRUCTURE (| et STRUCTURE

(I ow WORD, up WORD),
percent REAL)';

SPACE LI TERALLY ' 020H ;

Figure 12-4. Include File -- defns.inc

Figure 12-4 isthe defns.inc file. It contains definitions for terms used in common by
all of the modules in the program (excluding the UDI definitions). Note the
declaration of a structure in thisinclude file (Freq_Struc). This structureisused in
the PRINT module and the FREQ module. This structure declaration illustrates
several levels of nesting. Structures can be nested up to 32 levels.

Figure 12-5 isthe udi.inc file. It contains UDI definitions that are used throughout
the modules. The UDI isa predefined set of procedure calls that enables use of
operating system functions.

280 Chapter 12

Sample Program

DECLARE CONNECTION literally 'WORD ;
DECLARE ReadOnly LI TERALLY '1';
DECLARE WiteOnly LITERALLY '2';
DECLARE E$OK LI TERALLY ' OH ;

dg$att ach: procedure (pat h$p, except $p) CONNECTI ON ext er nal ;
decl are path$p pointer; declare except$p pointer;
end dg$attach;

dg$cl ose: procedure (aftn, exception$ptr) external;
decl are aftn CONNECTI ON, exception$ptr pointer;
end dg$cl ose;

dg$cr eat e: procedure (pat h$p, excepti on$ptr) CONNECTI ON ext ernal ;

decl are (path$p, exception$ptr) pointer;
end dg$create;

dg$exi t: procedure (conpl eti on$code) external;
decl are conpl eti on$code wor d;
end dg$exit;

dg$get $ar gurmrent : PROCEDURE (ar gptr, exptr) BYTE EXTERNAL;
decl are arg$ptr PO NTER, ex$ptr PO NTER
END dg$get $ar gunent ;

dg$open: procedure (aftn, node, nun$buf, excepti on$ptr) external;
decl are aftn CONNECTI ON, exception$ptr pointer;
decl are (node, nun$buf) byte;
end dg$open;

dqg$r ead: PROCEDURE(af t n, buf $pt r, count, ex$ptr) WORD EXTERNAL;
decl are aftn CONNECTI ON;
decl are buf $ptr PO NTER;
decl are count WORD;
decl are ex$ptr PO NTER
END dqg$r ead;

dg$write: procedure (aftn, buffer, count, exception$ptr) external;
decl are aftn CONNECTI ON;
decl are count word;
decl are (buffer, exception$ptr) pointer;
end dg$write;

Figure 12-5. Include File -- udi.inc

[y

PL/M-386 Programmer's Guide Chapter 12

281

282 Chapter 12 Sample Program

Extended Segmentation Models

Overview

Program segmentation is the division of a program into memory segments. Itisa
technique used to optimize the code produced by the compiler. The segmentation
controls (COMPACT, LARGE, MEDI UM SMALL, and FLAT) manage program
segmentation by defining the physical relationship in memory of a program's code,
data, constants, and stack. They determine which (if any) segments get combined.
For example, specifying the SMALL segmentation control for a program module
locates all of the modul€'s code, data, constants, and stack in two segments, CODE and
DATA. When the program's modules are combined, sections from the separately
compiled modules are combined into segments according to the specified
segmentation controls. This optimizes code because references to locations in the
same memory segment are more efficient.

Extended segmentation models are a super-set of the segmentation controls. The
extended segmentation models (which consist of the SMALL, COVPACT, and LARGE
subsystems) provide enhanced program speed and aid in the construction of large
programs. An extended segmentation model consists of a number of subsystems. A
subsystem is a collection of program modules that use the same segmentation
controls. A program is made up of one or more subsystems. With subsystems,
program modul es that are compiled with different ssgmentation controls can be
combined.

This chapter defines the use of extended segmentation models, and contains the
following sections:

* Introduction

e Segmentation controls architecture overview
e Using subsystems

e Syntax

e Exporting procedures

e Largematrix example

PL/M-386 Programmer's Guide Chapter 13 283

Introduction
Extended segmentation models provide the following programming advantages:
» Efficient use of memory.
e Accessto the microprocessor's segmented architecture.
e Storage reduction for external references to pointers and code.
» Increased program execution speed for intersegment calls and data access.

Additionally, to simplify the development of large programs, the segmentation
controls can be used to partition the program into a collection of related subsystems.

Partitioning a large program into a series of subsystems isolates code references
within the same segment. The compiler processes each program module
individually, assigning code, data and stack segments for each module (according to
the specified segmentation control). Asasource file istrandated, the compiler
generates a STACK segment for the program stack, as well as a DATA segment for the
program data and a CODE segment for the program's executable code. When the
program modul es are combined, the CODE, DATA and STACK segments from all of the
individual program modules are combined. Use of the segmentation controls ensures
that the segment names generated by the compiler are combined according to the
overall structure of the program.

A subsystem is either open or closed. An extended segmentation model can have
only one open subsystem, but any number of closed subsystems.

An open subsystem does not have a name and claims the program modules that are
not claimed by another subsystem. Effectively, a program that uses only the
segmentation controls is an open subsystem. Modules can be added to the open
system without having to change the subsystem definition.

A closed subsystem has a name and, optionally, alist of program modules used in the
subsystem. To add amodule to a closed subsystem, the subsystem definition must be
changed.

284 Chapter 13 Extended Segmentation M odels

Segmentation Controls Architecture Overview

The segmentation controls described in Chapter 11 define the physical relationship in
memory of program code, data, constants, and stack during program execution.
When aPL/M source file is compiled, an object module conforms to a particular
extended segmentation model.

There are three extended segmentation models: SMALL, COMPACT, and LARGE. For
Intel 386 and Intel 486 microprocessors, each segment can be as large as 4G bytes.

There are two submodels within each model: RAMand ROM Specifying RAMplaces
the program constants in the DATA segment. Specifying ROMplaces the program
constants in the CODE segment.

Tables 13-1 and 13-2 define the memory partitions and the placement of pointersin
the various architectural models available with the segmentation controls. Table 13-1
shows how memory is partitioned. Table 13-2 defines the register addresses and the
pointer values. Table 13-3 defines the register addresses and the pointer values for
the Intel 386 and I ntel 486 microprocessor-specific ESregister. Note that the

PO NTER variable value for these microprocessors, when using the SMALL ROM
extended segmentation controls, is 6 bytes.

PL/M-386 Programmer's Guide Chapter 13 285

Table 13-1. Segmentation Controlsand Memory Partitions

Segment Name
Control CODE DATA STACK
SMALL RAM code data
constants
stack
SMALL ROM constants data stack
code
COMPACT RAM code data stack
constants
COMPACT ROM constants data stack
code
MEDIUM RAM* separate CODE data
segment for each constants
module's code stack
MEDIUM ROM* separate CODE data
segment for each stack
module's code
and constants
LARGE RAM* separate CODE separate DATA stack
segment for each segment for
module's code each module's
data and
constants
LARGE ROM* separate CODE separate DATA stack
segment for each segment for each
module's code module's data
and constants

The Intel386 and Intel486 microprocessors use only the SMALL and COMPACT
segmentation controls. For the segmentation controls (not subsystems), MEDIUM is
equivalent to SMALL and LARGE is equivalent to COMPACT.

286 Chapter 13 Extended Segmentation M odels

Table 13-2. Segmentation Controls, Register Addresses and Pointer Values

Register Address

Pointer

Control CS DS SS Variable Value
SMALL CODE seg. DATA seg. DATA seg. 4-byte offset
RAM Offset-reference Offset-reference Has same value only

relative to DS relative to DS as DS

Offset-reference

SMALL CODE seg. DATA seg. DATA seg. 6-byte selector-
ROM Constant reference Offset reference Has same value offset

requires selector- as DS

offset containing CS Offset-reference

value and offset

within CODE

segment Code

reference requires

offset-reference

relative to DS
COMPACT CODE seg. DATA seg. STACK seg. 6-byte
RAM Selector-offset Selector-offset Selector-offset selector-offset

reference reference reference
COMPACT CODE seg. CODE seg. STACK seg. 6-byte
ROM Selector-offset Selector-offset Selector-offset Selector-offset

reference reference reference
MEDIUM Current CODE seg. DATA seg. DATA seg. 6-byte
RAM Selector-offset Selector-offset Selector-offset Selector-offset

reference reference reference

Updated when

PUBLIC or

EXTERNAL

procedure is

activated

PL/M-386 Programmer's Guide

Chapter 13

continued

287

Table 13-2. Segmentation Controls, Register Addresses and Pointer Values

(continued)

Register Address

Pointer
Control CS DS SS Variable Value
MEDIUM Current CODE seg. DATA seg. DATA seg. 6-byte
ROM Selector-offset Selector-offset Selector-offset Selector-offset
reference Updated reference reference
when PUBLIC or
EXTERNAL
procedure is
activated
LARGE Current CODE seg. Current DATA STACK seg. 6-byte
RAM Selector-offset seg. Selector- Selector-offset Selector-offset
reference Updated offset reference reference
when PUBLIC or Updated when
EXTERNAL PUBLIC or
procedure is EXTERNAL
activated procedure is
activated
LARGE Current CODE seg. Current CODE STACK seg. 6-byte
ROM Selector-offset seg. Selector- Selector-offset Selector-offset
reference Updated offset reference reference

when PUBLIC or
EXTERNAL
procedure is
activated

Updated when
PUBLIC or
EXTERNAL
procedure is
activated

Thevauesgivenin Tables 13-1 and 13-2 areidentical for Intel386 and Intel 486
microprocessors. Additionally, these microprocessors have the ES register address.
Table 13-3 states the values for the ES register.

288

Chapter 13

Extended Segmentation M odels

Table 13-3. Intel386 and I ntel486 Micr oprocessor -specific ES Register Segmentation
Controls, Register Addressesand Pointer Values

Control ES Register Address POINTER Variable Value

SMALL RAM DATA seg. 4-byte offset only
Offset reference

SMALL ROM DATA seg. 6-byte selector offset
Offset reference

COMPACT RAM DATA seg. 6-byte selector-offset
Selector-offset reference

COMPACT ROM DATA seg. 6-byte selector-offset
Selector-offset reference

The SMALL RAMsegmentation control isthe most efficient. Because all of the code
resides in one segment, jumps and calls are always within the same segment
(intrasegment). However, the SVMALL RAMsegmentation control provides less
protection and cannot be used to pass pointersto library procedures unless the library
procedureisalso a SMALL RAMMOodel.

Use the COVPACT segmentation controls (COVMPACT RAMand COVPACT ROM for
separate management of the code, data, and stack, or to improve segment-limit
protection. To reference stack-based variables, the COMPACT segmentation controls
use selector-offset references. Thisis less efficient than using offset-only references.
However, data and constant references within a COVPACT segmentation control
module are within the same segment (intrasegment). Note that if a COVPACT
program must pass a data address to a procedure in a different subsystem, it must use
a selector-offset reference.

Using Subsystems

Subsystems offer an efficient way to manage programs with large amounts of data, to
share data between program modules, and to communicate with other programs.

For example, subsystems are useful when several programmers are each writing a
separate module for a highly structured program in which sharing data between
modules is accomplished with parameter passing, by value only. To maintain the
integrity of each section's data requires that each section have its own DATA segment.
In thisway, code in one module of the program cannot mistakenly destroy data
belonging to another section of the program. In thisinstance, each module could be a
COVPACT subsystem, with its own CODE and DATA segments.

PL/M-386 Programmer's Guide Chapter 13 289

290

As another example, a program performing 1/0O usually requires operating system
support routines. In many cases, the operating system will operate at a higher
protection level than the application program. Thus, operating system procedure calls
are intersegment calls. The application program views the operating system asa
separate subsystem. Usually, operating system interface libraries are supplied to
application programmers; these libraries perform the inter-subsystem communication
details. If aprogram needs to make a direct operating system call without using a
presupplied library, the program itself must define the necessary subsystem
environments at compile time.

It is usually more efficient to structure alarge program with subsystems. With
subsystems the code and data can be partitioned into manageable pieces bigger than
one module. Within each subsystem, calls and jumps are near (4 byte offset),
references can be offset only, and the data of each subsystem is protected from being
overwritten by other subsystems. Calls and jumps between subsystems are still far,
and references between subsystems need to be selector-offset. In genera, a
program's structure is such that it is possible to break the program into pieces with a
minimum number of intersegment calls, jJumps, and references.

For example, consider a program consisting of 10 modules, mod_1 through nod_10.
Modules 1 through 3 deal with input and initial processing. Modules 4 through 8 do
the main data processing. Modules 9 and 10 output the data. The following figure
illustrates the structure of the program:

data data
flow flow
input «» «» «»
INPUT PROCESS OUTPUT
(mod_1 (mod_4 (mod_9
mod_2 mod_5 mod_10)
mod_3) mod_6
mod_7
mod_8)

Chapter 13 Extended Segmentation M odels

Thetotal code space required by this program exceeds 64K bytes, and the total data
space also exceeds 64K bytes. The LARGE segmentation control can be used. This
control provides each module with its own CODE and DATA segment. For this
example, thisresultsin atotal of 21 segments (10 CODE, 10 DATA, and 1 STACK). For
the LARGE segmentation control, all calls and jumps are far, and all intermodule
references must be through selector-offset PO NTERs.

If, for example, COVPACT subsystems are used instead of the LARGE segmentation
control, modules 1 through 3 can form one subsystem, which you could call

SUB_| NPUT. Modules 4 through 8 can form subsystem SUB_PROCESS. Finally,
modules 9 and 10 can form subsystem SUB_OQUTPUT. The number of segments has
been reduced to seven: 3 CODE, 3 DATA, and 1 STACK. Since most of the calls,
jumps, and references now take place within only one of the subsystems, the program
is much more efficient. The only far calls and jumps, and the only selector-offset
references needed are those in the interfaces between the subsystems.

A typical program does not require subsystems. The code space of 4 Gigabytes and
the data space of 4 Gigabytesis quite sufficient for most programs. However,
consider a program that processes a large amount of data such as a 10x1,000,000,000
REAL matrix. A REAL scalar consists of 4 bytes, so the total memory needed is 40
billion bytes. Rows could be used to partition the matrix. Each row would be 4
billion bytes, which would fit into a single DATA segment.

Ten COMPACT subsystems (named ROM, RO2, etc.) could be created, each
containing a 1-billion element REAL array. Proceduresto store and retrieve particular
matrix elements can be written and called from the normal matrix processing code.
An example of such aprogram is shown later in this chapter.

It isnot just dividing a program into subsystems that increases its efficiency. If all
the even numbered modules had been placed in one subsystem, for instance, and all
the odd numbered ones into another, the efficiency of the program would not have
improved asit did when the modules were grouped into subsystems according to the
logical structure of the program.

PL/M-386 Programmer's Guide Chapter 13 291

Note also the following points:

1. Not al subsystems must use the same segmentation control. For instance, if
SUB_PROCESS in the preceding example is small enough, it could be a SMALL
subsystem.

2. If aSMALL subsystem is mixed with subsystems using other segmentation
controls, the main program must be in SMALL. Thisis because anything
compiled in SMALL assumesthat DS and SS areidentical. Thiswill be so only if
the main program is SMALL. Noticethat in this case, the STACK segment
resulting from the COVPACT and LARGE subsystems will not be used, since the
stack of the main program isin the combined DATA- STACK segment of the
SMALL model.

3. SMALL RAMsubsystems have the limitation that the SMALL segmentation control
uses short (offset only) pointers. A SMALL RAMsubsystem cannot receive a
pointer from another subsystem, because it cannot save the selector portion. A
SMALL RAMsubsystem can, however, pass a pointer to a subsystem that is not
SMALL RAM because its own DSis known to it. However, a SVALL RAM
subsystem cannot pass a pointer (which pointsto a procedure), since DSis
assumed as the selector to al pointers.

4. MEDI UMis a segmentation control only, not an extended segmentation model.

Later sections describe the memory layouts of programs using the standard
segmentation controls: FLAT| COVPACT| LARGE| MEDI UM SMALL. To understand the
memory layouts of programs structured with subsystems, it is necessary to make the
distinction between compiling modules and combining modules into a program.

The compiler compiles only one module at atime. When modules are combined into
aprogram, many CODE, DATA and STACK segments, which were generated during
separate compilations, are combined. When combining program modules, all
segments with the same name are combined. The segmentation controls work by
controlling the names of the segments generated by the compiler. This ensures that
the segment names will be combined as desired when the modules are combined into
aprogram.

The standard SMALL segmentation control causes the compiler to name the CODE
segment CODE, and the DATA- STACK segment DATA. Since under the standard

SMALL model all CODE segments have the same name, and all DATA- STACK segments
have the same name, they are combined when the modules are combined.

292 Chapter 13 Extended Segmentation M odels

A module belonging to a SMALL subsystem, on the other hand, takes the name of its
CODE segment from the name of the subsystem. The name of its DATA- STACK
segment is still DATA. Thus, a SMALL subsystem named SUB1 contains one CODE
segment named SUB1_ CODE, and one DATA- STACK segment named DATA. A SMALL
subsystem named SUB2 contains one CODE segment named SUB2_ CODE, and one
DATA- STACK segment named DATA. When the program modules are combined, all
segments with the same name are combined.

The memory layout of the loaded program containing the two subsystems SUB1 and
SUB2 isasfollows (it is assumed that both subsystems are SMALL RAM):

HIGH SUB1 & SUB2
CODE CODE PROGRAM
SUB1_CODE SUB2_CODE STACK
DATA
PROGRAM PROGRAM SEGMENT
CODE CODE SUB1 & SUB2
OF OF PROGRAM
SUBSYSTEM SUBSYSTEM DATA &
SUB1 SuUB2 CONSTANTS
SS
.. CS LOW ... DS

Note that a program using the MEDI UM segmentation control is equivalent to a
program in which each module is declared to be in a unique SMALL subsystem.

A module belonging to a COVPACT subsystem takes the name of its CODE segment
and the name of its DATA segment from the subsystem name. So a COMPACT
subsystem named SUB1 contains one CODE segment named SUB1_ CODE, one DATA
segment named SUB1_DATA, and one STACK segment named STACK. A COVPACT
subsystem named SUB2 contains one CODE segment named SUB2_ CODE, one DATA
segment named SUB2_DATA, and one STACK segment named STACK. The loaded
program will contain five segments, two CODE segments, two DATA segments, and
one STACK segment. Note that a program using the LARGE segmentation control is
equivalent to a program in which each module is declared to be in a unique COVPACT
subsystem.

PL/M-386 Programmer's Guide Chapter 13 293

A LARGE subsystem can be smulated by a COVPACT subsystem containing only one
module. However, LARGE subsystems are useful for the following reason. A LARGE
subsystem named SUB1, which contains the modules MOD1, MOD2, and MOD3, has
three CODE segments named MOD1_ CODE, MOD2_ CODE, and MOD3_ CODE, and three
DATA segments named MOD1_DATA, MOD2_DATA, and MOD3_DATA. Asusual, it
contains one STACK segment named STACK. It ispossible to use a LARGE subsystem
instead of inventing names for many COMPACT subsystems, each containing only one
module. Note that the segment name in the LARGE subsystem is derived from the
module names and not from the subsystem name.

The LARGE segmentation control isidentical to the COMPACT segmentation control.
However, there is a difference between LARGE and COMPACT subsystems. Ina
LARGE subsystem, the external definition of all symbolsin the EXPORTS list have
their segment field set to an unknown value. This enables the creation of external far
objects with public locations that are unknown at compile time. In all other respects,
aLARGE subsystem isidentical to a COMPACT subsystem.

Open Subsystems

294

Compiling files using only the segmentation controls and using no other subsystem
controls produces open subsystems. When object modules are combined, all modules
created from compilations specifying a particular segmentation control are
automatically combined. Segments are created according to the rules for the
segmentation control. A list of modules belonging to an open subsystem is therefore
not needed at compile time. Modules can be freely added to or deleted from an open
subsystem at any time during program development.

Note that both RAMand ROMmodul es are combined into the single open subsystem.
For a SMALL subsystem, be careful when combining RAMand ROMmaodules,
particularly concerning the passing of pointer parameters and the accessing of
constants not in the current module.

It is not possible to pass pointer parameters between SMALL RAMand SMALL ROM
modules, because pointers are defined differently in each submodel. Also, it isnot
possible to directly reference constants defined in a ROMmodule from a RAMmodule,
and vice versa, because RAMmodul es define constants to be in the data segment, and
ROMmodules define constants to be in the code segment.

In the COVPACT model, passing pointer parameters between RAMand ROMmodulesis
not a problem, because pointers are alwayslong. Asin SVALL, the restriction on
direct reference to constants applies.

