
TASKING
Quality Development Tools Worldwide

MA006020–00 / 0106

80C196 v6.1

ASSEMBLER
USER’S GUIDE

A publication of

TASKING

Documentation Department

Copyright  1999 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel, MCS and ICE are trademarks of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com

WWW: http://www.tasking.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes no
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TASKING
Quality Development Tools Worldwide

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION 1-1

1.1 Introduction 1-3.

1.2 Installation for Windows 1-3.

1.2.1 Setting the Environment 1-4.

1.3 Installation for UNIX Hosts 1-5.

1.3.1 Setting the Environment 1-8.

OVERVIEW 2-1

2.1 ASM196 and Software Development 2-3.

2.1.1 Keeping Track of Files 2-5.

2.1.2 Macro Processing Language 2-6.

2.2 About This Manual 2-6.

2.3 Conventions 2-6.

2.4 Customer Support 2-7.

2.4.1 If You Have a Problem Using the Software 2-7.

ASSEMBLER INVOCATION 3-1

3.1 Invocation Line 3-3.

3.2 Assembler Options 3-4.

3.3 Assembler Controls 3-7.

3.3.1 Primary and General Controls 3-8.

3.3.2 Control Processing 3-10.

3.4 Output Object File 3-11.

3.5 Listing File 3-11.

3.5.1 Header and Introductory Lines 3-15.

3.5.2 Source Lines 3-16.

3.5.3 Error Lines 3-18.

3.5.4 Symbol Table 3-18.

3.6 Errorprint File 3-22.

3.7 Automatic Assembler Invocation 3-22.

3.7.1 Using Make Utility MK196 3-22.

3.7.2 Batch Files 3-23.

3.7.3 Log File 3-24.

Table of ContentsVI
C
O
N
T
E
N
T
S

ASSEMBLER CONTROLS 4-1

ASSEMBLY LANGUAGE 5-1

5.1 Introduction 5-3.

5.2 Assembly Language Components 5-3.

5.2.1 Character Set 5-3.

5.2.2 Numbers 5-3.

5.2.3 Long Constants 5-4.

5.2.4 Floating Point Numbers 5-4.

5.2.5 Delimiters 5-7.

5.2.6 Reserved Words 5-8.

5.2.7 Predefined Macros 5-8.

5.2.8 Symbols 5-9.

5.2.9 Assembler-generated Symbols 5-10.

5.2.10 Generic Instructions 5-11.

5.2.11 Additional Mnemonics 5-13.

5.2.12 Mixed Addressing Modes 5-14.

5.2.13 Location Counter 5-15.

5.2.14 Strings 5-15.

5.3 Expressions and Basic Operands 5-16.

5.3.1 Basic Operands 5-17.

5.3.2 Attributes of Expression Operands 5-18.

5.3.3 Absolute Expressions 5-22.

5.3.4 Relocatable Expressions 5-24.

5.3.5 External Bit Numbers 5-25.

5.4 Statement Format 5-26.

5.4.1 Additional Statement Rules 5-27.

5.5 Program Format 5-27.

5.6 Segments 5-30.

5.6.1 Register Segment (Overlayable and Non-overlayable) 5-30.

5.6.2 Data Segment (Overlayable and Non-overlayable) 5-30. . .

5.6.3 Stack Segment 5-31.

5.6.4 User Defined Stack Segment 5-31.

5.6.5 Code Segment 5-32.

Table of Contents VII

• • • • • • • •

5.6.6 Constant Segment 5-32.

5.7 Absolute and Relocatable Segments 5-32.

5.8 Stack Overflow 5-33.

ASSEMBLER DIRECTIVES 6-1

MACRO PROCESSING 7-1

7.1 Introduction 7-3.

7.2 The Advantages of Using Macros 7-3.

7.2.1 An Example of Macro Use 7-4.

7.3 Macros and Routines 7-5.

7.4 Macro Directives and Macro Calls 7-6.

7.4.1 Macro Definition 7-6.

7.5 Macro Directives 7-7.

7.6 Empty Macro Arguments 7-23.

7.7 NARG Symbol 7-23.

7.8 Special Macro Operators 7-24.

7.9 Nesting Macro Definitions 7-26.

7.10 Macro Calls 7-26.

7.10.1 Nested Macro Calls 7-27.

7.11 Macro Expansion 7-27.

7.12 Null Macros 7-29.

7.13 Sample Macros 7-30.

MESSAGES AND ERROR RECOVERY 8-1

8.1 Console Output 8-3.

8.1.1 Sign-on Message 8-3.

8.1.2 Error Messages 8-3.

8.1.3 Sign-off Message 8-3.

8.2 Error Messages and Recovery 8-4.

8.2.1 Fatal Error Messages 8-4.

8.2.1.1 ASM196 Error Messages 8-4.

Table of ContentsVIII
C
O
N
T
E
N
T
S

8.2.1.2 Argument Error Messages 8-6.

8.2.1.3 Memory Error Messages 8-7.

8.2.1.4 I/O Error Messages 8-7.

8.2.2 Warning Messages 8-8.

8.2.3 Source File Error Messages 8-9.