Chapter 13 Extended Segmentation M odels

The names of the segmentsin both SMALL and COMPACT models are identical:
CODE32 for the code segment, DATA for the data segment. This means that if SMALL
and COVPACT modules are combined, they will also be combined to form asingle
open subsystem consisting of the CODE32, DATA, and STACK segments. Care must be
taken regarding stack references, because COMPACT defines a separate stack segment
and SMALL does not. For more information on Intel 386 microprocessor segment
combining, see the binder chapter in the Intel386 Family Utilities User's Guide.

Closed Subsystems

A closed subsystem differs from an open subsystem in two ways: it has aname and it
consists of a specific list of modules. The compiler must know the name of the
subsystem and the modules bel onging to the subsystem in order to create a closed
subsystem.

The need for a closed subsystem name is simply to differentiate a particular closed
subsystem from another closed subsystem or from the open subsystem. Thisis done
as follows: the name of the subsystem is added to the beginning of the segment
names to create unique code and data segments.

For example, if a subsystem is named PHASEL, then the code sections from all
modules belonging to the PHASEL subsystem are combined into a single code
segment called PHASE1 _CODE32; similarly for COVPACT subsystems the data
sections are combined into a single data segment called PHASEL_DATA. When using
COVPACT, however, the stack sections are still combined into a segment called STACK
because only one execution-time stack is usually necessary. Using SMALL all data
and stack segments are combined in one segment called DATA, as usual.

A closed subsystem module list is needed for differentiation. For instance, if the
compiler is not informed that module SCANNER bel ongs to subsystem PHASEL, then
the compiler has no choice but to assume that module SCANNER belongs to the open
subsystem.

Thus, every module in a program either is specified as part of a closed subsystem or,
by default, becomes part of the open subsystem. A program can consist of only
closed subsystems, or of both closed subsystems and the open subsystem, or of only
the open subsystem (by default). Thereis only one open subsystem per program; all
open subsystems are treated as one subsystem by the utility used to combine the
program modul es.

Communication Between Subsystems

Within a subsystem there can be code and/or data items (procedures and variables)
that must be known by other subsystems; that is, they are meant to be referenced
from other subsystems. Such items are said to be exported. The export of a symbol

PL/M-386 Programmer's Guide Chapter 13 295

isnot directed at any one particular subsystem; it is directed at all subsystemsin the
program, including its own subsystem.

It isimportant to realize that the subsystem definitions are additions to normal
intermodule PUBLI C/ EXTERNAL definitions, not replacements.

For instance, module MOD1 belongs to subsystem SUB1 and makes a reference to
symbol SYM2; SYM2 belongs to subsystem SUB2. SYM? must be declared as
EXTERNAL in MOD1, as usual, and must also be declared as PUBLI C and exported
from SUB2. Using thisinformation, the compiler generates an intersegment reference
to SYmMe.

Syntax

Defining subsystems means telling the compiler what extended segmentation model
each subsystem uses, and which modules belong to each subsystem. In addition, it
means telling the compiler which procedures and data are accessible from outside the
subsystem.

Making everything available to all subsystems defeats the purpose of subsystems.
For example, if aprocedureis declared to be accessible from outside the subsystem,
itisafar procedure. Thismeansthat all callsare far calls, even if the procedureis
never actually accessed from outside its subsystem.

Each subsystem in a PL/M program has one extended segmentation model definition,
which takes one of the following forms:

1. $ nodel (subsystemid [subnodel] [x])

2. $ nodel ([subnodel] [x])

3. $ nodel (subnodel [x])

where[x] isof theform;

[HAS nodul e-1i st]

or

[HAS nodul e-1ist; EXPORTS public-Ilist]
or

[EXPORTS public-list]

296 Chapter 13 Extended Segmentation M odels

Where:

model iSSMALL, COVMPACT, or LARGE and specifies the extended segmentation
model for the subsystem. All modules in the subsystem must be
compiled with the same extended segmentation model.

subrmodel iS- CONST I N CODE- or - CONST | N DATA- and specifiesthe
placement of constants. - CONST | N CODE- corresponds to the ROV
submodel; - CONST | N DATA- corresponds to the RAMsubmodel.

The default depends on the segmentation control and corresponds to the
defaults of RAM ROMfor each model. The use of the RAMand ROV
controls (see Chapter 11) can create conflicts when subsystems are
defined. RAMis specified by - CONST | N DATA- ; ROMis specified by
- CONST | N CODE- .

subsystemid
isany PL/M identifier that can be used as a module name, and specifies
the name of the subsystem. This D does not conflict with any IDs used
within the program. A subsystem control without subsyst em i d
defines the open subsystem.

HAS nodul e- | i st
isalist of module names, separated by commas, specifying the modules
belonging to the subsystem. These module names must exactly match
the module names from each source file comprising the subsystem. (A
module name is the name of the outermost DO block of a sourcefile.)) A
particular module name can appear in only one nodul e- 1 i st. There
are no default modulesin the modul e-1i st. Any module for which a
name does not appear in anodul e- | i st becomes part of the open
subsystem.

EXPORTS public-1i st
isalist of procedure, variable, and constant 1Ds, specifying the code
and data objects exported by the subsystem (i.e., accessible outside of
the subsystem). Using adollar sign ($) in a procedure name within a
subsystem definition will cause an error. Any symbol in the exports list
may be declared PUBLI Cin at most one of the modules belonging to the
subsystem, and should be declared EXTERNAL in all modulesin and out
of the subsystem that access the symboal.

A particular exported symbol can appear in only onepubl i c-1i st .

Thepublic-1ist isexhaustive. Only the symbolsinthe

publ i c-1i st canbereferenced from other subsystems. Symbolsin
the subsystem declared PUBLI C but not appearing inthe publ i c-1i st
are accessible only from within the subsystem itself. Conversely,

PUBLI C symbolsthat are not intended to be referenced from outside the
subsystem should not appear in the publ i c- i st. These symbolsare
called domestic symbols.

PL/M-386 Programmer's Guide Chapter 13 297

In most applications of the subsystem controls, the HAS and EXPORTS lists will have
several dozen entries apiece. To accommodate lists of thislength, a subsystem
control may be continued over more than one control line. (The continuation lines
must be contiguous, and each must begin with adollar sign ($) in the first column.)
Keep in mind that using adollar sign in a procedure name within a subsystem
definition will cause an error. Also, note that any number of HAS and EXPORTS lists
can appear in acontrol, in any order. This enables formatting of the subsystem
specification so it can be easily read and maintained.

Consider the following subsystem definition:

$COMPACT(SUB_I NPUT - CONST | N CODE- HAS nod_1, nod_2, nod_3; EXPORTS
i nput)

$SMALL(SUB_PROCESS HAS nod_4, nod_5, nod_6, nod_7, nod_8)

$COVMPACT(SUB_QUTPUT HAS npod_9, nod_10; EXPORTS format, output)

This sample program contains three subsystems: SUB_| NPUT, SUB_PROCCESS, and
SUB_QUTPUT. SUB_I NPUT and SUB_QUTPUT use the COVPACT extended
segmentation model. SUB_PROCESS uses the SMALL extended segmentation model.
Constants are stored with the code in SUB_I NPUT. The SUB_I NPUT subsystem
contains the modules mod_1, nod_2, and nod_3, and exports one symbol, i nput .
SUB_PROCESS contains modules 4 through 8. SUB_PROCESS contains the main
program, asit must, sinceit isthe only SMALL subsystem in the program. (Recall
that when mixing SMALL with other models, the main program must be SMALL.) For
this reason it does not need to export any symbols. A subsystem containing the main
program can export symbols (for instance, global variables). But other subsystems
must export at least one symbol, otherwise they are totally unaccessible to the main
program, and therefore useless to the program of which they are a part.)
SUB_OUTPUT supplies two symbols called format and output.

The preceding subsystem definition should appear in al 10 modules (mod_1 through
nmod_10), even though not all the exported symbols are used by al subsystems. Itis
recommended that the subsystem definition be kept in an include file, then included
in each module compiled. This avoids any problems in maintaining consistency
between the subsystem definitions of all source modules.

Consider another example, this time containing an open subsystem. Start from an
existing COVPACT program that does not use extended segmentation models, but
whose code has grown too large. Assume that the following modules from the
original program (ATTACH, OPEN, CLOSE, ERRORS, ALLOCATE, FREE) were compiled
with the following segmentation control:

$COVPACT

298 Chapter 13 Extended Segmentation M odels

If the modules ALLOCATE and FREE are factored out from the original program,
creating SUBSYS1, the subsystem definition is as follows:

$COVPACT(SUBSYS1 HAS ALLOCATE, FREE)

Now, suppose that the modules remaining in the open subsystem reference entry
points Al | ocBuf f and Fr eeBuf f in SUBSYS1. These must be exported from
SUBSYSL1 asfollows:

$COVPACT(SUBSYS1 HAS ALLOCATE, FREE;
$ EXPORTS Al | ocBuff, FreeBuff)

or
$COVPACT(SUBSYS1 HAS ALLOCATE; EXPORTS Al | ocBuff:
$ HAS FREE; EXPORTS FreeBuff)

The second form illustrates how multiple HAS and EXPORTS lists can be used to
document the items exported from each module.

If aroutinein SUBSYSL1 references the procedure Fat al Er r or in the module
ERRCRS, the definition of the open subsystem is as follows:

$COVPACT (EXPORTS Fatal Error)

No data structures need to be changed, because data reference values can be two
bytes. All procedures except Al | ocBuf f and Fr eeBuf f use the short call and return
mechanism.

Placement of Segmentation Controls

The segmentation controls have special restrictions associated with their placement.
Theserules are asfollows:

» The segmentation controls are primary controls. They must appear before the DO
statement of the module name.

e Only the definition of the open subsystem (with no submodel and no EXPORTS
list) can be placed on the invocation line; definitions of al other subsystems
must occur inside the source program.

The subsystem definitions for the entire program can be included in the compilation
of each module using the I NCLUDE control. The compiler extracts the information
needed to correctly and efficiently compile each modul€'s intrasubsystem and
inter-subsystem references.

PL/M-386 Programmer's Guide Chapter 13 299

Exporting Procedures

300

A symbol included in a subsystem's EXPORTS list must be declared PUBLI Cin one of
the modulesin that subsystem. The symbol, called an exported symbol, can be
referenced by modules in other subsystems. A PUBLI C symbol defined within a
subsystem but not listed in its EXPORTS list is called a domestic symbol. It should be
referenced only by modules within the same subsystem.

A procedure should be exported only if it must be referenced outside the defining
subsystem, because accessing exported procedures will, in general, require more code
and time than is required for domestic procedures.

Exported procedures have the following characteristics:

e Thelong form of call and returnis used.

» Thecaler'sDSand ESregisters are saved and restored upon entry and exit.

» TheDSand ESregisters are loaded with the associated data segment upon entry.

Note that if a SMALL or MEDI UMmaodule calls a procedure that is exported from a
COVPACT or LARGE subsystem, the stack sections of the two will not be combined
when the modules are combined because the segments containing them have different
names (see Chapter 11). To get the proper stack size, the SEGSI ZE control on the
utility used to combine the program modules must be used to increase the size of the
DATA segment. This segment must be increased by the sum of the stack requirements
for both the SMALL or MEDI UMmodule and the subsystem.

Chapter 13 Extended Segmentation M odels

The SMALL RAMsegmentation control uses short pointers. Therefore, care must be
taken when calling procedures that have pointer parameters and are exported from a
SMALL subsystem. In these cases, the compiler always uses the value of the current
DSregister asthe selector portion of the long pointer. This means that passing a
pointer to any dataitems declared in the SMALL module will produce the proper
result, but the following restrictions must be observed for the special cases:

1. If the actual parameter isthe NIL pointer, DS:0 will be passed to the exported
procedure. Consequently, the procedure executes differently if it iscalled from a
SMALL module than if it had been called from a COVPACT, MEDI UM or LARGE
module. For example:]

$COMPACT (FOO HAS N, EXPORTS FQO)
$SMALL
M DG
DECLARE PTR PO NTER;
FOO. PROCEDURE (P) EXTERNAL;
DECLARE P PO NTER;
END FOG,
CALL FOO (NIL); /* Wong, will pass DS:0
*/
PTR = NIL;
CALL FOO (PTR); /* Wong, will pass DS:0
*/
END M
$COMPACT (FOO HAS N, EXPORTS FOO)
N:. DG,
FOO. PROCEDURE (P) PUBLIC;
DECLARE P PO NTER;
DECLARE B BYTE;
B = (P=NIL); /* WIIl assign FALSE (000H) to B
*/
/* if FOOis called from SVALL; WII
*/
/* assign TRUE (OFFH) to B otherw se
*/
END FOG,
CALL FOO (NIL); /* Right, will pass 0:0
*/
END N,

PL/M-386 Programmer's Guide Chapter 13 301

2. If the actual parameter is a pointer to a procedure, the compiler extends the short
pointer with DS and then passes the value of DS:(offset of procedure) to the
exported procedure. This situation should be avoided because the result of any
reference through such a pointer is undefined. For example:
$COVPACT (FOO HAS N, EXPORTS FOO)
$SMVALL
M DO

DECLARE PTR PO NTER,

DECLARE TABLE(10) BYTE;

FOO. PROCEDURE (P) EXTERNAL;
DECLARE P PO NTER

END FOO

BAZ: PROCEDURE;

END BAZ,

CALL FOO (@BAZ); /* Wong, will pass */
/* DS: of f set-of -BAZ */

PTR = @BAZ
CALL FOO (PTR); /* Wong, will pass DS: PTR */
CALL FOO (@ABLE); /* Right, will pass pointer */
END M /* to TABLE */

Large Matrix Example

The large REAL matrix example can now be fully developed (see Using Subsystems).
Recall that one module for each row is needed, with each module containing a
1-billion element REAL array. Running such an application is possible only on
systems having virtual memory management for supporting such large data. The first
module could be:

ROWM_MOD: DO, /* ROAM_MOD is the nodul e nane */
DECLARE ROW) (1000000000) REAL PUBLI C
END ROW)_MOD;

302 Chapter 13 Extended Segmentation M odels

The modules for ROAL through RO are similar. The subsystem definition at this

point is:
$COVPACT
$COVPACT

$COVPACT

(ROW_SYS HAS ROM_MOD;, EXPORTS ROWD
(ROML_SYS HAS ROAM_MOD;, EXPORTS ROAL
$COVPACT (ROA2_SYS HAS ROW2_MOD; EXPORTS ROW2
(ROMB_SYS HAS ROAB_MOD; EXPORTS ROB

$COWPACT (ROM_SYS HAS ROM_MOD; EXPORTS ROM
$COWPACT (RONG_SYS HAS ROWG_MOD; EXPORTS ROWS
$COWPACT (ROW6_SYS HAS ROW6_MOD; EXPORTS ROWG
$COWPACT (ROW_SYS HAS RON_MOD; EXPORTS ROW
$COVWPACT (ROMNB_SYS HAS ROMB_MOD; EXPORTS ROV
$COWPACT (ROMD_SYS HAS ROM®_MOD; EXPORTS ROV

Now define the program:

MATRI X_MOD: DG,

DECLARE RO
DECLARE ROM
DECLARE ROW2
DECLARE ROWB
DECLARE ROM
DECLARE ROW
DECLARE ROWG
DECLARE ROW
DECLARE RONB
DECLARE RO

PL/M-386 Programmer's Guide

(1000000000)
(1000000000)
(1000000000)
(1000000000)
(1000000000)
(1000000000)
(1000000000)
(1000000000)
(1000000000)
(1000000000)

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

EXTERNAL,
EXTERNAL,;
EXTERNAL,;
EXTERNAL,;
EXTERNAL,;
EXTERNAL,;
EXTERNAL,;
EXTERNAL,
EXTERNAL,;
EXTERNAL,;

Chapter 13

N N N N N N N N N N

303

304

DECLARE ROW PO NTERS (10) PO NTER I NI TI AL (
@ROV5, @RONG, @ROW, @RONB, @ROM);
RETRI EVE_ELEMENT: PROCEDURE (ROW COL) REAL PUBLI C;
DECLARE (ROW COL) WORD;
DECLARE ROW PTR PO NTER,
ROW ARRAY BASED ROW PTR (1) REAL;
ROW PTR = ROW PO NTERS (ROW ;
RETURN ROW ARRAY (CQL);
END RETRI EVE_ELEMENT;
STORE_ELEMENT: PROCEDURE (ROW COL, VAL) PUBLI C
DECLARE (ROW COL) WORD;
DECLARE VAL REAL;
DECLARE ROW PTR PO NTER,
ROW ARRAY BASED ROW PTR (1) REAL;
ROW PTR = ROW PO NTERS (ROW ;
ROW ARRAY (COL) = VAL;
END STORE_ELEMENT;
/* the matrix processing code inserted here */
END MATRI X_MOD;

Now assume that other modules will be added to this program later. Inthiscase, itis
better to put MATRI X_MOD and these other modules in the COVPACT OPEN subsystem.
Thisway modules can freely be added or deleted without having to redefine the
overall subsystem structure. Also assume the need to calculate sines and cosines of
various matrix elements. The functions SI NE and COSI NE are supplied in an external
math package. The only thing known about this package is that all its routines
require long calls.

The final subsystem definition is now:

$LARGE (EXPORTS SINE, COSINE)

$COWPACT (ROND_SYS HAS RONM_MOD; EXPORTS RO
$COWPACT (ROM_SYS HAS ROM_MOD; EXPORTS ROM
$COWPACT (RON2_SYS HAS ROVW2_MOD; EXPORTS ROV
$COWPACT (ROMNB_SYS HAS ROVNB_MOD; EXPORTS ROVB
$COWPACT (ROM_SYS HAS ROM_MOD; EXPORTS ROM
$COWPACT (ROWNG_SYS HAS ROWS_MOD; EXPORTS ROWS
$COWPACT (ROW6_SYS HAS ROW6_MOD; EXPORTS ROWG
$COWPACT (ROW_SYS HAS RON_MOD; EXPORTS ROW
$COWPACT (ROMB_SYS HAS ROMB_MOD; EXPORTS ROV
$COWPACT (ROMND_SYS HAS ROM®_MOD; EXPORTS ROV

N N N N N N N N N N

Chapter 13 Extended Segmentation M odels

The COMPACT control should appear in the invocation line. The first control line
indicates that the symbols SI NE and COSI NE require long references and belong to
some unknown subsystem. The next ten lines define the ten closed subsystems, each
containing arow of the matrix. The COMPACT control is specified on the invocation
line when compiling MATRI X_MOD (and when compiling any other module in the
program except the RONmodul es).

Every subsystem definition should be consistent. For example, ROAD_MOD must
reside in the same subsystem in each definition. It is convenient to put control lines,
such as those shown above, in an include file. If any changes to the subsystem
definitions are made later, only one file needs to be updated.

PL/M-386 Programmer's Guide Chapter 13 305

306 Chapter 13 Extended Segmentation M odels

Error and Warning Messages

The compiler may issue these kinds of error and warning messages:
e PL/M program error messages

e Fatal command tail and control error messages

» Fatal input/output error messages

» Fatal insufficient memory error messages

» Fatal compiler failure error messages

» Insufficient memory warning messages

The source errors are reported in the program listing; the fatal errors are reported on
the console device.

PL/M Program Error and Warning Messages

Nearly all of the source PL/M program error messages are interspersed in the listing
at the point of error and follow the general format:

*** ERROR mmm I N ppp (LI NE ppp), NEAR 'aaa', nessage

or:
*** WARNI NG nmm | N ppp (LINE ppp), NEAR 'aaa', nessage

Where:

nmm isan error number from the following list.

ppp isthe actual source line number where the error occurs.

aaa is the source text near where the error is detected.

message isamessage from the following list.

The following source error messages may be encountered.

*** ERROR 1 | NVALI D CONTRCL
An unrecognized control in the control line; for example:

$NXCODE; /* probably intended NOCODE */

PL/M-386 Programmer's Guide Chapter 14 307

* k k

* k k

* % %

* k k

* % %

* k k

* % %

* k k

* % %

* k k

* % %

* k *

* k *

* % %

308

ERROR 2 PRI MARY CONTROL FOLLOAS NON- CONTRCL LI NE
Primary controls can be control lines in the source program, but they must come first.
No other statements can precede them.

ERROR 3 M SSI NG CONTROL PARAMETER
Certain controls (e.g., | NCLUDE), require a parameter.

ERROR 4 | NVALI D CONTROL PARAMETER
Examples are an illegal pathname for a control such as OBJECT or a string where a
number isrequired.

ERROR 5 | NVALI D CONTROL FORVAT
See Chapter 11 for correct formatting of control lines.

ERROR 7 | NVALI D PATHNANME
The pathname for afileisincorrectly specified; see the host-system operating
instructions.