FLEXIBLE LICENSE MANAGER (FLEXLM) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-6.

2.4 License Administration Tools A-8.

3 FLEXlm User Commands A-11.

4 The Daemon Log File A-17.

4.1 Informational Messages A-18.

4.2 Configuration Problem Messages A-21.

4.3 Daemon Software Error Messages A-23.

5 FLEXlm License Errors A-25.

ASSEMBLER DIRECTIVES OVERVIEW B-1

ASSEMBLER CONTROLS TABLE C-1

ASM196 RESERVED WORDS D-1

INDEX

RELEASE NOTE

Manual Purpose and Structure IX

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING ASM196 assembler. It
assumes that you are familiar with the 80C196 architecture and the C
programming language.

INSTALLING THE ASSEMBLER

To install the ASM196 assembler, see Chapter 1 Software Installation. To

automate the assembling and linking processes, configure the environment

variables listed in the Software Installation chapter, and see Chapter 3 for

instructions on how to create a batch or command file.

RUNNING THE ASSEMBLER

To learn how to invoke the assembler, read Chapter 3. To learn how each

control affects the assembly process, read Chapter 4. Chapter 8 provides

information you can use to interpret an assembler error, including possible

causes and suggested actions to recover from the error.

PROGRAMMING IN ASM196

To learn about the basic elements of the assembly language and the

ASM196 instruction set, read Chapters 5 and 6. Chapter 7 shows you how

to include assembler macros in your program.

Manual Purpose and StructureX
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Software Installation

Describes the installation of the ASM196 assembler.

2. Overview

Summarizes the functions of the assembler and the utilities.

3. Assembler Invocation

Deals with assembler invocation, output files and explains how the

controls affect the assembly process. This chapter also describes how to

automate the assembly process.

4. Assembler Controls

Contains an alphabetical list of all assembler controls.

5. Assembly Language

Provides a detailed presentation of the elements of assembly language

and statement syntax. It also describes the program format and the

different segment types used by the assembler.

6. Assembler Directives

Describes each assembler directive in detail in alphabetical order.

7. Macro Processing

Describes the use of macros and conditional assembly.

8. Messages and Error Recovery

Describes the error/warning messages of the assembler.

APPENDICES

A. Flexible License Manager (FLEXlm)

Contains a description of the Flexible License Manager.

B. Assembler Directives Overview

Contains a short description of all assembler directives.

C. Assembler Controls Table

Contains an overview of all assembler controls.

Manual Purpose and Structure XI

• • • • • • • •

D. ASM196 Reserved Words

Contains a list of words that are reserved for the assembler. This

includes assembler directives, macro directives and instructions.

INDEX

RELEASE NOTE

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

TASKING publications

• 80C196 C Compiler User's Guide [TASKING, MA006022]

• 80C196 Assembler User's Guide [TASKING, MA006020]

• 80C196 Utilities User's Guide [TASKING, MA006009]

Intel publications

• Embedded Microcontrollers and Processors Handbook [270645]

• 8XC196xx User's Manuals

Manual Purpose and Structure XIII

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{} Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

[,...] You can repeat the preceding item, but you must separate

each repetition by a comma.

screen font Represents input examples, keywords, filenames, controls

and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This is a warning. Read the information carefully.

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

TASKING
Quality Development Tools Worldwide

1

SOFTWARE
INSTALLATION

C
H

A
P

T
E

R

Chapter 11–2
IN
S
T
A
L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation 1–3

• • • • • • • •

1.1 INTRODUCTION

This chapter describes how you can install the TASKING 80C196 assembler

on Windows 95/NT and several UNIX hosts.

1.2 INSTALLATION FOR WINDOWS

Step 1

Start Windows 95/98 or NT, if you have not already done so.

Step 2

Insert the CD-ROM into the CD-ROM drive.

If the Auto insert notification option is enabled for your CD-ROM

drive, the TASKING Welcome dialog box appears. Now skip to Step 5.

Step 3

Select the Start button and select the Run... menu item.

Step 4

On the command line type:

d:\setup

(substitute the correct drive letter if necessary) and press the <Return> or

<Enter> key or click on the OK button.

The TASKING Welcome dialog box appears.

Step 5

Select a product to install and click on Install a Product .

Step 6

Follow the instructions that appear on your screen.

You can find your serial number on the Certificate of Authenticity,
delivered with the product.

Chapter 11–4
IN
S
T
A
L
L
A
T
IO
N

1.2.1 SETTING THE ENVIRONMENT

Environment variables are definitions that provide direction to a program

while it is executing. The assembler uses these definitions to establish

directory paths and certain operating parameters. The values can be

defined in the autoexec.bat file or at the command prompt before

invoking the assembler.

PATH

PATH is recognized by DOS/Windows as a list of pathnames of directories

containing executable or batch files. If one of the pathnames in this list

specifies the directory containing the ASM196 assembler, you need not

retype the full pathname each time you invoke the assembler. If you

installed the software under C:\C196 , you can include the executable

directory C:\C196\BIN in your search path. Your PC literature explains

how to define the PATH environment variable.

In EDE, select the EDE | Directories... menu item. Add one or more

executable directory paths to the Executable Files Path field.

TMPDIR

The assembler creates temporary work files, which it normally deletes

when assembly is complete. If the assembly is interrupted, for example,

by your host system losing power, the work files remain. The TMPDIR

environment variable specifies the directory where the assembler is to put

these temporary files. If TMPDIR is not defined or is empty, the assembler

uses your current working directory for the temporary files. For example,

setting TMPDIR as follows causes the assembler to use the c:\tmp
directory for temporary work files:

set TMPDIR=c:\tmp

Software Installation 1–5

• • • • • • • •

1.3 INSTALLATION FOR UNIX HOSTS

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as root.

Step 2

If you are a first time user decide where you want to install the product

(By default it will be installed in /usr/local).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount

the CD-ROM on a directory, for example /cdrom . Be sure to use a ISO

9660 file system with Rock Ridge extensions enabled. See the manual page

for mount on your UNIX platform for details.

Or:

For tape install: insert the tape into the tape unit and create a directory

where the contents of the tape can be copied to. Consider the created

directory as a temporary workspace that can be deleted after installation

has succeeded. For example:

mkdir /tmp/instdir

Step 4

For CD-ROM install: go to the directory on which the CD-ROM is

mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace

using the following commands:

cd /tmp/instdir
tar xvf /dev/ tape

where tape is the name of your tape device.

If you have received a tape with more than one product, use the

non-rewinding device for installing the products.

Chapter 11–6
IN
S
T
A
L
L
A
T
IO
N

For HP tape is usually the name update.src .

Step 5

For tape install: remove the installation tape from the device.

Step 6

Run the installation script:

sh install

and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local . On certain sites you may want to select another

location.

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it; otherwise the product will not work on

those hosts. See the Flexible License Manager (FLEXlm) appendix for more

information.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SW006020 xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the

final message will be:

Installation of SW006020 xxxx . xxxx completed.