WARNI NG 8 | LLEGAL PAGELENGTH, | GNORED
The pagelength specified islessthan 5 or greater than 255; the default is 60.

ERROR 9 | LLEGAL PAGEW DTH, | GNORED
The pagewidth specified is less than 60 or more than 132; the default is 120.

WARNI NG 10 RESPECI FI ED PRI MARY CONTRCL, | GNORED
Primary controls can be specified only once and cannot alter a previous setting.

ERROR 11 M SPLACED ELSE OR ELSEI F CONTROL
ELSE or ELSEI F control occurred without a corresponding | F control.

ERROR 12 M SPLACED ENDI F CONTROL
ENDI F control occurred without a corresponding | F control.

ERROR 13 M SSI NG ENDI F CONTROL
End of source file without an ENDI F control to match a previous| F.

ERROR 14 NAME TOO LONG(31), TRUNCATED
Switch variable namein | F, ELSE, SET, or RESET statement istoo long.

ERRCR 15 M SSI NG OPERATOR
Two operands in an expression must be separated by an arithmetic, logical, or
relational operator.

WARNI NG 16 | NVALI D CONSTANT, ZERO ASSUMED
The constant specified by SET, | F, or ELSEI F isinvalid.

ERROR 17 | NVALI D OPERAND
SET, RESET, | F, or ELSEI F isused in aninvalid position.

WARNI NG 18 PARENTHESES | GNORED W THI N CONDI TI ONAL COWPI LATI ON
CONDI TI ON
Parentheses within conditional compilation conditions are ignored and the expression

is evaluated according to the regular precedence rules.

ERROR 19 LI M T EXCEEDED: SAVE NESTI NG
See Appendix B for the correct limit.

Chapter 14 Error and Warning M essages

* k k

* k k

* % %

* k k

* % %

* k k

* % %

* k *

* k *

* k *

ERROR 20 LIM T EXCEEDED: | NCLUDE NESTI NG
See Appendix B for the correct limit.

ERROR 21 M SPLACED RESTCORE CONTROL
RESTORE works only if thereis a preceding SAVE.

ERROR 22 UNEXPECTED END OF CONTROL
A segmentation control requires a continuation line or aright parenthesis.

ERROR 23 SYMBOL EXI STS I N MORE THAN ONE HAS LI ST
A module name can occur in only one HAS list.

ERROR 24 SUBSYSTEM ALREADY DEFI NED
The subsystem name has already been defined.

ERROR 25 CONFLI CTI NG SEGVENTATI ON CONTROLS
More than one segmentation control affecting the module being compiled was
encountered. One common cause is specifying both - CONST | N CODE- and ROMin
amodule with a subsystem definition.

ERROR 26 | LLEGAL PL/ M | DENTI FI ER
I dentifiers can be up to 31 alphanumeric characters or the underscore; the first
character must be al phabetic or the underscore.

ERROR 27 PREDEFI NED SW TCHES ARE NOT VALI D BEFORE MODULE NAME
Predefined switches can be used only after the first DO statement.

WARNI NG 28 | NVALI D PL/ M CHARACTER, | GNORED
Look near the text flagged for an invalid character, or one that isinappropriate in
context. Deleteit or retype the statement.

WARNI NG 29 UNPRI NTABLE CHARACTER, | GNORED
Retype the line in question using valid characters.

ERROR 30 STRI NG TOO LONG, TRUNCATED
See Appendix B for the correct limit.

ERROR 31 | LLEGAL CONSTANT TYPE
A constant containsillegal characters. This might reflect missing operators (e.g.,
A=4T instead of A=4+T).

ERROR 32 | NVALI D CHARACTER I N CONSTANT
For example, 107B and OABCD will cause this error because neither can bevalid in
any PL/M interpretation; 7 is not a binary numeral, B cannot occur in decimal or
octal, and neither string endsin H.

PL/M-386 Programmer's Guide Chapter 14 309

* k k

* k%

* k k

* k%

* k%

* k *

* k%

* k *

* k%

* k%

* k *

310

ERROR 33 RECURSI VE MACRO EXPANSI ON
Following is an example causing this error:
DECLARE A LI TERALLY 'B';

DECLARE B LI TERALLY 'A';

B=4;/* error discovered here */

LI TERALLYs cannot be declared circularly (i.e., solely in terms of each other).

ERROR 34 LI M T EXCEEDED: MACRO NESTI NG (5)
This error occurs when too many DECLARE statements refer back through each other
to the one that actually supplies atype. See Appendix B for the correct limit. For
example:
DECLARE A LI TERALLY 'B';
DECLARE B LI TERALLY 'C ;

DECLARE Y LI TERALLY 'Z';
DECLARE Z BYTE INITIAL (77);

A=7; /* error discovered here */

ERROR 35 LI M T EXCEEDED: SOURCE LI NE LENGTH (128)
See Appendix B for the correct limit.

ERROR 37 | NVALI D REAL CONSTANT
WARNI NG 38 REAL CONSTANT UNDERFLOW
An underflow occurred when conversion into floating-point was attempted.

WARNI NG 39 REAL CONSTANT OVERFLOW
An overflow occurred when conversion into floating-point was attempted.

ERROR 40 NULL STRI NG NOT ALLOWED
Strings of length zero are not supported.

ERROR 41 DELETED: "t okens"

The compiler deleted tokens while attempting to recover from a syntax error.
ERROR 42 NEAR "synt ax" | NSERTED: "t okens"

The compiler inserted tokens while attempting to recover from a syntax error.

ERROR 43 STATEMENTS FOLLOW MODULE END
Statements follow the logical end-of-module.

ERROR 44 CONSTANT TOO LARGE
A constant value (e.g., 999,999,999,999) is too large for the compiler.

Chapter 14 Error and Warning M essages

* k k

* % %

* k k

* % %

* k k

* % %

* k k

* % %

* k *

* % %

* % %

* k *

* k k

WARNI NG 45 M SMATCHED BLOCK | DENTI FI ER
If alabel issupplied in an END statement, the label must match the first unmatched
DO statement above the END. Sometimes the error involves a modul e name confused
with a procedure name.

ERROR 46 DUPLI CATE PROCEDURE NAME
Procedure names must be unique.

ERROR 47 LIM T EXCEEDED: PROCEDURES
Too many procedures in thismodule. Break it into smaller modules. See Appendix
B for the correct limit.

ERROR 48 DUPLI CATE PARAMETER NAME
A parameter must be declared exactly once. This message indicates that the flagged
parameter already has a definition at thisblock level, asin:
YAR PROCEDURE (YAR77, YAR78);
DECLARE YAR77 BYTE;
DECLARE YAR77 BYTE;

Perhaps a different spelling was intended.

ERROR 49 NOT AT MODULE LEVEL
The flagged attribute or initialization can be valid only at the module level, not ina
procedure.

ERROR 50 DUPLI CATE ATTRI BUTE
Attributes should be specified only once. This message means the compiler has
found a declaration like:
DECLARE B BYTE EXTERNAL EXTERNAL;

ERROR 51 M SSI NG OR | LLEGAL | NTERRUPT VALUE
Interrupt numbers must be whole-number constants between 0 and 255. Thus-7 or
272 would be invalid.

ERROR 52 | NTERRUPT W TH PARAMETERS
No parameters can be used in interrupt procedures.

ERROR 53 | NTERRUPT W TH TYPED PROCEDURE
Interrupt procedures must be untyped.

ERROR 54 | NVALI D DI MENSI ON
ERROR 55 LI M T EXCEEDED: NESTED STRUCTURES
See Appendix B for the correct limit.

ERROR 56 STAR DI MENSI ON W TH STRUCTURE MEMBER
Star dimension (*) must not be used with structures. The dimensions for an array
that is a structure member must be specified explicitly.

ERROR 57 CONFLI CT W TH PARAMETER
Object cannot be a parameter.

ERROR 58 DUPLI CATE DECLARATI ON
The flagged item already has a definition declared at this block level.

PL/M-386 Programmer's Guide Chapter 14 311

* k k

* k k

* % %

* k k

* k k

* % %

* k k

* % %

* k *

* k *

* % %

312

ERROR 59 | LLEGAL PARAMETER TYPE
Parameters cannot be declared of type structure or array.

ERROR 60 DUPLI CATE LABEL
Each label must be unique within its block or scope. Otherwise, GOTCGs and CALLS
would have ambiguous targets.

ERROR 61 DUPLI CATE MEMBER NAME
Member has been declared twice in the same structure. For example, in:
DECLARE Al R STRUCTURE (F4 BYTE, F4 BYTE);

subsequent referencesto Al R. F4 would be ambiguous.

ERROR 62 UNDECLARED PARAMETER
A parameter named in the procedure statement was not defined in the body of the
procedure.

ERROR 63 CONFLI CTI NG ATTRI BUTES
A variable has been declared with inconsistent attributes (e.g., PUBLI C or EXTERNAL,
DATA Or | NI TI AL, AT or BASED).

ERROR 64 LI M T EXCEEDED: DO BLOCKS
See Appendix B for the correct limit.

ERROR 65 | LLEGAL PARAMETER ATTRI BUTE
Certain attributes cannot be used to declare a parameter (e.g., PUBLI C, EXTERNAL,
DATA, | NI Tl AL, AT, or BASED).

ERROR 66 UNDEFI NED BASE
A variable was declared BASED using an undeclared identifier.

ERROR 67 | NVALI D TYPE OR ATTRI BUTE FOR BASE
A base must be a non-subscripted scalar of type ADDRESS, POl NTER, WORD,
SELECTOR, or OFFSET.

ERROR 68 M SPLACED DECLARATI ON
Declarations and procedures can be interspersed, but not declarations and executable
Statements.

ERROR 69 | NVALI D BASE W TH LABEL OR MACRO
BASED cannot be used with LABEL or LI TERALLY types.

ERROR 70 I NVALI D DI MENSI ON W TH LABEL OR MACRO
LABEL or LI TERALLY cannot be dimensioned.

ERROR 71 | NI TI ALI ZATI ON LI ST REQUI RED
A list of initial valuesisrequired if thel NI TI AL attribute, the non-external *
dimension form, or the non-external DATA attribute is used.

ERROR 72 BASED CONFLI CTS W TH ATTRI BUTES
Examples of attributes conflicting with base include AT, DATA, I NI TI AL, PUBLI C,
and EXTERNAL.

Chapter 14 Error and Warning M essages

*** ERROR 73 DATA OR EXECUTABLE STATEMENTS I N EXTERNAL
An EXTERNAL procedure, being defined el sewhere, cannot contain executable
statements or data declarations for variables that are not formal parameters.

*** ERROR 74 M SSI NG RETURN FOR TYPED PROCEDURE
A typed procedure must return avalue; thus, it must include a RETURN statement.

*** ERROR 75 | NVALI D NESTED REENTRANT PROCEDURE
Reentrant procedures cannot contain procedures.

*** ERROR 76 LIM T EXCEEDED: FACTORED LI ST
Too many variables were named in afactored declaration. Break it into severa
declarations. See Appendix B for the correct value.

*** ERROR 77 LIM T EXCEEDED: STRUCTURE NMEMBERS
See Appendix B for the correct value.

*** ERROR 78 M SSI NG PROCEDURE NAME
Every procedure must have a name.

*** ERROR 79 MULTI PLE PROCEDURE LABELS
Procedures must have only one name.

*** ERROR 80 DECLARATI ONS MAY NOT BE LABELED
L abels cannot be used on declaration statements.

*** ERROR 81 STAR DIM W TH FACTORED LI ST NOT ALLOWED
Separate the array declarations giving the datainitializations for each array
separately, or explicitly state the dimensions of the factored array declarationsasin
the following examples:
DECLARE (A B) (*) BYTE DATA ('abcd', 'xywz'); /* illegal */
DECLARE (A) (*) BYTE DATA (' abcd'); /* legal */
DECLARE (B)(*) BYTE DATA (' xywz'); /* legal */

or
DECLARE (A B) (4) BYTE DATA ('abcd', 'xywz'); /* legal */
*** ERROR 82 S| ZE EXCEEDS nn BYTES
Storage for the declared item exceeds the maximum storage for the microprocessor.
For the Intel 386 and I ntel 486 microprocessor nn is 4G bytes.

*** WARNI NG 83 PROCEDURE CONTAI NS NO EXECUTABLE STATEMENTS
This procedure does nothing, but executes successfully.

*** ERROR 85 I NI TIAL USED W TH ROM OPTI ON
Variables declared with I NI TI AL are not initialized until load-time. Thus, if the
program isin ROM these initializations will never occur.

*** ERROR 86 LIM T EXCEEDED: NUMBER OF PARAMETERS
The procedure declaration includes too many parameters. See Appendix B for the
correct limit.

PL/M-386 Programmer's Guide Chapter 14 313

* k k

* k k

* % %

* k k

* k k

* % %

* k k

* % %

* k *

* % %

* k *

* % %

* k *

* % %

314

ERRCR 88 LI M T EXCEEDED: PROGRAM TOO COWVPLEX
The program has too many complex expressions, cases, or procedures. Break it into
smaller procedures.
ERROR 89 COWPI LER ERROR BAD ERROR RECOVERY
An unrecoverable error occurred. Trying adifferent copy of the compiler on a
different drive might reveal that the first copy has been damaged. Contact your
Radi Sys representative.
ERRCR 90 COWPI LER ERROR: MULTI PLE PARSE ARGS
See source error message number 89.
ERROR 91 LIM T EXCEEDED: PROGRAM TOO COWVPLEX
The program has too many complex expressions, cases, or procedures. Break it into
smaller procedures.
ERRCR 92 COWPI LER ERROR: PARSE ARG STACK UNDERFLOW
See source error message number 89.
ERROR 93 LIM T EXCEEDED: PROGRAM TOO COWVPLEX
The program has too many complex expressions, cases, or procedures. Break it into
smaller modules.
ERRCR 94 COWPI LER ERROR: PARSE STACK UNDERFLOW
See source error message number 89.
ERROR 95 COWPI LER ERROR: PARSE BUFFER OVERFLOW
See source error message number 89.
ERRCR 96 LI M T EXCEEDED: BLOCK NESTI NG
The program has too many nested DOblocks. Break it into smaller procedures. See
Appendix B for the correct limit.
ERROR 97 COWPI LER ERROR: SCOPE STACK UNDERFLOW
See source error message number 89.
ERRCR 98 LI M T EXCEEDED: STATEMENT TOO COVPLEX
The statement istoo large for the compiler. Break it into several smaller statements.
ERROR 99 COWPI LER ERROR: SENMANTI C UNDERFLOW
See source error message number 89.
ERRCR 100 STRI NG CONSTANT TOO LONG
String constants used as scalars have a maximum of four characters.
ERROR 101 UNSUBSCRI PTED ARRAY
The array reference requires a subscript.
WARNI NG 102 UNQUALI FI ED STRUCTURE
This statement is ambiguous as to which structure or member it references.
ERROR 103 NOT AN ARRAY
Subscripts are permitted only on identifiers declared as arrays. Check spelling
consistency.

Chapter 14 Error and Warning M essages

* k k

* % %

* k k

* % %

* k k

* k k

* % %

* k *

* % %

* k *

* % %

* k *

* % %

* k k

ERRCR 104 MULTI PLE SUBSCRI PTS
PL/M hasonly single dimension arrays. Therefore, only one subscript is permitted in
an array reference. For example, for any array TI NGreferences of the form
TING(2, 4) or TINE 3,7,9, 6) areinvalid.

ERROR 105 NOT A STRUCTURE
For example, areference of the form GNU. F1, where GNU was nhot declared a
structure.

ERROR 106 UNDEFI NED | DENTI FI ER
Every identifier must be declared.

ERROR 107 UNDEFI NED MEMBER
For example, KAPI . HORN, where KAPI isavalid, declared structure but HORN is an
undeclared member of the structure.

ERROR 108 | LLEGAL | TERATI VE DO | NDEX TYPE
Only expressions of type BYTE, WORD, and | NTEGER can be used.

ERROR 109 UNDEFI NED OR NOT A LABEL
Theidentifier following GOTO must be alabel; the flagged item was declared
otherwise, or the identifier was declared as alabel but was not defined.

ERROR 110 M SSI NG RETURN VALUE
A typed procedure must return avalue that is specified by its RETURN statement.

ERROR 111 | NVALI D RETURN W TH UNTYPED PROCEDURE
An untyped procedure does not return a value; thus, its RETURN statement cannot
specify one.

ERRCR 112 | NVALI D | NDI RECT TYPE
Only WORD or POl NTER scalars can be used for indirect calls. This excludes WORD or
PO NTER expressions; BYTE, DWORD, | NTEGER, or REAL scalars; all structures; and
al arrays.

ERROR 113 | NVALI D PARAMETER COUNT
The number of actual parameters supplied in a CALL must be equal to the number of
formal parameters declared in the procedure.

ERROR 114 QUALI FI ED PROCEDURE NANME
Procedure names cannot be qualified.

ERROR 115 | NVALI D FUNCTI ON REFERENCE
Typed procedures can be invoked only by use in an expression, not by a CALL.

ERROR 116 | NVALI D CASE EXPRESSI ON TYPE
Case expressions must be of type BYTE, WORD, or | NTEGER.

ERROR 117 LIM T EXCEEDED: NUMBER OF ACTI VE CASES
Reduce the number of cases in this case statement; the maximum number has been
exceeded.

ERROR 118 TYPE CONFLI CT
An example of type conflict is WORD and REAL mixed in areference.

PL/M-386 Programmer's Guide Chapter 14 315

* k k

* k k

* % %

* k k

* k k

* % %

* k k

* % %

* k *

* k *

* k k

316

ERROR 119 | NVALI D BUI LT- 1 N REFERENCE
Built-in reference was qualified with a member name, or OQUTPUT/ QUTWORD did not
appear on the left side of an assignment.

ERROR 120 | NVALI D PROCEDURE REFERENCE
Untyped procedures must be invoked by a CALL statement; referencesto such
procedures are not permitted in expressions.

ERROR 121 | NVALI D LEFT-HAND SI DE OF ASSI GNVENT
The left-hand side of the assignment must be a scalar variable. For example,
PROCEDURE=4 or | N\WORD(7) =9.

ERRCOR 122 | NVALI D REFERENCE
Invalid label reference.

ERROR 123 USE OF "." MAY BE UNSAFE
The "dot" operator does not always produce correct resultsin a PL/M program that
contains more than one data segment or more than one code segment.

ERROR 124 PROCEDURE NAME REQUI RED

Procedure name is required for SET$I NTERRUPT and | NTERRUPT$PTR built-ins.
ERRCR 125 PROCEDURE NAME ONLY

Parameters are not allowed on the procedure name in SET$I NTERRUPT and

| NTERRUPT$PTR.

ERROR 126 BAD | NTERRUPT NUMBER
Interrupt numbersin a CAUSE$I NTERRUPT statement must be whole-number
congtants in the range (0 - 255).

ERROR 127 CONSTANT ONLY
In thisinstance, a constant is required.

ERROR 128 ARRAY REQUI RED
Some built-ins need an array name as a parameter.

ERROR 129 | NTERRUPT PROCEDURE REQUI RED
The name declared in a SET$I NTERRUPT procedure or | NTERRUPT$PTR function
must be a previously declared procedure.

ERROR 130 | NVALI D RESTRI CTED OPERAND
Illegal use of adot operator.

ERROR 131 I NVALI D RESTRI CTED OPERATOR
Only + and — can be used in restricted expressions.

ERROR 133 REFERENCE REQUI RED
A variable reference isrequired for LENGTH, LAST, and Sl ZE.

ERROR 134 VARI ABLE REQUI RED
The operand to LENGTH, LAST, and SI ZE must be avariable.

ERROR 135 VALUE TOO LARGE
A valueistoo large for its contextually determined type.

Chapter 14 Error and Warning M essages

* k k

* % %

* k k

* % %

* k k

* % %

* k *

* % %

* k *

* k k

* k *

* % %

* k *

* % %

* k k

ERROR 136 ABSOLUTE PO NTER W TH SHORT PO NTERS
Two possible causes in the SMALL (RAM) case: pointer variables cannot be initialized
with or assigned whole number constants; or the @ operator cannot be used with a
variable that was located at an absol ute address that was specified by a whole number
constant.

ERROR 137 | NVALI D RESTRI CTED EXPRESSI ON
Only addresses or constant types can be used in restricted expressions.

ERROR 138 PUBLI C AT EXTERNAL
PUBLI C declarations must be fully defined within the procedure. For example:
DECLARE KUN BYTE EXTERNAL;
DECLARE JAN BYTE PUBLI C AT (. KUN);

isillegal.

ERROR 139 PUBLI C AT ABSOLUTE
Absolute locations for PUBLI Cs are supported only in the LARGE model.

ERROR 140 PUBLI C AT MEMORY
PUBLI C at @VEMORY is not supported by COVPACT.

ERROR 141 AT BASED VARI ABLE
Based variables cannot be used in AT clauses.

ERROR 142 | LLEGAL FORWARD REFERENCE
An AT expression cannot have a forward reference. Any location reference inthe AT
expression must refer to previously declared variables.

ERROR 143 VARI ABLE TYPE REQUI RED I N AN AT EXPRESSI ON
The AT expression must be a variable name. For example:
DECLARE B BYTE AT (. proc_nane);

isillegal.
ERRCR 144 LIM T EXCEEDED: DATA OR STACK SEGVENT TOO LARGE
ERRCR 145 LIM T EXCEEDED: CODE OR CONST SEGVENT TOO LARGE

ERROR 146 LIM T EXCEEDED: NUMBER OF EXTERNALS
See Appendix B for the correct limit.

ERROR 147 LABEL NOT AT LOCAL OR MODULE LEVEL
Label was not used correctly.

ERRCOR 148 | NI Tl ALI ZI NG MORE SPACE THAN DECLARED
The number of initialization values exceeds the number of declared elements.

ERROR 149 | LLEGAL MODULE NANME REFERENCE
M odule names cannot be referenced.

WARNI NG 150 USE OF "." W TH FAR PROCEDURE
A subsequent indirect call made through the respective address/pointer generates the
wrong type of call.

PL/M-386 Programmer's Guide Chapter 14 317

* k k

* % %

* k k

* % %

* k k

* k k

* k k

* k k

* % %

* k *

* % %

* k *

* % %

* k k

318

WARNI NG 151 USE OF "@ W TH NEAR PROCEDURE
See source error message number 150.

ERROR 152 INVALID "." OR"@ OPERAND
Must be used with a variable, procedure, or constant list.

ERRCR 153 | NVALI D RETURN I N MAI N PROGRAM
A main program must have no returns.

ERROR 154 STAR DI MENSI ONED VARI ABLE W TH LENGTH, SIZE OR LAST
The LENGTH, LAST, and Sl ZE built-in functions cannot be used with variables
declared with the implicit dimension specifier (*) and the EXTERNAL attribute.

ERROR 155 SYMBOL EXPORTED FROM ANOTHER SUBSYSTEM
A PUBLI C symbol in this moduleis also exported by another subsystem.

ERROR 156 LONG PO NTER REQUI RED FOR THI S CONSTRUCT
A model with long pointersis required.

ERRCOR 158 | NI TI ALI ZATI ON CONFLI CTS W TH ATTRI BUTES
An external variable cannot be initialized.

ERROR 159 | LLEGAL | NTERRUPT PROCEDURE REFERENCE
An interrupt procedure cannot be invoked with the CALL statement.

ERROR 160 | NTERRUPT PROCEDURES MUST BE PUBLI C
An interrupt procedure must also be given the PUBLI C attribute.

ERROR 161 | LLEGAL ABSOLUTE PO NTER OR SELECTOR
Constants cannot be assigned to PO NTERS or SELECTORS, nor used to initialize
them. PO NTERs and SELECTORSs also cannot be passed as actual parameters.

ERROR 162 LI M T EXCEEDED: STATEMENT TOO COWVPLEX
The statement istoo large for the compiler. Break it into several smaller statements.

WARNI NG 162 LI M T EXCEEDED: PROGRAM COVPLEXI TY
Too many complex expressions, cases, etc. Break it into smaller procedures.

ERRCR 163 COWPI LER ERROR SEMANTI C UNDERFLOW
See source error message number 89.

ERROR 164 COWPI LER ERROR: | NVALI D NCDE
See source error message number 89.

ERROR 165: 286 | NTERFACE OBJECT NOT EXTERNAL
If the machi ne parameter is 286, al identifiersin thei d list must be declared
EXTERNAL.

ERROR 166 COWPI LER ERROR | NVALI D TREE
See source error message number 89.

ERRCR 167 COWPI LER ERROR SCOPE STACK UNDERFLOW
See source error message number 89.

Chapter 14 Error and Warning M essages

* k k

* k k

* % %

* % %

* k k

* k k

* % %

* k *

* k *

* % %

* k *

* % %

* k k

ERROR 168 LIM T EXCEEDED. PROGRAM COVPLEXI TY
The program has too many complex expressions, cases, or procedures. Break it into
smaller procedures.

ERROR 169 COWPI LER ERROR | NVALI D RECORD
See source error message number 89.

ERROR 170 | NVALI D DO CASE BLOCK, AT LEAST ONE CASE REQUI RED
The DOCASE hlock is described in Chapter 6.

ERROR 171 LIM T EXCEEDED: NUMBER OF CASES

ERROR 172 LIM T EXCEEDED: NESTI NG OF TYPEDPROCEDURE CALLS

ERROR 173 LIM T EXCEEDED: NUMBER OF ACTI VE PROCEDURES AND DO CASE
GROUPS
See Appendix B for the correct limit.

ERROR 174 | LLEGAL NESTI NG OF BLOCKS, ENDS NOT BALANCED
For every DO, an END is needed.

ERROR 175 COWPI LER ERROR | NVALI D OPERATI ON
See source error message number 89.

ERRCR 176 LIM T EXCEEDED: REAL EXPRESSI ON COVPLEXI TY
The REAL stack has eight registers. Heavily nested use of REAL functions with REAL
expressions as parameters can get excessively complex. See Appendix F.

ERROR 177 COWPI LER ERROR: REAL STACK UNDERFLOW
See source error message numbers 89 and 176.

ERROR 178 LIM T EXCEEDED: BASI C BLOCK COVPLEXI TY
Thereisavery long list of statements without labels, CASES, | Fs, GOTGCs, and/or
RETURNS. Either break the procedure into several smaller procedures, or add labels
to some of the statements.

ERROR 179 LI M T EXCEEDED: STATEMENT S| ZE
The statement istoo large for the compiler. Break it into several smaller statements.

ERROR 199 LIM T EXCEEDED: PROCEDURE COWPLEXI TY FOR OPTI M ZE (2)
The combined complexity of statements, user labels, and compiler-generated labelsis
too great. Simplify as much as possible, perhaps breaking the procedure into several
smaller procedures.

ERROR 200 | LLEGAL | NI TI ALI ZATI ON OF MORE SPACE THAN DECLARED
The number of initialization values exceeds the number of declared elements.

ERRCR 201 | NVALI D LABEL: UNDEFI NED
No definition for this label was found.

ERROR 202 LIM T EXCEEDED: NUMBER OF EXTERNAL | TEMS
See Appendix B for the correct limit.

ERRCR 203 COWPI LER ERROR BAD LABEL ADDRESS
See source error message number 89.

PL/M-386 Programmer's Guide Chapter 14 319

* k k

* k k

* % %

* k k
* k k
* k%

* k *

* k k

* k *

* % %

* k *

* % %

* k k

* k *

320

ERROR 204 LIM T EXCEEDED: CODE SEGQVENT S| ZE
See Appendix B for the correct limit.

ERROR 205 COWPI LER ERROR: BAD CODE GENERATED
See source error message number 89.

ERROR 206 LI M T EXCEEDED:. DATA SEGQVENT SI ZE
See Appendix B for the correct limit.

ERROR 207 ATTEMPT TO USE 0 AS DI VI SOR I N DI VI SI OV MODULO
Zero cannot be used as a divisor in division/modulo; use 1. This error appears at the
end as a semantic error.

ERRCR 210 COWPI LER ERROR OBJECT MODULE GENERATI ON ERROR
ERRCR 211 COWPI LER ERROR DEBUG SEGVENT SI ZE OVERFLOW
ERRCR 212 COWPI LER ERROR | LLEGAL FI XUP
ERRCR 230 COWPI LER ERROR | NVALI D | NTERNAL TYPE

See source error message number 89.

ERROR 241 | LLEGAL TYPE CASTI NG
For example:
pt 2=poi nter (real _val ue)

isillegal.
ERROR 242 TRUNCATION OF n BIT OFFSET
OFFSET was assigned to a variable with a size less than 32 bits; the assigned value

may not be avalid OFFSET. For the 8086 and 286 microprocessors, n is 16. For the
Intel 386 and Intel 486 microprocessors, n is 32.

ERROR 243 286 | NTERFACE OBJECT NOT EXTERNAL
If the machi ne parameter is286, all identifiersin thei d list must be declared
EXTERNAL.

ERROR 244 SYMBCOL REPEATED | N | NTERFACE SPECI FI CATI ON
Symbols can be used only once in an | NTERFACE control (i.e., a symbol cannot be
repeated in the | NTERFACE contral).

ERROR 245 AT VARI ABLE | N DI FFERENT SEGVENT
A variable cannot be declared using both the DATA attribute and the AT attribute when
using the ROMoption. DATA should bein CODE segmentsand | NI TI AL should be in
DATA segments.

WARNI NG 247 | NDI RECT CALL THROUGH 16 BI T VARI ABLE
Anindirect call through a 16-bit variable is not recommended because a 16-bit
variable can address only the first 64K of a segment.

WARNI NG 248 BASE TYPE HAS ONLY 16 BI TS OFFSET
Use of a 16-bit base specifier is not recommended because it can address only the
first 64K of a segment.

ERROR 251 COWPI LER ERROR | NVALI D OBJECT
ERROR 252 COWPI LER ERROR: SELF NAME LI NK

Chapter 14 Error and Warning M essages

*** ERROR 253 COWPI LER ERROR SELF ATTR LI NK
See source error message number 89.

*** ERROR 254 LIM T EXCEEDED: PROGRAM COWMPLEXI TY
The program has too many complex expressions, cases, or procedures. Break it into
smaller modules.

*** ERROR 255 LIM T EXCEEDED:. SYMBOLS
See Appendix B for the correct limit.

|:| Note

If aterminal error is encountered, program text beyond the point of
error is not compiled. A terminal error message will appear at the
point of error in the program listing.

Fatal Command Tail and Control Error Messages

Fatal command tail errors are caused by an improperly specified compiler invocation
command or an improper control. The errors that can occur are as follows:

COVMAND TAIL TOO LONG

COVWWAND TAIL BUFFER LI M T EXCEEDED AT OR NEAR: xxX
| LLEGAL COMVAND TAI L SYNTAX OR VALUE

UNABLE TO PARSE COMVAND TAI L AT OR NEAR: xxX

| LLEGAL COMVAND TAI L SYNTAX OR VALUE

UNRECOGNI ZED CONTROL | N COMVAND TAI L

I NVOCATI ON COMVAND DOES NOT END W TH <CR><LF>

| LLEGAL COMVAND TAI L SYNTAX

PL/M-386 Programmer's Guide Chapter 14 321

Fatal Input/Output Error Messages

Fatal input/output errors occur when the user specifies an incorrect pathname for
compiler input or output. These error messages are of the form:

PL/ M 386 xxx ERROR --
FI LE:
NAME:
ERROR:

COWPI LATI ON TERM NATED

These errors also occur when the device runs out of space (e.g., the list fileislarger
than the available memory).

Fatal Insufficient Memory Error Messages

Thefatal insufficient memory errors are caused by a system configuration with
insufficient RAM memory to support the compiler.

The errorsthat can occur due to insufficient memory are as follows:

NOT' ENOUGH MEMORY FOR COWPI LATI ON
DYNAM C STORAGE OVERFLOW
NOT' ENOUGH MEMORY FOR CODE GENERATI ON

322 Chapter 14 Error and Warning M essages

Fatal Compiler Failure Error Messages

The fatal compiler failure errors are internal errors that should never occur. If you
encounter such an error, please contact your Radi Sys representative. The errors
falling into this class are as follows:

* % %

* % %

* % %

* % %

* % %

* k%

* % %

* k%

* k%

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

89
90
92
94
95
97
99
163
164
166
167
175
177
203
205
210
211
212
230
251
252
253

COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER
COWPI LER

ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:

ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:

BAD ERROR RECOVERY

MJULTI PLE PARSE ARGS

PARSE ARG STACK UNDERFLOW
PARSE STACK UNDERFLOW
PARSE BUFFER OVERFLOW
SCOPE STACK UNDERFLOW
SEMANTI C UNDERFLOW
SEMANTI C UNDERFLOW

| NVALI D NODE

I NVALI D TREE

SCOPE STACK UNDERFLOW

| NVALI D OPERATI ON

REAL STACK UNDERFLOW
BAD LABEL ADDRESS

BAD CODE GENERATED
OBJECT MODULE GENERATI ON
DEBUG SEGVENT SI ZE OVERFLOW
| LLEGAL FI XUP

I NVALI D | NTERNAL TYPE

| NVALI D OBJECT

SELF NAME LI NK

SELF ATTR LI NK

It is also possible to receive an UNKNOWN FATAL ERROR message.

Insufficient Memory Warning Messages

The following warnings may occur if there are too many symbols for symbol
processing:

NOT' ENOUGH MEMORY FOR FULL DI CTI ONARY LI STI NG
NOT' ENOUGH MEMORY FOR ANY XREF PROCESSI NG
NOT' ENOUGH MEMORY FOR FULL XREF PROCESSI NG

PL/M-386 Programmer's Guide

Chapter 14 323

324 Chapter 14 Error and Warning M essages

PL/M Reserved Words and

Predeclared Identifiers

Introduction

These are reserved words in PL/M-386. They cannot be used as identifiers.

ADDRESS
AND

AT
BASED
BY

BYTE
CALL
CASE
CHARINT
DATA
DECLARE
DISABLE
DO
DWORD
ELSE
ENABLE
END

EOF
EXTERNAL
GO
GOTO
HALT
HWORD
IF
INITIAL

PL/M-386 Programmer's Guide

INTEGER
INTERRUPT
LABEL
LITERALLY
LONGINT
MINUS

MOD

NOT
OFFSET

OR

PLUS
POINTER
PROCEDURE
PUBLIC
REAL
REENTRANT
RETURN
SELECTOR
SHORTINT
STRUCTURE
THEN

TO

WHILE
WORD
QWORD
XOR

Appendix A

325

The following are PL/M-386 identifiers, built-in procedures and predeclared
variables. If one of these identifiersis declared in a DECLARE statement, the
corresponding built-in procedure or predeclared variable becomes unavailable within

the scope of the declaration.

ABS

ADJUSTRPL
BLOCKINPUT
BLOCKINWORD
BLOCKOUTPUT
BLOCKOUTWORD
BUILDPTR

CARRY
CAUSEINTERRUPT
CLEARTASKSWITCHEDFLAG
CONTROLREGISTER
CMPB

CMPW
DEBUGREGISTER
DEC

DOUBLE

FINDB

FINDHW

FINDRB

FINDRHW

FINDRW

FINDW

FIX

FLAGS

FLOAT
GETACCESSRIGHTS
GETREALERROR
GETSEGMENTLIMIT
HIGH

IABS

326 Appendix A

NIL

OFFSETOF

OUTHWORD

OUTPUT

OUTWORD

PARITY
RESTOREGLOBALTABLE
RESTOREINTERRUPTABLE
RESTOREREALSTATUS
ROL

ROR

SAL

SAR
SAVEGLOBALTABLE
SAVEINTERRUPTTABLE
SAVEREALSTATUS
SCANBIT

SCANRBIT

SCL

SCR
SEGMENTREADABLE
SEGMENTWRITABLE
SELECTOROF

SETB

SETHW

SETREALMODE

SETW

SHL

SHLD

SHR

PL/M Reserved Words and Predeclared | dentifiers

INHWORD

INITREALMATHUNITSKIPRB

INPUT

INT

INWORD
LAST
LENGTH
LOCALTABLE
LOCKSET
LOW
MACHINESTATUS
MOVB
MOVBIT
MOVE
MOVHW
MOVRB
MOVRBIT
MOVRHW
MOVRW
MOVW

Identifiers with WORD16 Control

SHRD

SIGN

SIGNED

SIZE

SIZE

SKIPB

SKIPHW
SKIPRHW
SKIPRW

SKIPW
STACKBASE
STACKPTR
TASKREGISTER
TESTREGISTER
TIME

UNSIGN
WAITFORINTERRUPT
XLAT

ZERO

The following identifiers are specific to PL/M-386 when using the WORD16 control.

BLOCKINDWORD
BLOCKOUTDWORD
CMPD

FINDD

FINDRD
INDWORD

MOVD

MOVRD
OUTDWORD
SETD

SKIPD

SKIPRD

PL/M-386 Programmer's Guide

Appendix A

327

Identifiers with MOD486 Control

The following identifiers are specific to PL/M-386 when using the MOD486 control.

BYTESWAP

TESTREGISTER
INVALIDATEDATACACHE
WBINVALIDATEDATACACHE
INVALIDATETLBENTRY

328 Appendix A PL/M Reserved Words and Predeclared | dentifiers

330 Appendix A PL/M Reserved Words and Predeclared Identifiers

PL/M Program Limits

Feature PL/M-386

Indirection level (A BASED on B, unlimited***
B BASED on C)

Length of a string constant 255

Nesting of blocks 18

Nesting of INCLUDE controls
Nesting of LITERALLY invocations

Nesting of structures 32
Number of active cases 255
Number of cases in a DO CASE block 255
Number of DO blocks in a procedure 65536
Number of declared EXTERNAL items o
Number of elements in a factored list 64
Number of EXTERNAL items used *
Number of labels on a statement unlimited*
Number of nested procedures

and DO cases 255
Number of nested typed procedures 18
Number of procedures in a module 1016
Numbers of characters in a line 128
Segment size 4G
Size of LITERALLY string unlimited*
Structure size 4G-1
Symbol capacity 2500

Total number of members in
a structure (at all levels) 128

* Limited by the total size of the symbol table.

PL/M-386 Programmer's Guide Appendix B 331

** | imited by either the number of procedures or the number of symbols, or both.

*** Unlimited means limited only by the amount of free memory allocated by the compiler.

[y

332 PL/M Program Limits

334 Appendix B PL/M Program Limits

Grammar of the PL/M Language

This appendix lists the entire syntax of the PL/M language in Backus-Naur Form
(BNF) notation. Since the semantic rules are not included here, this syntax permits
certain constructions that are not actually allowed. The terminology used in the BNF
syntax has been designed for convenience in constructing concise and rigorous
definitions. Its appearance differs substantially from the main body of the manual.

The notations used here are dightly extended from standard BNF notations. An
elipsis(...) indicates that the syntactic element preceding it can be repeated
indefinitely. The vertical bar (]) separates alternatives. Braces ({ }) enclose required
alternatives and brackets ([]) enclose optional alternatives. The vertical bar within
braces and brackets is also a separator of alternatives.

When items are stacked vertically within brackets, only one of the items can be used.

PL/M-386 Programmer's Guide Appendix C 335

Lexical Elements

Character Sets
<character>::= <apostrophe> | <non-quote character>

<apostrophe>:: =

<non-quote character>::= <letter> | <decimal digit>]| $
<speci al character> | blank

<letter>::= <uppercase letter> | <lowercase letter>

<uppercase letter>>:=A| B| C| D| E| F| G| H| I | J|] K| L
MI N| Ol P QI R S| T|] U] V] W] X|
Y| Z

<l owercase letter>:=a | b | c| d] e| f | g]| h| i]| j | k]1]
mlnjolplaglrls]t]ulv]w]x]|
yl z

<decimal digit>:=0] 12| 2| 3| 4| 5] 6| 7] 8] 9

<special character>::=+ | - | * | [| <| >| =111 -1, 1
(1)1 el _

Tokens

<token>::= <delimter> | <identifier> | <reserved word> |

<nuneric constant> | <string>

Delimiters

<delimter>: := <sinple delimter> | <conpound delimter>

<simple delimter>:=+| - | * | [| <| > =] =:1351.-1.,1]
) | @

<conpound delimter>:=<>| <= | >=| :=

Identifiers

<first id character>::= <letter> |

<identifier> := <first id character> [<letter> |

<decimal digit>] $| _1...

<reserved word> (For alist of reserved words, see Appendix A.)

336 Appendix C Grammar of the PL/M Language

Numeric Constants

<nunmeric constant>::= <binary nunber> | <octal nunber> |
<deci mal nunber> | <hexadeci mal nunber >
<fl oating poi nt nunber>

<bi nary nunber>::= <binary digit> [<binary digit>]| $]... B| Q

<octal nunmber>::= <octal digit> [<octal digit>] $]... { O] Q}
<deci mal nunber>::= <decimal digit> [<decimal digit>] $]... [D
<hexadeci mal nunber>:: = rdgfinaIFFigit> [<hexadeci mal digit>
<floating point nunmber>::= <digit string> <fractional part>

[<exponent part >]
<fractional part>:=[<.digit string>]
<exponent part>:= E [+ | -] <digit string>

<digit string> := <decimal digit> [<decimal digit>] $]...
<binary digit>:=0| 1

<octal digit> := <binary digit>| 2| 3| 4| 5| 6| 7
<decimal digit>::= <octal digit>] 8| 9

<hexadecimal digit>: := <decimal digit>| A| B| C| D| E| F

Strings
<string>::= '<string body elenment> [<string body el enent>]..
<string body el ement>::= <non-quote character> |"

PL/M Text Structure: Tokens, Blanks, and Comments

<pl/mtext>:= <token> | <separator> [<token> | <separator>]..
<separator>::= blank | <coment>
<comment>::= /* [<character>]... */

PL/M-386 Programmer's Guide Appendix C 337

Modules and the Main Program

<conpi | ati on>:: = <nodul e> [EOF]
<nmodul e>: : = <nbdul e nane>: <si npl e do bl ock>
<nmodul e nanme>:: = <identifier>

338 Appendix C Grammar of the PL/M Language

Declarations

<decl aration>::= <decl are statement> | <procedure definition>

DECLARE Statement

<decl are statenent>::= DECLARE <decl are el enent |ist>;
<decl are elenment list>:= <declare el enent>[, <decl are el enent >]. .
<decl are elenent>::= <factored el enent> | <unfactored el ement>

<unfactored element>::= <variable element> | <literal elenent>
<l abel el ement >

<factored el enent>::= <factored variable el enent> |
<factored | abel el enent>

Variable Elements

<vari abl e el enent>::= <variabl e nane specifier> [<array specifier>]
<vari able type> | [<variable attributes>]

<vari abl e nane specifier>::= <non-based nane> |
<based nane> BASED <base specifier>

<non- based nane>::= <vari abl e name>

<based nane>::= <vari abl e name>

<vari abl e nane>::= <identifier>

<base specifier> := <identifier>[.<identifier>]

<variable attributes>::= [PUBLIC] [<locator>][<initialization>]

[EXTERNAL] [<constant attri bute>]

<l ocat or >:: = AT(<expressi on>)

<constant attribute>::= DATA

<array specifier> := <explicit dinmension> | <inplicit dinension>
<explicit dinension> := (<numeric constant>)

<inplicit dinmension>:= (*)

PL/M-386 Programmer's Guide Appendix C 339

<vari abl e type>::= <basic type> | <structure type>

<basic type>::= Address | BYTE | HAORD | DWORD | QAORD | CHARI NT
OFFSET | SHORTINT | INTEGER | REAL | SELECTOR |
PO NTER | OFFSET

Label Element
<l abel element>::= <identifier> LABEL [PUBLI C | EXTERNAL]

Literal Elements

<literal elenment>::= <identifier> LI TERALLY <string>

Factored Variable Element

<factored variable elenent>::= (<variable nanme specifier>
[,<variable name specifier>]...)
[<explicit dinension>] <variable type>
[<variable attributes>]

Factored Label Element

<factored | abel elenment>::= (<identifier> [,<identifier>]...)
LABEL [PUBLI C | EXTERNAL]

The Structure Type

<structure type>::= STRUCTURE (<menber el enent>

[, <menber elenent>]...)
<menber el enent>::= <unfactored nmenber> | <factored nenber>

<unfactored nenber>::= <nenber nanme> [<explicit di mensi on>]
<vari abl e type>

<nmenber nanme>::= <identifier>

<factored menber>::= (<menber name>(, <menber nane>)...)
[<explicit dinension>] <variable type>

340 Appendix C Grammar of the PL/M Language

Procedure Definition

<procedure definition>::= <procedure statenment> [<declaration>...]

[<unit>...] <ending>

<procedure statenent>::= <procedure name> : PROCEDURE

[<formal paraneter list>] [<procedure type>]

[<procedure attributes>];

<procedure name>::= <identifier>
<procedure type>::= <basic type>
<formal paraneter list> := (<fornmal paraneter>

[,<formal paraneter>]...)
<formal paraneter>::= <identifier>

<procedure attributes> := {EXTERNAL | PUBLIC | <interrupt>
REENTRANT} . .

Attributes

AT

<l ocat or>::= AT (<expression>)

INTERRUPT
<interrupt>::= | NTERRUPT

Initialization

<initialization>:= {INITIAL | DATA} (<initial value>
[,<initial value>]...)

<initial value>::= <expression> | <string>

PL/M-386 Programmer's Guide Appendix C

341

Units

<unit>::= <conditional clause> | <do block> | <basic statement> |
<l abel definition><unit>

<basi c statenent>::= <assignnent statenent> | <call statenent> |
<goto statenent> | <null statenment> |
<return statement> |
<m croprocessor dependent statenent>

<scoping statement>::= <sinple do statement> | <do-case statenent> |
<do-whi |l e statenent> |
<iterative do statenent> | <end statenent> |
<procedure statenent>

<l abel definition> := <identifier>:

Basic Statements

Assignment Statement
<assignment statement>::= <left part >=<expressi on>;

<left part>::= <variable reference> [,<variable reference>]...

CALL Statement

<call statement>::= CALL <sinple variabl e>[<paraneter |ist>];
<paraneter list>::= (<expression>[,<expression>]...)
<simple variable> := <identifier> | <identifier> <identifier>

GOTO Statement
<goto statement>::= {GOTO | GO TG <identifier>

Null Statement

<nul |l statenment>::=;

RETURN Statement
<return statenent>::= <typed return> | <untyped return>
<typed return>::= RETURN <expressi on>;

<untyped return>::= RETURN;

342 Appendix C Grammar of the PL/M Language

Microprocessor-dependent Statements

<m croprocessor dependent statenent>::= <disable statenment> |
<enabl e statenent> |
<halt statenent> |
<cause interrupt statenent>

<di sabl e statenent>::= Dl SABLE;
<enabl e statement>:: = ENABLE;
<halt statenent>::= HALT;

<cause interrupt statenent>::= CAUSE$I NTERRUPT (nuneric constant);

PL/M-386 Programmer's Guide Appendix C

Scoping Statements

Simple DO Statement

<sinmple do statenent>::= DO

DO-CASE Statement

<do-case statenment>::= DO CASE <expressi on>;

DO-WHILE Statement

<do-whi |l e statenment>::= DO WH LE <expressi on>;

Iterative DO Statement
<iterative do statenent>::= DO <index part> <to part> [<by part>];

<i ndex part>::= <index variabl e>=<start expressi on>

<to part>::= TO <bound expression>

<by part>::= BY <step expression>

<i ndex vari abl e>;:= <sinple variabl e>
<start expression>::= <expression>
<bound expressi on>::= <expressi on>

<step expression>::= <expression>

END Statement

<end statenent>::= END [<identifier>];

Procedure Statement

<procedure statenent>::= <procedure name> : PROCEDURE
[<formal paraneter list>] [<procedure type>]
[<procedure attributes>];

344 Appendix C Grammar of the PL/M Language

Conditional Clause

<conditional clause>::= <if condition><true unit>
<if condition><true el ement> ELSE
<fal se el ement >

<if condition> := |F <expression> THEN <true unit>
<true elenent>::= [<label definition> ..] <do bl ock>
[<l abel definition> ..] <basic statenent>

<fal se element>::= <unit>

<true unit>::= <unit>

DO Blocks

<do bl ock>::= <sinple do block> | <do-case bl ock> | <do-while block>

<iterative do bl ock>

Simple DO Blocks

<sinmple do bl ock>::= <sinple do statenent>[<declaration>...]
[<unit>...]<endi ng>

<endi ng>::= [<l abel definition>...]<end statenent>

DO-CASE Blocks

<do-case bl ock>::= <do-case statenent> [<unit>...] <ending>

DO-WHILE Blocks

<do-whi |l e bl ock>::= <do-while statement> [<unit>...] <endi ng>

Iterative DO Blocks

<iterative do block>: := <iterative do statement> [<unit>...] <endi ng>

PL/M-386 Programmer's Guide Appendix C 345

Expressions

Primaries

<primary>::= <constant> | <variable reference> | <location reference>
| <subexpressi on>

<subexpressi on>:: = (<expressi on>)

Constants

<constant>::= <nuneric constant> | <string>

Variable References

<variabl e reference>::= <data reference> | <function reference>
<data reference>::= <nane>[<subscript>] [<nenber specifier>]
<subscript>::= (<expression>)

<menber specifier>::= .<nenber name>[<subscri pt>]

<function reference>::= <nane>[<actual paraneters>]

<actual paraneters>::= (<expression>[,<expression>]...)

<menmber name>::= <identifier>

<nane>::= <identifier>

Location References

<l ocation reference>::= @constant list> | @variable reference>
<constant list>::= (<constant>[,<constant>]...)

Operators

<operator>::= <l ogical operator> | <relational operator>

<arithnetic operator>
<l ogical operator>::= AND | OR | NOT | XOR

<relational operator>:=<]| >| <=| >=| <> | =

<arithnmetic operator>:: +| -] PLUS| MNUS | * | / | MXD

346 Appendix C Grammar of the PL/M Language

Structure of Expressions

<expression>::= <|ogical expression> | <enbedded assi gnment>
<enbedded assi gnnent>::= <variable reference> := <l ogical expression>
<l ogi cal expression>::= <logical factor> | <logical expression>

<or operator> <l ogical factor>
<or operator>::= OR | XOR

<l ogi cal factor>::= <logical secondary> | <logical factor>
<and operator> <l ogical secondary>

<and operator>::= AND

<l ogi cal secondary>::= [<not operator>] <logical primry>

<not operator>::= NOT

<l ogical primary>::= <arithmetic expression> [<rel ational operator>

<arithmetic expression>]
<relational operator>:=<| > | <=| >=]| <> | =

<arithmetic expression>.:= <ternmr | <arithmetic expression>
<addi ng operator> <ternp

<addi ng operator>::= + | - | PLUS | M NUS

<termp::= <secondary> | <term> <nmultiplying operator> <secondary>
<mul tiplying operator>::=* | [/ | MDD

<secondary>::= [<unary mnus> | <unary plus>] <prinmary>

<unary mnus>::= -

<unary plus>::= +

PL/M-386 Programmer's Guide Appendix C 347

348

Appendix C

Grammar of the PL/M Language

Differences Between PL/M Compilers

Differences between PL/M-86 and PL/M-80
PL/M-86 differs from PL/M-80 in the following respects:

In addition, the PL/M-80 reserved word ADDRESS is replaced by the PL/M-86
reserved word WORD. PL/M-80 has only the BYTE and ADDRESS data types.
However, PL/M-86 has the following data types. BYTE, WORD, DWORD, | NTEGER,

Support for floating-point arithmetic

Support for signed arithmetic

Addition of REAL, | NTEGER, PO NTER, and SELECTOR data types
Addition of the @location reference operator

Support for nested structures

Expanded set of built-in procedures

REAL, PO NTER, and SELECTOR.

The PL/M-86 rules for expression evaluation are more compl ete than those of
PL/M-80. Other differences stem from the ones noted here. For example, an

iterative DO block operates differently if itsindex variableisan | NTEGER variable.

PL/M-386 Programmer's Guide Appendix D

349

Compatibility of PL/M-80 Programs and the PL/M-86
Compiler

PL/M-80 programs that operate correctly on an 8080 microprocessor can be
recompiled with the PL/M-86 compiler to produce code that will run on an 8086
microprocessor. Y ou may need to edit the PL/M-80 source code to change identifiers
that are PL/M-86 reserved words. (It isnot necessary to change ADDRESS to WORD;
ADDRESS is a PL/M-86 reserved word with the same meaning as WORD.)

Note that where PL/M-86 programs would normally have PO NTER variables and
location references formed with the @operator, PL/M-80 programs have ADDRESS
(WORD) variables and location references formed with the dot operator. PL/M-80
usageis lessrestricted than PL/M-86 usage, because arithmetic operations can be
used on WORD values. In general, the PL/M-86 compiler supports PL/M-80 usage to
provide upward compatibility. Some restrictions affect the types of expressions that
can be used in the AT attribute, the | NI TI AL and DATA initializations, and location
references. See also the discussions of size controls and the dot and @operatorsin
this manual.

Differences between PL/M-286 and PL/M-86

350

PL/M-286 differs from PL/M-86 in the following respects:

e PO NTERand SELECTOR variables cannot be assigned absolute (i.e., constant)
values. Only the equals operator (=) can be used with PO NTER variables. For
SELECTOR variables the logical (AND, OR, NOT, XOR) and relational (<, >, <=, >=,
<>, =) operators can be used.

e Accessto the hardware flag register is provided with the built-in variable FLAGS.

» Four built-in functions have been added to support multiple byte and word input:
BLOCKI NPUT, BLOCKI NWORD, BLOCKOUTPUT, and BLOCKOUTWORD (available to
PL/M-86 via the MOD86| MOD186 control).

* Thetype of the STACKBASE variable has been changed from WORD to SELECTOR.

* New built-in procedures and functions have been added to support the 286
hardware protection model.

e Interrupt procedures are no longer assigned numbers in the source program.
(Thisis done by the 286 system builder.) Interrupt procedures also cannot be
called directly, and the SET$I NTERRUPT and | NTERRUPT$PTR built-ins have
been removed.

* The memory array has been removed.

Appendix D Differences Between PL/M Compilers

Compatibility of PL/M-86 Programs and the PL/M-286
Compiler
PL/M-86 programs that operate correctly on an 8086 microprocessor can be

recompiled with the PL/M-286 compiler to produce code that will run on an 286
microprocessor. The PL/M-86 source code must be edited as follows:

Assignments to the STACKBASE built-in variable must be changed from WORD to
SELECTOR.

All absolute pointer and selector assignments must be changed. (Pointers can be
assigned a zero value using the new built-in function NI L.) Also, relational
operations on pointer and selector values for any operation other than equality
and inequality must be changed.

Theinterrupt numbers on all interrupt procedures must be deleted. Interrupt
vectors will be assigned to these procedures by the 286 system builder. Direct
callsto interrupt procedures must also be changed.

References to the SET$I NTERRUPT, | NTERRUPT$PTR, and MEMORY built-ins
must be removed.

Differences between PL/M-386 and PL/M-286
PL/M-386 differs from PL/M-286 in the following respects:

The string built-ins FI ND, CMP, and SKI P return a value of OFFFFFFFFH for the
not found and string equal results.

Support for 64-bit unsigned scalars.
Support for 8-bit and 32-hit signed scalars.

Addition of HWORD and QWORD unsigned integers, and the CHARI NT, SHORTI NT,
and LONG NT signed integer data types.

ADDRESS is the same as OFFSET (and not as WORD as in PL/M-286).
Support for casting functions.
Support for WORD32 and WORD16 mapping for data type identifiers.

Addition of the WORD32| WORD16 primary compiler controls, which ensure PL/M
data type and language compatibility.

MEDI UMand LARGE segmentation controls no longer indicate unique meaning to
the compiler; MEDI UMis interpreted as SMALL and LARGE isinterpreted as
COVPACT except when LARGE is used to indicate a subsystem whose name is
unknown at compile time.

PL/M-386 Programmer's Guide Appendix D 351

» Severa new built-in procedures and functions have been added to support the
new data types (for example, CMPHW BLOCKI NHWORD; see Chapters 9 and 10),
and some bit-string operations (for example, SCANBI T, MOVBI T).

e Thebuilt-ins CONTROL$REG STER, DEBUGSREG STER, and TEST$SREG STER
have been added to support the Intel 386 microprocessor.

» Thefollowing built-ins have been added to support the Intel486 microprocessor:
BYTE$SWAP, TEST$REG STER, | NVALI DATE$DATA$CACHE,
VB$I NVALI DATE$SDATASCACHE, and | NVALI DATE$STLBSENTRY.

* TheFLAT and MOD486 compiler controls have been added.

Compatibility of PL/M-286 Programs and the
PL/M-386 Compiler

PL/M-286 programs can be compiled with the PL/M-286 compiler to produce code
that will run on Intel 386 and Intel486 microprocessors in 286 microprocessor mode
and interface with PL/M-386 code through | NTERFACE(/ 286) . PL/M-286
programs can be recompiled with the PL/M-386 compiler to produce code that will
run on an Intel386 and Intel 486 microprocessorsin their native microprocessor mode.

352 Appendix D Differences Between PL/M Compilers

Character Set

This appendix liststhe ASCII character set and indicates whether the characters are
part of the PL/M source character set. Table E-1isalist of codes.

Table E-1. Character Set

Dec Hex PL/M Character
0 00 NO NULL
1 01 NO SOH
2 02 NO STX
3 03 NO ETX
4 04 NO EOT
5 05 NO ENQ
6 06 NO ACK
7 07 NO BEL
8 08 NO BS
9 09 YES HT
10 0A YES LF
11 0B NO VT
12 ocC NO FF
13 0D YES CR
14 OE NO SO
15 OF NO Sl
16 10 NO DLE
17 11 NO DC1
18 12 NO DC2
19 13 NO DC3
20 14 NO DC4
21 15 NO NAK
PL/M-386 Programmer's Guide Appendix E

353

| 22 | 16 | nO | syn |

Table E-1. Character Set (continued)

Dec Hex PL/M Character
23 17 NO ETB
24 18 NO CAN
25 19 NO EM
26 1A NO SUB
27 1B NO ESC
28 1C NO FS
29 1D NO GS
30 1E NO RS
31 1F NO us
32 20 YES SP
33 21 NO !

34 22 NO "

35 23 NO #

36 24 YES $

37 25 NO %
38 26 NO &

39 27 YES '

40 28 YES (

41 29 YES)

42 2A YES *

43 2B YES +

44 2C YES ,

45 2D YES -

46 2E YES

47 2F YES /

48 30 YES 0

49 31 YES 1

50 32 YES 2

51 33 YES 3

52 34 YES 4

34 Appendix E Character Set

|53 | 35 | ves |5 |

Table E-1. Character Set (continued)

Dec Hex PL/M Character
54 36 YES 6
55 37 YES 7
56 38 YES 8
57 39 YES 9
58 3A YES

59 3B YES ;
60 3C YES <
61 3D YES =
62 3E YES >
63 3F YES ?
64 40 YES @
65 41 YES A
66 42 YES B
67 43 YES C
68 44 YES D
69 45 YES E
70 46 YES F
71 47 YES G
72 48 YES H
73 49 YES I
74 4A YES J
75 4B YES K
76 4C YES L
77 4D YES M
78 4E YES N
79 4F YES (0]
80 50 YES P
81 51 YES Q
82 52 YES R
83 53 YES S

PL/M-386 Programmer's Guide Appendix E 355

| 84 | 54 | ves |7 |

Table E-1. Character Set (continued)

Dec Hex PL/M Character
85 55 YES U
86 56 YES Y,
87 57 YES w
88 58 YES X
89 59 YES Y
90 5A YES z
91 5B NO [
92 5C NO \
93 5D NO]
94 5E NO A
95 5F YES _
96 60 NO)
97 61 YES a
98 62 YES b
99 63 YES c
100 64 YES d
101 65 YES e
102 66 YES f
103 67 YES g
104 68 YES h
105 69 YES i
106 6A YES j
107 6B YES k
108 6C YES I
109 6D YES m
110 6E YES n
111 6F YES 0
112 70 YES p
113 71 YES q
114 72 YES r

356 Appendix E Character Set

|15 |73 | ves s

PL/M-386 Programmer's Guide Appendix E 357

358

Table E-1. Character Set (continued)

Appendix E

Dec Hex PL/M Character
116 74 YES t
117 75 YES u
118 76 YES %
119 77 YES w
120 78 YES X
121 79 YES y
122 7A YES z
123 7B NO {
124 7C NO |
125 7D NO }
126 7E NO ~
127 7F NO DEL
[y

Character Set

360 Appendix E Character Set

Linking to Modules
Written in Other Languages

Introduction

This appendix describes the calling conventions used by the [x]86 family of
languages. These calling conventions are standardized so that a module written in
PL/M can freely call procedures, subroutines, and subprogramsin other modules
written in other [x] 86 languages.

The information in this appendix is not necessary to call PL/M procedures and
functions from PL/M. See Chapter 8 for information about parameters and
arguments.

The calling conventions and stack and register usage described in this appendix are
needed to call ASM subroutines. Also, the corresponding data types listed at the end
of this appendix are needed to write a subroutine that can pick up the datain the
PL/M program. Refer to the ASM macro assembler operating instructions for more
information about combining PL/M programs with ASM programs and for examples.

The easiest way to ensure compatibility between assembly-language subroutines that
are combined with PL/M programs or procedures isto write a dummy procedure in
PL/M. This procedure would have the same argument list and the same attributes as
the assembly language subroutine. Then compile the PL/M procedure with the
correct segmentation control and the CODE control. Thiswill produce a
pseudo-assembly listing of the generated microprocessor code, which can then be
copied to the prologue and epilogue of the assembly language subroutine.

PL/M-386 Programmer's Guide Appendix F 361

362

With PL/M, separate modules can be written and compiled, and combined at a later
time. Thisalowsyou to create separately tested modules that are combined after
they are internally bug-free. Not all modules haveto be in PL/M: you can choose the
appropriate language for each module. Be sure to combine the modules properly
with abinder or alinker in order to satisfy referencesto externals. Because the [x]86
languages (excluding C) follow the same calling sequence, control will passto a
called module correctly. The standard calling sequence is described in the following
section.) However, the called module might not be able to deal intelligently with the
data passed to it since languages treat some data structures differently.

By specifying arguments in a reference to an external procedure, datais passed to the
external procedure. The number of arguments and the order in which they are
specified must match the number and order of the corresponding parametersin the
external procedures declaration (see Chapter 8).

All arguments for parameters are passed on the microprocessor's stack, or the
numeric coprocessor's register stack, in the order in which they were specified. For
Intel386 and Intel 486 microprocessors, the space occupied by a parameter pushed on
the microprocessor's stack is always a multiple of four bytes. Functions return
non-real values in aregister, and REAL values on the top of the numeric coprocessor's
register stack.

Appendix F Linking to Modules Written in Other Languages

Calling Sequence

The calling sequence for each procedure activation places the procedure's actual
parameters (if any) on the stack and then activates the procedure with a CALL
instruction.

Parameters are placed on the microprocessor's stack or the numeric coprocessor's
register stack in left-to-right order. Because the stack grows from higher locations to
lower locations, the first parameter occupies the highest position on the stack, and the
last parameter occupies the lowest position. Stack representation for the different
PL/M parametersis described in Table F-1.

Table F-1. Stack Representation for PL/M Parameters

Intel386 and Intel486 CPU
Parameter Stack Representation
BYTE Four bytes, with the higher three bytes undefined.
CHARINT Four bytes, with the higher three bytes undefined.
HWORD Four bytes, with the high two bytes undefined.
SELECTOR Four bytes, with the high two bytes undefined.
SHORTINT Four bytes, with the high two bytes undefined.
WORD Four bytes, with no undefined bytes.
OFFSET Four bytes, with no undefined bytes.
INTEGER Four bytes, with no undefined bytes.
REAL Four bytes, with no undefined bytes.
DWORD Eight bytes with the high 32 bits pushed first and
the low 32 bits 16 bits pushed second.

For Intel 386 and I ntel486 microprocessors, a POl NTER parameter in the

SMALL(ROM and COVPACT cases consists of a selector and an offset. The 16-bit

selector is pushed first, followed by the 32-bit offset.

The left-most seven REAL parameters are passed on the numeric coprocessor's stack.
If more than seven REAL parameters are present, the rest (after the left-most seven)
are passed on the microprocessor's stack and are intermixed with the other non-real
parameters in the order in which all parameters were declared.

After the parameters are passed, the CALL instruction places the return address on the
stack. Inthe SMALL and COVPACT cases with local (or non-exported) procedures, this
addressis a 32-hit offset (the contents of the EIP register) and occupies four bytes on

the stack.

PL/M-386 Programmer's Guide Appendix F 363

For procedures exported from a subsystem, the return addressis a PO NTER value
consisting of a selector and offset; the return address is placed on the stack in the
same way a POl NTER parameter is passed. The 16-bit segment selector (contents of
the CSregister) is pushed first, then the 32-bit offset (EIP register contents) is
pushed.

For all of the microprocessors, control is passed to the code of the procedure by
updating the EIP register. For procedures exported from a subsystem, the CS register
is also updated.

Figure F-1 shows the stack layout at the point where the procedure gains control.

Higher <——@ Stack Marker (BP Reg. Contents)

Locations
Parameter O

Parameter 1 Each Parameter Occupies 2 or 4

Bytes - See Text

Stack
Counter

Parameter N

REtUM S © Seloct } Absent In Small Or Compact
L M eturn Segment Sefector Program Or Local Procedure
ower Return Offset
Locations <——® Stack Pointer (SP Reg. Contents)

0SD540

FigureF-1. Stack Layout at Point Where
a Non-interrupt ProcedureisActivated

364 Appendix F Linking to Modules Written in Other Languages

Procedure Prologue

In compiling the procedure itself, the compiler inserts a sequence of instructions
called the procedure prologue. The procedure prologue varies depending on the type
of procedure being compiled asfollows:

If the procedure has the PUBLI C attribute and the program sizeis LARGE, or if it
is exported from a subsystem, the content of the DS register is placed on the
stack and is then updated to the data segment of the procedure. ESisset to DS.

If any parameter of the procedureis referenced by a nested procedure, all
parameters are copied from the stack to space reserved for them in the data
segment.

The stack marker offset (EBP register contents) is placed on the stack, and the
current stack pointer (ESP register contents) is used to update the BP or EBP
register.

If the procedure has the REENTRANT attribute, spaceis reserved on the stack for
any variables declared within the procedure (this does not include based
variables, variables with the DATA attribute, or variables with the AT attribute).

Control then passes to the code compiled from the executable statementsin the
procedure body. Figure F-2 shows the stack layout at this point.

Higher
Locations

Stack Counter

\4

Lower
Locations

%

Within A Nested Procedure

Pérameter N

Absent In Small Or Compact

Return Segment Selector Program Or Local Procedure

Return Offset

Only In Public Procedure In

Parameter O
Parameter 1 Absent if Any Parameter is Referenced
} Large Program

Old Data Segment Selector

—1—* Old Stack Marker

<—® New Stack Marker (BP Reg. Contents)

Only In Reentrant Procedure

This Space May Be Used Stack Pointer May Change
During Procedure Execution During Procedure Execution

0SD541

Figure F-2. Stack Layout During Execution of a Non-interrupt Procedure Body

PL/M-386 Programmer's Guide Appendix F 365

366 Appendix F Linking to Modules Written in Other Languages

Procedure Epilogue

To return from the procedure, the compiler inserts an instruction sequence called the
epilogue. This accomplishes the following:

« |f the compiler has used stack locations for temporary storage or local variables
during procedure execution, the stack pointer (the ESP register) isloaded with
the stack marker (the EBP register), discarding the temporary storage.

e Theold stack marker is restored by popping the stored value from the stack into
the EBP register.

» |f the procedure has the PUBLI C attribute and the program size isLARGE or it is
exported from a subsystem, the old data segment selector is restored by popping
the stored value from the stack into the DS register. Additionally, ESisset to
DS.

e The stored return address (a 32-hit offset) is popped into the EIP register. If the
procedure is exported, the stored return address selector is also popped into the
CSregister. Any parameters stored on the stack are discarded.

PL/M-386 Programmer's Guide Appendix F 367

Register Usage

368

Table F-2 provides a summary register usage.

Table F-2. Summary of the Intel386 Microprocessor Register Usage

Register Must Preserve Usage
EAX No Return BYTE (AL), HWORD (AX), WORD,
DWORD, CHARINT (AL), SHORTINT
(AX), INTEGER, SELECTOR (AX),
POINTER offset portion, and OFFSET.
EBX No** (Yes, when using -
C language interface.)
ECX No --
EDX No Return upper half of DWORD values,
POINTER segment selector.
ESP Yes* Stack pointer
EBP Yes Stack marker
ESI No (Yes when using -
C language interface.)
EDI No (Yes when using -
C language interface.)
FLAGS No --
Cs Yes Called procedure's code segment.
DS Yes Caller's data segment.
SS Yes Caller's stack segment.
ES Yes Caller's data segment.
FS, GS No -

* ESP must be adjusted so that all arguments are removed from the stack on return (except when using
C language interface.

** The C language interface referred to in the table is the variable parameter list format.

Appendix F Linking to Modules Written in Other Languages

The numeric coprocessor's stack contains the first seven REAL arguments passed by
the calling program. The numeric coprocessor's status word is unknown and does not
need to be saved. If the status word is changed, the numeric coprocessor's mode
word must be saved on entry and restored before exit.

If an assembly language subroutine alters the DS or SS registers, and expectsto be
called by a PL/M program, the subroutine must save the contents of these registers
upon entry and restore them before returning to the PL/M program. Additionally, the
CS and ES registers must be preserved by the called procedure.

PL/M uses the ESP and EBP registers to address the stack. If a called assembly
language subroutine uses the stack register, the subroutine must save the contents of
the register on entry and restore the register's contents before returning control to the
PL/M program. Before returning, the called subroutine must also adjust the ESP
register to remove all parameters from the microprocessor's stack. Additionally, the
CS and ES registers must be preserved by the called procedure.

The EAX, EBX, ECX, EDX, ESI, EDI, FS, and GS registers do not need to be
preserved. A called subroutine can freely use these registers.

An assembly language program calling a PL/M procedure cannot expect the contents
of the general-purpose registers (EBP and ESP) to be preserved. If the contents of
these registers are needed, they must be saved prior to calling the PL/M procedure.

Table F-3 summarizes the microprocessor registers used to hold simple data types
that are returned by typed procedures.

PL/M-386 Programmer's Guide Appendix F 369

370

Table F-3. RegistersUsed to Hold Simple Data Types

Intel386 Microprocessor

Procedure Type Register
BYTE AL
CHARINT

HWORD AX
SHORTINT

DWORD DX:AX
INTEGER AX
WORD EAX
OFFSET

INTEGER

DWORD EDX:EAX
POINTER (SHORT, SMALL RAM) EAX
POINTER (LONG, EDX:EAX
COMPACT,

SMALL ROM)

SELECTOR AX

REAL Top of the numeric coprocessor's stack.

Appendix F

Linking to Modules Written in Other Languages

Segment Name Conventions

Tables F-4 summarizes the segmentation of a subsystem under the SMALL and

COVPACT program controls. The table shows the name of the segment in which each
type of program section is stored for each control and for subsystems.

Table F-4. Summary of PL/M-386 Segment Names

Model SubModel Code Data Const Stack
SMALL IN DATA CODE32 DATA DATA DATA
IN CODE CODE32 DATA CODE32 DATA
SMALL IN DATA S CODE32 DATA DATA DATA
(subsystem) IN CODE S CODE32 DATA S _CODE32 DATA
COMPACT IN DATA S CODE32 S _DATA S _CODE32 STACK
IN CODE S CODE32 S DATA S CODE32 STACK
COMPACT IN DATA S CODE32 DATA S DATA STACK
(subsystem) IN CODE S CODE32 DATA S _CODE32 STACK

Notes:

CODE32 denotes a segment name composed of CODE32.

DATA denotes a segment name composed of DATA.

S_CODE32 denotes a segment hame composed of the subsystem name and CODE32.

S_DATA denotes a segment name composed of the subsystem name and DATA.

PL/M-386 Programmer's Guide

Appendix F

371

C Language Compatibility

TheiC-n86 calling conventions, procedure prologue and epilogue, and register usage
differ from other Intel n86 languages. However, the | NTERFACE control, described
in Chapter 11, allows C proceduresto call procedures written in PL/M and vice versa.

The procedure prologue and epilogue and register usage for the VPL (variable
parameter list) calling convention for iC-n86 differ from other n86 languages. These
differences are as follows:

372

All parameters (real and non-real), are passed on the microprocessor's stack.
The last parameter is pushed first and the first parameter is pushed last so that
the first parameter isin the lowest memory location.

Anintegral parameter that is four bytes must be zero or sign-extended, as
required by the C language.

The space occupied by a parameter pushed on the microprocessor stack is always
amultiple of four bytes for Intel386 and Intel486 microprocessors.

Both short (floating-point) and long (double) real parameters are pushed aslong
real parameters, asrequired by the C language. Therefore, all real parameters
passed from or to iC-386 procedures must be typed as 64-bit REAL in the
PL/M-386 code.

The calling procedure pops the parameters from the microprocessor stack after
the called procedure has returned. Except when the called procedureisa
function returning real results, the called procedure must not leave any entriesin
the numeric coprocessor stack.

The ESP, EBP, CS, DS, ES, and SS registers should be preserved by the called
procedure. (They are used for global storage). The EBX, ESI, and EDI registers
should also be preserved by the called procedure. These registers can be used by
the caller for local data storage.

The EAX, ECX, EDX, FS and GSregisters do not need to be preserved by the
called procedure.

Appendix F Linking to Modules Written in Other Languages

Design Guidelines

The following guidelines should be followed when combining C and PL/M modules.
These guidelines are demonstrated in the code example which follows afterwards.

1. ldentify all C functions which use the VPL calling convention. Library function
calling conventions are found by checking the .h include files.

2. Usethe PL/M-386 INTERFACE compiler control to allow the PL/M compiler
control to generate VPL code.

3. All PL/M functions should be in a"#pragma fixed-params("plmf,...") list. This
will guarantee that any call to a PL/M function will use the FPL calling
convention.

4. Compileall filesand link them in the same way C files are linked.

Code Example

This code example, run under the iRM X Operating System, discuses how a PL/M
application makes C function calls. An example of thisiswhen alarge PL/M
application is being converted to C. Mixing C and PL/M modules alows the
converted C modules to be debugged one at atime after conversion. Another
exampleisaPL/M application which needs access to the extensive I/O routines
availablein C libraries.

The PL/M example, named ptest.plm, shows how a PL/M function calls a C function
that usesthe VPL calling convention. It also includes a C procedure called by the C
example named candplm.c, which the FPL calling convention.

The code example uses the $| NTERFACE control to signal the compiler that printf is
a C function that uses the VPL convention. Any function that has the "varparams'
attribute should be included in the $INTERFACE list, such asthe printf function. C
functions compiled under the iC-386 C compiler use the FPL convention by default
and should not be included in the "varparams’ list.

PL/M-386 Programmer's Guide Appendix F 373

/*
/*

/*

/*

/*

/*

| *
SO

PL/ M nodul e - ptest.plm?*/

Only printf uses the VPL convention */
$1 NTERFACE(C=pri nt f)

ptest: DO

Uses VPL convention */
printf: PROCEDURE EXTERNAL;
END printf;

Uses FPL convention */
c_call _pl mfunct: PROCEDURE (i) WORD EXTERNAL;
DECLARE i WORD;
END c_cal |l _pl mfunct;

Uses FPL convention */
c_fpl _funct: PROCEDURE (i) WORD EXTERNAL;
DECLARE i WORD;
END c_f pl _funct;

This procedure is called by a C function which uses FPL */
p!l mpr oc: PROCEDURE (i) WORD PUBLI C;
DECLARE i WORD;
i =i-1;
The string in the PL/Mcall to printf term nates with ODH, OAH, OOH
it conforns to C string conventions. These synbols cause a <CR>,

<LF>, and C end of string. */

/*

/*

374

Call to VPL C function. */
CALL printf(@O0ODh,'In plnproc, i = %', 0Dh, OaH, O0H),i);

Call to FPL C function */
i = c_fpl_funct(i);
RETURN(i) ;

END pl npr oc;

Appendix F Linking to Modules Written in Other Languages

/* This main function is witten in PL/Mand may be used as a
substitute for a C main nodul es. The function calls printf to
denonstrate how PL/Mcalls a C function which uses VPL calling
conventions. It also calls a C function which uses FPL calling
conventions. */

mai n: PROCEDURE PUBLI C,

DECLARE i WORD, j WORD, k DWORD;
i =5

k = 12345678H;

/* Call to VPL C function */
CALL printf(@' The value of i = %, and k =
%H , 0Dh, OaH, 00H) , i, k) ;

/* Call to FPL C function */

j = c_call_plmfunct(i);

CALL printf(@O0Dh,' The value of j = %', OaH O0H)j);
END mai n;

END pt est;

PL/M-386 Programmer's Guide Appendix F

375

The following C example, named candplm.c, demonstrates how a PL/M call is made
from a C application.

/* C module - candplmec */

#i ncl ude <stdi o. h>
#i ncl ude <reent. h>
#i ncl ude <l ocal e. h>

/* Sets FPL for PL/M functions */
#pragma fixedparans("pl nmproc")
extern unsigned int plnproc(unsigned int);

/* The C function c_fpl_funct uses the FPL calling conventions. The
PL/ M function "plnproc" calls this function to denonstrate how a PL/ M
procedure calls a C function which uses the FPL calling convention. */

unsi gned int

c_fpl _funct(unsigned int i)

{

i -=1;

printf("c_fpl_funct, i =9%\n",i);
return (i);

}

/* The C function call_plmfunct uses the FPL calling conventions.
This function calls "plnproc" to denmonstrate how a C function calls a
PL/M function. */

unsi gned int
c_call _plmfunct(unsigned int i)

{
i -=1;
printf("c_call_plmfunct, i = %\n",i);

/* Call to PL/M function */

i = plnproc(i);
return(i);

}

376 Appendix F Linking to Modules Written in Other Languages

Compiling C and PL/M Modules

The submit file, named plmsub.csd, contains the following command syntax to
compile and bind ptest.plm and candplm.c.

i c386 candpl mc debug code conpact
pl m886 ptest. pl mdebug code conpact
bnd386 /intel/obj/cstart32.0bj, &
ptest.obj, candpl mobj, &
lintel/lib/clibxf32.1ib &
renameseg (code32 to code) &

segsi ze (stack(2400H)) &

debug obj ect (pl nsub) &

r c(dm(4000h, OFFFFFh))

To invoke the submit files, enter the following command at the iIRMX "-" prompt:
- submit plnsub over plnsub.out echo

When the processing stops and the prompt has returned, enter the following to run the
example:

- pl nsub

The output of the code example follows:

The value of i =5, and k is 12345678H
c_call _plnfunct, i =4

In plmproc, i = 3

c_fpl _funct, i =2

The value of j = 2

Note that the variable "i" changes asit is passed as a parameter. Thevalueisinitially
set to 5. Asit passes through each function, it is decremented and its new valueis

displayed.

PL/M-386 Programmer's Guide Appendix F 377

378 Appendix F Linking to Modules Written in Other Languages

Run-time Interrupt Processing

General Information

Interrupts can be initialized when the CPU receives a signal on its maskable interrupt
pin from a peripheral device, or when control istransferred to an interrupt vector by
the CAUSE$| NTERRUPT statement. |f the program runs under an operating system
that traps interrupts, the information in this appendix may not be applicable.

Note that the CPU does not respond to the interrupt signal unlessinterrupts are
enabled. The PL/M-386 compiler do not generate any code to enable or disable
interrupts at the start of the main program.

If interrupts are enabled and vectored through an interrupt gate, the following actions
take place:
1. The CPU completes any instruction currently in execution.

2. The CPU issues an acknowledge interrupt signal and waits for the interrupting
device to send an interrupt number.

3. The CPU flag register is placed on the stack (occupying two bytes of stack
storage).

4. Interrupts are disabled by clearing the I F flag.

5. Single stepping is disabled by clearing the TF flag.

6. The CPU activates the interrupt procedure corresponding to the interrupt number
sent by the interrupting device.

7. When that procedure terminates, the stack is automatically restored to the state it
was in when the interrupt was received, and control returns to the point where it
was interrupted.

The mechanism for this activation and restoration are described in the following
sections. If interrupts are vectored through a trap gate, the fourth step is not
performed; if they are vectored through atask gate, all seven steps are replaced by a
task switch.

See also: interrupt processing, System Concepts

PL/M-386 Programmer's Guide Appendix G 379

The Interrupt Descriptor Table

Theinterrupt descriptor table (IDT) contains descriptors that vector interrupts, traps,
and protection exceptions to their respective handling routines.

These descriptors are called gates; they can be either interrupt gates, trap gates, or
task gates. Interrupt gates and trap gates point to a particular entry point in the
address space of the interrupted user (i.e., to an interrupt procedure). Task gates
point to an interrupt processing task state segment (TSS).

BLD386 sets up the IDT and to assign numbers to vector the individual gatesto the
appropriate interrupt procedure or task. For more information, see the Intel 386
Family Utilities User's Guide.

The IDT can hold up to 256 gates. Gates 0 through 31 are reserved for internal use.

Procedures and Tasks

For Intel 386 and Intel486 microprocessors, when an interrupt is vectored through an
interrupt gate, all registers must be pushed onto the stack, and interrupts are
automatically disabled. (Interrupts must be explicitly enabled.) The interrupt
procedure then begins execution. The interrupt procedure ends with an IRET
instruction that acts asanormal return. Hence, execution starts at the beginning of a
procedure each time it is entered.

Theinterrupt process differs for an interrupt vectored through atask gate. The
registersfor the interrupted task are saved in the TSS, and the microprocessor's
registers are loaded from the TSS of the interrupt task. Thus, no explicit register
saving is necessary. Interrupts are enabled or disabled depending on the flag settings
in the interrupt task's TSS during execution of the interrupt task (unless explicitly
changed). This enablesinterruption of the interrupt task. However, a protection
violation occursif an interrupt task is busy and an attempt is made to vector through
the busy interrupt task.

Theinterrupt task also ends with an IRET instruction, but in this case it acts as a task
switch, saving the status of the outgoing interrupt task in memory. When the task is
re-entered, execution continues at the first instruction after the IRET instruction.

380 Appendix G Run-time Interrupt Processing

Interrupt Procedure Prologue and Epilogue

An interrupt procedure begins by declaring its name and its PUBLI C or EXTERNAL
attribute. The following interrupt procedure declaration is the correct form for
PL/M-386:

HANDLER: PROCEDURE | NTERRUPT PUBLI C;

This alerts the compiler to create a code prologue appropriate to aroutine that will, in
general, be invoked by interrupts.

At the beginning of each interrupt procedure, the interrupt procedure prologue
inserted by the compiler accomplishes the following tasks:

1

Pushes the CPU registers onto the stack in the following order: EAX, ECX,
EDX, EBX, ESP, EBP, ESI, EDI.

Pushesthe ES, FS, GS, and DS register content on the stack.

If the interrupt procedure has the PUBLI C attribute, and if it is exported from a
subsystem, the contents of the DS register is placed on the stack and is then
updated to the data segment of the procedure. In addition, ESis set to DS.

The stack marker offset (EBP register contents) is placed on the stack, and the
current stack pointer (ESP register contents) is used to update the EBP register.

If the procedure has the REENTRANT attribute, spaceis reserved on the stack for
any variables declared within the procedure. (This does not include based
variables, variables with the DATA attribute, or variables with the AT attribute.)

Note

The compiler may temporarily use the DS register and the ES
register in some cases (e.g., string built-ins), but always restoresiit.
Take care to note this possibility when writing an interrupt
procedure in assembly language.

PL/M-386 Programmer's Guide Appendix G 381

382

At the point where the interrupt procedure prologue gains control, the stack layout is

as shown in Figure G-1.

Higher
Locations

Flag Reg. Contents

} 2 Bytes

Return Segment Selector

Stack
Counter

Present Regardless Of
Program Size

Return Offset

Lower
Locations

<—@ Stack Pointer

0OsSD542

Figure G-1. Stack Layout at Point Where an Interrupt Procedure Gains Control

Appendix G

Run-time Interrupt Processing

After the interrupt procedure prologue is executed (at the point where the code
compiled from the procedure body gains contral), the stack layout is as shown in
Figure G-2.

Higher

Locations

A Return Segment Selector Present Regardless of
(In Interrupted Program) Program Size

Flag Reg. Contents 2 Bytes

Return Offset

EAX Reg. Contents
ECX Reg. Contents
EDX Reg. Contents
EBX Reg. Contents
ESP Reg. Contents CPU Status Information
EBP Reg. Contents
ESI Reg. Contents
EDI Reg. Contents
ES Reg. Contents

DS Reg. Contents

Stack Counter

. J Old Stack Marker New Stack Marker

(BP Reg. Contents)

Local Variables

Only In Reentrant Procedure

This Space May Be Used During

Procedure Execution

Vi i Stack Pointer May Change
During Procedure Execution

Lower .
Locations

OMO02063

Figure G-2. Stack Layout during Execution of Interrupt Procedure Body

PL/M-386 Programmer's Guide Appendix G 383

The return from the procedure body is called the interrupt procedure epilogue; it
restores the stack to the state it was in before the interrupt occurred. The interrupt
procedure epilogue contains the following steps:

1. If the compiler has used stack locations for temporary storage or local variables
during procedure execution, the stack pointer (the ESP register) isloaded with
the current stack marker (the EBP register) discarding the temporary storage.

2. Theold stack marker is restored by popping the stored value from the stack into
the EBP register.

3. Theold data segment is restored by popping the stored value from the stack into
the DS register. This step will occur only if the procedure has a PUBLI C
attribute and it is exported from a subsystem.

4. The stack is popped into the CPU registersin the following order: EDI, ESI,
EBP, ESP, EBX, EDX, ECX, EAX. Note that the ESP register valueis
discarded.

5. AnIRET ingtruction is executed to return from the interrupt procedure restoring
the IP or EIP, CS, and the flag register contents from the stack.

At this point, the stack has been restored to the state it was in before the interrupt
occurred, and processing continues normally.

Interrupt Tasks

384

A task on the microprocessor is asingle thread of execution; that is, a stream of
instructions and data with atask stateimage. The task state image is made up of the
contents of the task registers, the task's status word, and the virtual locations of the
task's instructions and data segments.

Tasks are initiated with atask switch operation. The CPU stores the task state image
of the outgoing task (held in the processor registers) in memory, and loads the task
state image of the incoming task into task registers. Because all the registers are
reloaded and a new address space is entered, it isimpossible to jump directly from
one task to another.

Interrupt tasks are frequently written as one loop. At the beginning is the code
needed to initialize the task, followed by the steps needed to handle the interrupt.

Call the WAl TSFOR$I NTERRUPT built-in procedure (see Chapter 10) to generate an
IRET instruction. When the task is activated again, execution continues at the
instruction following the IRET, with al the registers unchanged. At the end of the
interrupt task, use a GOTO statement to loop back to the top of the interrupt task.

Thus, an interrupt task never terminates, unless an operating system function removes
the task.

Appendix G Run-time Interrupt Processing

Use of the WAl TSFOR$I NTERRUPT procedure is demonstrated in the following
example. Thistask isdesigned to handle messages that arrive in pieces, each one
being preceded by an interrupt.

TASK: DO
DECLARE | ocal vari abl es;
| ocal procedures;
NEVSMESSAGE:
CALL | NI TI ALI ZESMESSAGE$PROCESSI NG,
DO FOREVER;
CALL WAI TFORI NTERRUPT;
/* IRET to wait for next interrupt, which continues here */
CALL PROCESS$PI ECESOF$SMESSAGE;
| F LAST$PI ECE$OF$MESSACGE$S THEN DO,
CALL TERM NATE$MESSAGE$PROCESSI NG
CALL WAl T$FORS$I NTERRUPT;
/* IRET to wait for start of next message */
GOTO NEWBMESSAGE
END;
END;
END TASK;

PL/M-386 Programmer's Guide Appendix G 385

Exception Conditions in REAL Arithmetic

Six exception conditions can occur during normal numeric operations:

386

Invalid operation
Denormalized operand
Zero divide

Overflow

Underflow

Precision

These exceptions are discussed in the following sections. In each case, only afew of
the possible causes are described because most are not likely to occur with PL/M
usage. To perform sophisticated numeric processing of extreme precision and
flexibility, refer to the microprocessor-specific programmer's reference manual.

The six exceptions and their default responses are summarized in Table G-1.

Asthe following sections indicate, the masked, default response to most exceptions
will provide the least abrupt, most appropriate action for PL/M applications. Many
real math exceptions that occur in other processors will not occur with the numeric
coprocessor because of the extended range of intermediate resultsit holds. The soft
recovery of gradual underflow (described in the denormalized exception section) also
extends the range of permissible execution rather than reporting a hard-failure
condition.

Appendix G Run-time Interrupt Processing

Table G-1. Exception and Response Summary

Exception Masked Response Unmasked Response
Invalid In one operand is NAN, return it; ~ Request interrupt. (Numeric
Operation if both are NAN's return NAN with coprocessor stack unchanged.)
larger absolute value; if neither is
NAN, return indefinite NAN.
Zero divide Return infinity signed with Request interrupt. (Numeric

"exclusive or" of operand signs.

coprocessor stack unchanged.)

Denormalized

Memory operand: proceed as
usual. Register operand: convert
to valid unnormal, then
reevaluate for then reevaluate for
exceptions.

Request interrupt. (Numeric
coprocessor stack unchanged.)

Overflow

Return properly signed infinity.

Register destination: adjust
exponent, store result (see note),
request interrupt. Memory
destination: request interrupt.

Underflow

Denormalize result.

Register destination: adjust
exponent, store result (see note),
request interrupt. Memory
destination: request interrupt.

Precision

Return rounded result.

Return rounded result, request
interrupt.

Note:

On overflow, 24,576 decimal is subtracted from the true result's exponent. This forces the exponent back into
range and enables a user exception handler to ascertain the true result from the adjusted result that is returned.
On underflow, the same constant is added to the true result's exponent.

Programmers who use the recommended setting of the REAL mode word (see Chapter
10) need to handle only the invalid exception. Study of the other exception
conditionsis advised, however, to gain a general understanding of their use.

PL/M-386 Programmer's Guide

Appendix G

387

Invalid Operation Exception

This exception generally indicates a program error. It could be caused by referencing
an uninitialized REAL variable or by referencing alocation that does not contain a
REAL value (as might occur with an out-of-range subscript for a REAL array).
Attempting to take the square root of a negative number or to store a number too
large for integer format would also generate this exception.

Another interpretation of this exception is stack error. This may be caused by failing
to restore the math unit status before returning from an interrupt routine that had
saved the status. Another cause is the generation of more than eight intermediate
results during REAL arithmetic, which can arise if REAL procedure function calls are
nested too deeply. The compiler ensures that no single procedure does this, but
cannot check what may occur only at run time. This exception can also occur when
REAL functions (typed procedures) are used as operands within longer REAL
expressions. For example:

DELTA$1 = ALPHA * (BETA/GAMMA) + CH (PSI, RHO PI)

where all these names are typed REAL and CHI is some previoudly declared REAL
function having three parameters.

The following islesslikely to cause an exception condition:

EPS = CH (PSI, RHO, PI)
DELTA$1 = ALPHA * (BETA/ GAMMR) + EPS

because all REAL arithmetic is performed using the numeric coprocessor's stack,
which has eight registers. The first seven REAL parameters supplied in procedure
cals are placed on this stack. If the procedure istyped (i.e., invoked as a function), it
can be embedded as one operand within alonger REAL expression.

Because the evaluation of such an expression also involves the use of this stack for
prior and subsequent arithmetic operations, stack overflow may occur. This overflow
amounts to unpredictable destruction of origina parameters or intermediate results.

It becomes more likely as the complexity of REAL expressions containing REAL
functionsisincreased. Thus, it issafer to use an assignment statement first to store
the function'svalue in areal variable; then use that variable in the larger expression.

If stack error might apply, modify the code for the effected procedures to call the
built-in procedures SAVE$SREAL$STATUS and RESTORESREAL$STATUS astheir first
and last operations, respectively.

388 Appendix G Run-time Interrupt Processing

The masked (default) response is to set the result to one of the special bit patterns
called Not-A-Number (NANSs), usually the indefinite value, the smallest NAN
representable in the specified precision. 1t also sets bit 0 of the REAL error byte.

If bit 0 of the REAL mode word is 0 (invalid exception unmasked), an interrupt
occurs, transferring control to the user-written interrupt handler.

Denormal Operand Exception

This condition arises when numeric operations have resulted in a number whose
exponent is literally zero and whose significand is non-zero, or have resulted in a
number whose significand does not begin with aone. Denormals usualy arisein
response to masked underflow. Gradual underflow is the masked, default response to
underflow. A small denormal added to alarge normal REAL number can give an
acceptable, in-range answer if the denormal exception is masked. In practice,
denormals are very rare since intermediate results are kept in temporary real format
(15-bit exponent).

This condition causes bit 1 of the REAL error byteto be set to 1. If bit 1 of the REAL
mode word is 1, the response described previously occurs. If bit 1is0, an interrupt
occurs, transferring control to the user-written interrupt handler.

Zero Divide Exception

This condition arises when in the course of some REAL computation a divisor turns
out to be zero. The masked response, when bit 2 of the REAL mode word is 1, isto
return infinity appropriately signed. If bit 1is0, an interrupt occurs, giving control to
the user-written interrupt handler. In either case, bit 2 of the REAL error byteis set to
1

Overflow Exception

This error occurs when areal result istoo large for the format in use. For assigning
to REAL scalar types, it occursif the result is greater than about 3.37 x 10**38. For
intermediate REAL computations, it occursif the result is greater than about
10**4932. The overflow exception can arise during assignment, addition,
subtraction, multiplication, division, or conversion to integer.

The masked, default response (bit 3 of REAL mode word = 1) isto return infinity
(signed if affine mode is set) and set bit 3 of the REAL error byteto 1. Unmasked
overflow must go through a user-written interrupt handler.

PL/M-386 Programmer's Guide Appendix G 389

Underflow Exception

Underflow exception is caused by an exponent too small for the format in use. For
REAL assignments, it occurs if the exponent isless than -127; and for intermediate
resultsif the exponent islessthan -16383. Underflow can be caused by the same
type of REAL operations as overflow.

The masked, default response (bit 4 of REAL mode word = 1) isto use the denormal
number created by adjusting the very small result. It adjusts the significand, moving
significant digits off to the right and raising the exponent until the latter becomes
non-zero. For example, with single precision values, a 24-bit significand of .01 with
an exponent of zero implies the number 1 x 2**-129 because a zero exponent in this
format means -127. If the denormal exception is masked, this number would be
adjusted into a significand of .001 with an exponent of 1 (i.e., 0.001 x 2**-126), prior
to operation. This number would then be available for use in subsequent REAL
operations that might yield valid results. Zeroisreturned if it isthe rounded result.
Bit 4 of the REAL error byteisset to 1. Unmasked underflow must go through a
user-written interrupt handler.

Precision Exception

390

This error occurs when the result of an operation isinexact (i.e., rounded) or when an
overflow exception occurs. No special action is performed by a masked response (bit
5 of REAL mode word = 1) other than setting bit 5 of the REAL error byte. Unmasked
response is as chosen by the user.

Appendix G Run-time Interrupt Processing

Writing a Procedure to Handle REAL Interrupts

This section partialy summarizes the information pertaining to interrupts,
floating-point usage, and procedures. (Additional facilities for handling REAL
interrupts may be provided by the operating system, or can be performed with the
system builder.)

An interrupt-handling procedure may, for example, begin asfollows:
HANDLER: PROCEDURE | NTERRUPT PUBLI C,

If HANDLER will do any REAL arithmetic or assignments, itsfirst executable
statements should be of the form:

ERR$I NFO = GET$REALS$ERROR,;
/* must decl are ERR$I NFO& BYTE earlier */

or:

CALL SAVE$SREALS$STATUS (@ocal _Save_Area);
/* also declare earlier */

Each procedure clearsthe error byte. The latter procedure also clears out the REAL
stack. Thus, after either procedure is used, the REAL error byte no longer contains the
flagged cause of the exception condition that invoked HANDLER.

Using SAVESREAL$STATUS isaway of avoiding possible stack errors from
cumulative usage. This enables errorsin HANDLER to be detected independently of
the originating exception condition. It also enables HANDLER to restore the state of
the interrupted procedure despite HANDLER's own use of the REAL facility.
SAVESREAL$STATUS also makes available all the information regarding the state of
the numeric coprocessor exceptions, stack, and operations, as shown in the following

paragraph.

PL/M-386 Programmer's Guide Appendix G 391

Thus, the beginning of atypical routine to handle REAL exception conditions could
look like this:

HANDLER: PROCEDURE | NTERRUPT PUBLI C;
DECLARE ERR$I NFO BYTE;
DECLARE LOCAL$SAVES$SAREA (94) BYTE;
ERR$I NFO = GET$REALSERROR;

or, to perform extensive manipulations on the save area, declare a structure
permitting access to the save area's component parts by name and/or byte, as follows:

HANDLER PROCEDURE | NTERRUPT PUBLI C;
DECLARE ERR$| NFO BYTE;
DECLARE SAVE$SAREA STRUCTURE (
CONTROL(2) BYTE,

STATUS(2) BYTE,
TAG HWORD,

| NSTR_OFF \AORD,

| NSTR_SEL SELECTOR,

OPERAND OFF WORD,
OPERAND SEL SELECTOR,
STACK_TOP(5) WORD,
STACK_ONE(5) WORD,
STACK TWO(5) WORD,
STACK 3 (5) WORD,
STACK 4 (5) WORD,
STACK 5 (5) WORD,
STACK 6 (5) WORD,
STACK 7 (5) WORD);
CALL SAVESREALS$STATUS (@AVE_AREA) ;
ERR$I NFO = SAVE AREA. STATUS(0) ;

|:| Note

To make use of the TAG word, use the masks and shifts to access
the individual fields shown in Figure G-3.

392 Appendix G Run-time Interrupt Processing

Call either the SAVE$SREAL$STATUS procedure or the GET$REAL$ERROR function,
but not both. If the extrainformation gained by the saveis not needed (i.e., only the
exceptions are needed), use the GET$SREAL$ERROR function. If both are called, the
second call will produce incorrect results.

15 7 0

TAG(7) | TAG(6)| TAG(S) | TAG() | TAG(3) | TAG(2) | TAG() TA(IB(O)
1

Tag Values:

00 = Valid (Normal or Unnormal)

01 = Zero (True)

10 = Special (Not-A-Number, =, or Denormal) 0SD544
11 = Empty

Figure G-3. TagWord Format

PL/M-386 Programmer's Guide Appendix G 393

The rest of HANDLER can perform any appropriate actions. Thisis an application
dependent decision. Among the possibilities:

* Incrementing an exception counter for later display

» Printing diagnostic data (e.g., the contents of SAVESAREA)

» Aborting further execution of the calculation causing exception
» Aborting all further execution

The format of the LOCAL_SAVE_AREA asit isfilled by the save procedure is shown
in Figure G-4

Thefinal action prior to returning (if desired) to the interrupted procedureisto
restore the status of the REAL math unit:

CALL RESTORE$REAL$STATUS (@ OCAL_SAVE_AREA) ;

However, if GET$REAL$ERROR is not used prior to the SAVESREAL$STATUS call, the
local save areawill contain the original contents of the error byte. Under these
circumstances, first clear the lower byte of the saved status word before the RESTORE
statement to avoid retriggering the same exception that invoked HANDLER in the

beginning.
To do so, use acommand of the form:

LOCAL_SAVE AREA (2) = 0; /* shoul d precede restore */
or:

SAVE_AREA. STATUS (0) = O0;

394 Appendix G Run-time Interrupt Processing

31 16 15 0
Reserved Control Word
Reserved Status Word
Reserved Tag Word
Instruction { Instruction Pointer Offset
Pointer Reserved ‘ Instr. PTR Selector
Operand Operand Offset
Pointer Reserved ‘ OP Selector
Top S
Stack ST(0) Significand 31-0
Element : ST(0) Significand 63-32
ST ST(1) Significand 150 | s | ST(0) Exponent
Next { ST(1) Significand 47-16
Stack o
Element - S ‘ ST(1) Exponent ‘ ST(1) Significand 63-48
ST(1)
Next to
Last { ST(6) Significand 31-0
Element: o
ST(6) ST(6) Significand 63-32
Last ST(7) 15-0 ‘ S ‘ ST(6) Exponent
Stack ST(7) 47-16
Element:
ST(7) E -
ST s | (7) Exp \ ST(7) 63-48

Figure G-4. Memory Layout of the REAL Save Areain Protected Mode for the

PL/M-386 Programmer’

386 Microprocessor

sGuide Appendix G

+0
+4
+8
+12
+16
+20
+24
+28
+32
+ 36
+40
+44

+ 88
+92
+ 96
+ 100
+ 104

0OSD546

395

396 Appendix G Run-time Interrupt Processing

Run-time Support for
PL/M Applications

In addition to tools that support the software development process, RadiSys provides
run-time support for application programs.

Numeric Coprocessor Support Libraries

Three specific libraries contained in the Intel 387 numeric coprocessor support
directory are of useto PL/M-386 programmers. Thedirectory, /i nt el / ndp387,
contains these libraries:

dc387n.lib/dc387f.1ib (near and far) converts floating-point
representations from ASCII decimal format to internal binary format,
and vice versa.

cl387n.lib/cl387f.lib (near and far) is a common elementary function
library that provides an assortment of common elementary functions,
i.e., logarithmic, exponential, trigonometric, and hyperbolic, involving
floating-point numbers, such as rounding.

eh387n.lib/eh387f.lib (near and far) includes floating-point
exception-handling procedures.

For additional information on the libraries contained with Intel 387 numeric
coprocessors, see the numeric coprocessor reference manual.

PL/M-386 Programmer's Guide Appendix H 397

PL/M Support Libraries

398

The PL/M support libraries contain connection procedures and complex built-ins
written in assembly language. The following support library modules are provided:

Interface to 286 CPU code:
| NTERFACE286_FAR
| NTERFACE286_NEAR

Math function for double words:

LQ DWORD DI VI DE
LQ DWORD_MULTI PLY

Bit manipulation functions:
MOVBI T

MOVRBI T

SCANBI T

SCANRBI T

Appendix H

Run-time Support for PL/M Applications

Index

@ operator, 39

A

ABSfunction, 151
ADJUSTS$RPL function, 189
Algebraic-shift functions, 154
Apostrophein string, to include, 15
Arithmetic operators, 61, 73
Arrays, 49
ASM interface, 223
assignment, 78
Assignment, 57
AT attribute, 25, 43
Attributes
EXTERNAL, 127
INTERRUPT, 127
PUBLIC, 127
REENTRANT, 127

B

based variables, 36

Based variables, 17, 40

Binary number variables, 32

BITLOCK functions, 166

blanks, 11

Block structure, 103

BLOCKINDWORD, BLOCKINHWORD,
BLOCKINPUT, BLOCKINWORD
procedures, 178

BLOCKOUTDWORD, BLOCKOUTHWORD,
BLOCKOUTPUT, BLOCKOUTWORD
procedures, 179

blocks, 5

BUILD$PTR function, 169

Built-in arrays, 181, 182

PL/M-386 Programmer’s Guide

Built-in procedures and variables, 7
Built-ins, 134
BY TE$SSWAP built-in function, 197

C

C language compatibility, 372

cache, clearing, 197

CALL statement, 100, 119

Calling sequence, 363

CARRY flag, 173, 175

CAUSES$INTERRUPT statement, 172

Character set, 9

character strings, 15

Character strings, 15

CLEARS$TASK$SWITCHEDS$FLAG built-in
procedure, 186

Closed subsystems, 295

CODE control, 218

Comments, 15

Communication between subsystems, 295

COMPACT control, 207, 217, 249

Compilation summary listing example, 257

Compound operands, 60

Concatenate functions, 155

COND control, 218

Constants, 12, 25, 58

CONTROLS$REGISTER built-in array, 184

Cross-reference listing example, 256

D

Data attribute declaration, 17

DATA keyword, 21, 25

datatypes, 30

Datatypes, 17

DEBUG control, 219
DEBUGS$REGISTER built-in array, 184

Index 399

DEC built-in function, 175

Decimal adjust, 175

Declaration statements, 5, 17, 18, 27, 106
Denormal operand exception, 389
Dimension specifier, 23

DISABLE statement, 171

DO block and statement, 5

DO statement, 85

dollar sign, 12

E

EJECT control, 219
ENABLE statement, 171
END statement, 5, 85, 94
Evaluation of expressions, 69
Example of subsystem, 302
Example program, 265
executable statements, 6
Exporting procedures, 300
expressions, 7,57

Extended segmentation model syntax, 296
EXTERNAL attribute, 107

F

factored declaration, 18

File inclusion with compiler controls, 213
File usage, 203

FIND eement functions, 159

Find string mismatch function, 160
Find valuein input port function, 177
FIX function, 146

FLAGS function, 175

Flags, hardware, 173, 174

FLAT control, 251

FLOAT function, 146

Floating-point arithmetic, 32

Flow of control, 85

Function references, 60, 119

G

GDT register, 180
GET$ACCESS$RIGHTS function, 186
GET$REALSERROR function, 194
GET$SEGMENTSLIMIT function, 187

400 Index

Global descriptor table register, 180
GOTO restrictions, 110
GOTO statement, 99

H
HALT statement, 172

1/0O hardware, 178
IABS function, 151
Identifiers, 12
IDTR register, 182, 183
IF control, 220
|F statement, 94
| F|[EL SE|EL SEIF|IENDIF controls, 219
Implicit dimension specifier, 23
INCLUDE control, 221
INITSREAL$SMATHSUNIT built-in procedure,
193
INITIAL keyword, 20
Initialization, 21
Input files, 203
INPUT, INHWORD, INWORD functions, 177
Input/Output support, 8
INT function, 147
INTEGER keyword and variables, 33
INTERFACE control, 222
intermodul e references, 29
Interrupt
Mechanism, to enable or disable, 171
Processing, 196
Software, to generate, 172
Interrupt descriptor table, 380
Interrupt descriptor table register, 182
Interrupt procedures, 381
Interrupt processing, 379
Invalid operation exception, 388
INVALIDATE$SDATASCACHE built-in
function, 197
INVALIDATESTLBENTRY built-in function,
198
IRET ingtruction, to generate, 196

L O

|abel declarations, 28 Object files, 204
Label declarations, 17 OFFSET function, 151
Languages interface, 217, 222 OFFSET type, 39
LAST function, 136 OFFSETS$OF function, 169
LDT register, 183 Open subsystems, 294
LEFTMARGIN control, 207, 212, 227 operands, 57
LENGTH function, 135 Operator precedence, 69
Line numbers, 227 OPTIMIZE control, 229
Linkage attributes, 103 OUTPUT, OUTDWORD, OUTHWORD,
Linking to modules in other languages, 361 OUTWORD functions, 177
LIST control, 227 OVERFLOW control, 244
Listing example, 257 Overflow exception, 389
LITERALLY declarations, 26, 27
local descriptor table register, 183 P
LOCALS$TABLE variable, 183
Location references, 36, 38, 42, 60 PAGELENGTH control, 244
LOCKSET function, 166 PAGEWIDTH control, 245
Logical operators, 67 PAGING control, 245
Logical-shift functions, 153 Parameters, actual and formal, 116
PARITY flag, 174
M PLUS operator, 174
POINTER function, 150
Machine overflow, 244 POINTER keyword and type, 30, 36
Machine status register, 184 Precision exception, 390
MACHINES$STATUS built-in variable, 184 PRINT control, 245
Math facility, 190 Print files, 204
MEDIUM control, 217, 251 Privilege level, to adjust, 186, 188
Messages, 307 Procedure declarations, 29
MINUS operator, 174 Procedure epilogue, 367
MOD486 control, 228 procedures, 115
module, 5 Procedures, 5
MOVB, MOVHW, MOVW procedures, 157 Activation, 119
MOVBIT procedure, 163 Declaration, 115
Move bit patternsright or left, 152 Definition, 116
MOVE procedure, 165 Exit from, 123
MOVRB, MOVRHW, MOVRW procedures, Parameters, 116
157 Scope, 116
MSW register, 184 Typed, 118
Untyped, 118
N Procedures and tasks, 380
Protection architecture of the microprocessor, to
NIL function, 170 access, 179
null statement, 89 PUBLIC attribute, 107
Number base (binary, decimal, hexadecimal, and
octa), 13

PL/M-386 Programmer’s Guide I ndex 401

R

RAM control, 205, 217, 246

Read string procedure, 178, 180

REAL functions, 146

REAL interrupts, 391

REAL keyword and variables, 33

REAL math facility, 190

Recursion, direct and indirect, 130

Register usage, 368

Registers, 175

Relational operators, 65

Requested privilege level, to adjust, 189

Reserved words, 325

RESET control, 214, 217, 218, 247

RESTORE control, 213, 246

RESTORE$GLOBALSTABLE built-in
procedure, 181

RESTORES$INTERRUPT$TABLE built-in
procedure, 183

RESTORE$REALS$STATUS built-in procedure,
194

RETURN statement, 123

ROL function, 152

ROM control, 217

ROR function, 152

Rotation functions, 152, 174

RPL, to adjust, 189

Run-time support, 397

S

SAL function, 154

Sample program, 265

SAR function, 154

SAVE control, 246

SAVE$GLOBALS$TABLE built-in procedure,
181

SAVE$INTERRUPTS$TABLE built-in
procedure, 182

SAVESREALSSTATUS built-in procedure, 194

SCANBIT function, 163

scientific notation, 34

SCL built-in function, 174

scope, 103

Scope, 107, 110

SCR built-in function, 174

402 Index

Segment information and accessibility functions,
186, 188
Segment name conventions, 371
SEGMENTS$READABLE function, 188
SEGMENT$WRITABLE function, 188
Segmentation controls, 285, 299
SELECTOR function, 150
SELECTOR keyword and type, 36, 39
SELECTORSOF function, 169
Separators, 11
set command, 203
SET control, 247
SET procedures, 162
SET$REAL$MODE procedure, 193
SHL function, 153
SHLD function, 155
SHR function, 153
SHRD function, 155
SIGN flag, 174
Signed arithmetic, 33
SIGNED function, 147
Signed integer data type built-in function, 146
SIZE function, 136
SKIP functions, 160
SMALL control, 248
Source code, to insert compiler control line, 207
special characters, 11
Stack layout, 384
Stack representation, 363
STACKBASE variable, 176
STACKPTR variable, 176
Statements
CALL, 178, 179, 181, 182, 186, 193, 195,
196
CAUSES$INTERRUPT, 172
DISABLE, 171
ENABLE, 171
HALT, 172
String manipulation procedures and functions,
156
Strings, 15
Structures, 51
Subexpressions, 60
Subscripted variables, 50
Substitution (characters/values/quantities), 26,
27
Subsystems, 283

SUBTITLE control, 252
Support libraries, 397
SYMBOLS control, 206, 252

T

TASK$REGISTER variable, 179
Tasks, 384

temporary-real format, 34
TEST$REGISTER built-in array, 184, 197
TIME procedure, 166

TITLE control, 253

Tokens, 11

Tranglate string procedure, 161
TYPE control, 253

Type conversion, 78, 137

Typed procedures, 118

U

Underflow exception, 390

underscore, 12

UNSIGN function, 148

Unsigned arithmetic, 32

Unsigned binary data type built-in functions,
149

Untyped procedures, 116

Using subsystems, 289

PL/M-386 Programmer’s Guide

Vv

Value conversion, 137
Variable declarations, 18
Variable references, 60

w

WAIT$FORSINTERRUPT built-in procedure,
196

WBSINVALIDATE$DATAS$CACHE built-in
function, 198

WMOVB function, 157

WORD16 mapping for built-ins, 197

WORD32|WORD16 control, 253

WORD32|WORD16 type mapping, 46

Work files, 203

Write string procedure, 179

X

XLAT procedure, 161
XREF control, 206, 207, 256

Z

Zero divide exception, 389
ZEROflag, 186

Index 403

	PL/M 386 Programmer’s Guide
	Quick Contents
	Contents
	Chapter 1: Introduction
	Product Definition
	Compatible Assemblers, Debuggers, and Utilities
	Advantages of Using the PL/M Language
	The Structure of a PL/M Program
	Overview of PL/M Statements
	Declaration Statements
	Executable Statements
	Built˚in Procedures and Variables
	Overview of PL/M Expressions
	Input and Output

	Chapter 2: Language Elements
	Character Set
	Tokens, Separators, and the Use of Blanks
	Identifiers and Reserved Words
	Constants
	Whole˚number Constants
	Floating˚point Constants
	Character Strings

	Comments

	Chapter 3: Data Declarations, Types, and Based Variables
	Variable Declaration Statements
	Sample DECLARE Statements
	Results of Variable Declarations
	Combining DECLARE Statements

	Initializations
	The Implicit Dimension Specifier
	Names for Execution Constants: the Use of DATA

	Types of Declaration Statements
	Compilation Constants (Text Substitution):�The Use of LITERALLY
	Declarations of Names for Labels
	Results of Label Declarations
	Declaration for Procedures

	Data Types
	Unsigned Binary Number Variables: Unsigned Arithmetic
	INTEGER Variables: Signed Arithmetic
	REAL Variables: Floating˚point Arithmetic
	Examples of Binary Scientific Notation
	POINTER Variables and Location References
	OFFSET Data Type and the Dot Operator
	SELECTOR Variables

	Based Variables
	Location References and Based Variables

	The AT Attribute
	WORD32 | WORD16 Type Mapping
	Choosing WORD32 or WORD16

	Chapter 4: Arrays and Structures
	Arrays
	Subscripted Variables

	Structures
	Arrays of Structures
	Arrays Within Structures
	Arrays of Structures With Arrays Inside the Structures
	Nested Structures

	References to Arrays and Structures
	Fully Qualified Variable References
	Unqualified and Partially Qualified Variable References

	Chapter 5: Expressions and Assignments
	Operands
	Constants
	Whole˚number Constants in Unsigned Context
	Whole˚number Constants in Signed Context
	String Constants

	Variable and Location References
	Subexpressions
	Compound Operands
	Arithmetic Operators
	The +, ˚, *, and / Operators
	The MOD Operator

	Relational Operators
	Logical Operators
	Expression Evaluation
	Precedence of Operators: Analyzing an Expression
	Compound Operands Have Types
	Relational Operators Are Restricted
	Order of Evaluation of Operands

	Choice of Arithmetic: Summary of Rules
	Special Case: Constant Expressions

	Assignment Statements
	Implicit Type Conversions
	Constant Expression
	Multiple Assignment
	Embedded Assignments

	Chapter 6: Flow Control Statements
	DO and END Statements: DO Blocks
	Simple DO Blocks
	DO CASE Blocks
	DO WHILE Blocks
	Iterative DO Blocks

	END Statement
	IF Statement
	Nested IF Statements
	Sequential IF Statements

	GOTO Statements
	The CALL and RETURN Statements

	Chapter 7: Block Structure and Scope
	Names Recognized Within Blocks
	Restrictions on Multiple Declarations

	Extended Scope: The PUBLIC and EXTERNAL Attributes
	Scope of Labels and Restrictions on GOTOs

	Chapter 8: Procedures
	Procedure Declarations
	Parameters
	Typed Versus Untyped Procedures

	Activating a Procedure: Function References and CALL Statements
	Indirect Procedure Activation
	Code Examples

	Exit from a Procedure: The RETURN Statement
	The Procedure Body
	Examples

	The Attributes: PUBLIC and EXTERNAL, INTERRUPT, REENTRANT
	Interrupts and the INTERRUPT Attribute
	Reentrancy and the REENTRANT Attribute

	Chapter 9: Built-in Procedures, Functions, and Variables
	Obtaining Information About Variables
	The LENGTH Function
	The LAST Function
	The SIZE Function

	Explicit Type and Value Conversions
	The PL/M˚386 LOW, HIGH, and DOUBLE Functions
	The FLOAT Function
	The FIX Function
	The INT Function
	The SIGNED Function
	The UNSIGN Function
	The Unsigned Binary Data Type Built˚in Functions
	Signed Integer Data Type Built˚in Function
	REAL Built˚in Functions
	The SELECTOR Built˚in Function
	The POINTER Built˚in Function
	The OFFSET Built˚in Function
	The ABS and IABS Functions

	Shift and Rotate Functions
	Rotation Functions
	Logical˚shift Functions
	Algebraic˚shift Functions
	Concatenate Functions

	String Manipulation Procedures and Functions
	The Copy String in Ascending Order Procedure
	The Copy String in Descending Order Procedure
	The Compare String Function
	The Find Element Functions
	The Find String Mismatch Function
	The Translate String Procedure
	The Set String to Value Procedure

	PL/M˚386 Bit Manipulation Built˚ins
	The Copy Bit String Procedure
	The Find Set Bit Function

	Miscellaneous Built˚ins
	The Move Bytes Procedure
	The Time Delay Procedure
	The Lock Set Function
	The Lock Bit Functions

	POINTER and SELECTOR˚related Functions
	The Return POINTER Value Function
	The Return Segment Portion of POINTER Function
	The Return Offset Portion of POINTER Function
	The Set POINTER Bytes to Zero Variable

	WORD16 Built˚in Mapping

	Chapter 10: Features Involving the Target CPU and Numeric Coprocessor
	Microprocessor Hardware˚dependent Statements
	The ENABLE and DISABLE Statements
	The CAUSE$INTERRUPT Statement
	The HALT Statement

	Microprocessor Hardware Flags
	Optimization and the Hardware Flags
	The CARRY, SIGN, ZERO, and PARITY Functions
	The PLUS and MINUS Operators
	Carry˚rotation Functions
	The Decimal Adjust Function

	Microprocessor Hardware Registers
	The Flags Register Access Variable
	The STACKPTR and STACKBASE Variables

	Microprocessor Hardware I/O
	The Find Value in Input Port Function
	The Access Output Port Array
	The Read and Store String Procedure
	The Write String Procedure

	The Hardware Protection Model
	The Task Register
	The Global Descriptor Table Register
	The Interrupt Descriptor Table Register
	The Local Descriptor Table Register
	The Machine Status Register
	Segment Information
	Segment Accessibility
	Adjusting the Requested Privilege Level

	The REAL Math Facility
	Built˚ins Supporting the REAL Math Unit
	The INIT$REAL$MATH$UNIT Procedure
	The SET$REAL$MODE Procedure
	The GET$REAL$ERROR Function
	Saving and Restoring REAL Status
	Interrupt Processing

	WORD16 Mapping for Built˚ins
	Intel486 Processor Built-ins

	Chapter 11: Compiler Invocation and Controls
	Invocation Syntax on iRMX Systems
	Invocation Examples and Sign-on/Sign-off Messages under the iRMX OS

	Invocation Syntax on DOS Systems
	Invocation Examples and Sign-on/Sign-off Messages under DOS

	File Usage under DOS and the iRMX OS
	Input Files
	Work Files

	Introduction to Compiler Controls
	Input Format Control
	Code Generation and Object File Controls
	Segmentation Controls
	Listing Selection and Content Controls
	Listing Format Controls
	Source Inclusion Controls
	Conditional Compilation Controls
	Language Compatibility Control
	Predefined Switches

	Compiler Control Encyclopedia
	CODE | NOCODE
	COND | NOCOND
	DEBUG | NODEBUG
	EJECT
	IF | ELSE | ELSEIF | ENDIF
	INCLUDE
	INTERFACE
	LEFTMARGIN
	LIST | NOLIST
	MOD486
	OBJECT | NOOBJECT
	OPTIMIZE
	OVERFLOW | NOOVERFLOW
	PAGELENGTH
	PAGEWIDTH
	PAGING | NOPAGING
	PRINT | NOPRINT
	RAM | ROM
	SAVE | RESTORE
	SET | RESET
	SMALL | COMPACT | MEDIUM | LARGE | FLAT
	SUBTITLE
	SYMBOLS | NOSYMBOLS
	TITLE
	TYPE | NOTYPE
	WORD32 | WORD16
	XREF | NOXREF

	Program Listing
	Sample Program Listing
	Symbol and Cross˚reference Listing
	Compilation Summary

	Chapter 12: Sample Program
	Introduction
	FREQ Module
	OPEN Module
	PRINT Module
	Include Files

	Chapter 13: Extended Segmentation Models
	Overview
	Introduction
	Segmentation Controls Architecture Overview
	Using Subsystems
	Open Subsystems
	Closed Subsystems
	Communication Between Subsystems

	Syntax
	Placement of Segmentation Controls

	Exporting Procedures
	Large Matrix Example

	Chapter 14: Error and Warning Messages
	PL/M Program Error and Warning Messages
	Fatal Command Tail and Control Error Messages
	Fatal Input/Output Error Messages
	Fatal Insufficient Memory Error Messages
	Fatal Compiler Failure Error Messages
	Insufficient Memory Warning Messages

	Appendix A: PL/M Reserved Words and Predeclared Identifiers
	Introduction

	Appendix B: PL/M Program Limits
	Appendix C: Grammar of the PL/M Language
	Lexical Elements
	Character Sets
	Tokens
	Delimiters
	Identifiers
	Numeric Constants
	Strings
	PL/M Text Structure: Tokens, Blanks, and Comments

	Modules and the Main Program
	Declarations
	DECLARE Statement
	Variable Elements
	Label Element
	Literal Elements
	Factored Variable Element
	Factored Label Element
	The Structure Type
	Procedure Definition
	Attributes

	Units
	Basic Statements
	Scoping Statements
	Conditional Clause
	DO Blocks

	Expressions
	Primaries
	Operators
	Structure of Expressions

	Appendix D: Differences Between PL/M Compilers
	Differences between PL/M˚86 and PL/M˚80
	Compatibility of PL/M˚80 Programs and the PL/M˚86 Compiler
	Differences between PL/M˚286 and PL/M˚86
	Compatibility of PL/M˚86 Programs and the PL/M˚286 Compiler
	Differences between PL/M˚386 and PL/M˚286
	Compatibility of PL/M˚286 Programs and the�PL/M˚386 Compiler

	Appendix E: Character Set
	Appendix F: Linking to Modules Written in Other Languages
	Introduction
	Calling Sequence
	Procedure Prologue
	Procedure Epilogue
	Register Usage
	Segment Name Conventions
	C Language Compatibility
	Design Guidelines
	Code Example

	Compiling C and PL/M Modules

	Appendix G: Run-time Interrupt Processing
	General Information
	The Interrupt Descriptor Table
	Procedures and Tasks

	Interrupt Procedure Prologue and Epilogue
	Interrupt Tasks
	Exception Conditions in REAL Arithmetic
	Invalid Operation Exception
	Denormal Operand Exception
	Zero Divide Exception
	Overflow Exception
	Underflow Exception
	Precision Exception

	Writing a Procedure to Handle REAL Interrupts

	Appendix H: Run time Support for PL/M Applications
	Numeric Coprocessor Support Libraries
	PL/M Support Libraries

	Index