Step 7

For tape install: remove the temporary installation directory with the

following commands:

cd /tmp
rm –rf instdir

Software Installation 1–7

• • • • • • • •

Step 8

For hosts that need the FLEXlm license manager, each user must define an

environment variable, LM_LICENSE_FILE, to identify the location of the

license data file. If the license file is present on the hosts on which the

installed product will be used, you must set LM_LICENSE_FILE to the

pathname of the license file if it differs from the default:

/usr/local/flexlm/licenses/license.dat

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ':' :

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the Flexible License Manager (FLEXlm) appendix for detailed

information.

Step 9

Logout.

License Manager (on some hosts)

If your product has the FLEXlm License Manager the following two files

are present:

c196/flexlm/
license.dat Tasking

The file license.dat is a template license file for this product. The file

Tasking is the license daemon for TASKING products. Refer to the

Flexible License Manager (FLEXlm) appendix for detailed information

regarding license management.

Chapter 11–8
IN
S
T
A
L
L
A
T
IO
N

1.3.1 SETTING THE ENVIRONMENT

UNIX and the ASM196 assembler recognize several environment variables

that you can use to reduce the amount of typing required for an assembler

invocation. These environment variables are as follows:

PATH

PATH is recognized by UNIX as a list of pathnames of directories

containing executable or scripts. If one of the pathnames in this list

specifies the directory containing the ASM196 assembler, you need not

retype the full pathname each time you invoke the assembler. Your UNIX

literature explains how to define the PATH environment variable.

TMPDIR

The assembler creates temporary work files, which it normally deletes

when assembly is complete. If the assembly is interrupted, for example,

by your host system losing power, the work files remain. The TMPDIR

environment variable specifies the directory where the assembler is to put

these temporary files. If TMPDIR is not defined or is empty, the assembler

uses the /tmp directory for the temporary files. For example, setting

TMPDIR as follows causes the assembler to use the /tmp directory for

temporary work files:

setenv TMPDIR /tmp

TASKING
Quality Development Tools Worldwide

2

OVERVIEW
C

H
A

P
T

E
R

Chapter 22–2
O
V
E
R
V
IE
W

2

C
H

A
P

T
E

R

Overview 2–3

• • • • • • • •

This chapter of the 80C196 Assembler User's Guide summarizes the

functions of the assembler and the utilities, and explains the purpose of

this manual. This chapter also directs you to sources of detailed and

supplemental information.

2.1 ASM196 AND SOFTWARE DEVELOPMENT

The ASM196 assembler translates ASM196 assembly language source code

into object code. The assembler performs two passes. During the first

pass, the assembler scans your program to determine the values of

user-defined symbols. During the second pass, the assembler produces

an object file and a listing showing the results of the assembly.

The object file contains machine language and data that you can load into

memory for execution or interpretation. This file also contains control

information governing the loading process. The object file can be in

absolute or relocatable format. You can load an absolute object file

without passing it through the RL196 linker. However, you must run a

relocatable object file through the RL196 linker so that the linker can locate

the relocatable segment to an absolute memory address and resolve its

external references.

See Chapter 3 for more information about absolute and relocatable object

files.

The assembler produces a listing file that provides a record of both the

source program and the object code, diagnostic messages for syntax and

other coding errors, and a symbol table unless you specify otherwise. The

symbol table lists all defined symbols and their attributes. See Chapter 3

for the format of the listing file.

After all modules of the program are assembled, RL196 links all of the

object files to form an executable file. RL196 assigns absolute memory

locations to all the relocatable segments and resolves all references

between modules. RL196 produces either an absolute or a quasi-absolute

object module file. The quasi-absolute file must be used as further input

to an RL196 process. RL196 also outputs a map file with a .m96 extension

showing the results of the link/relocate process. For more information on

how to run the linker, see the 80C196 Utilities User's Guide listed in

Related Publications.

Chapter 22–4
O
V
E
R
V
IE
W

Your target processor can execute the absolute object code produced by

RL196 without further modification. However, certain 80C196

development products require the hexadecimal object code format. For

use with these products, you must run the absolute object file through the

object-to-hexadecimal conversion program called OH196. See the

80C196 Utilities User's Guide, listed in Related Publications, for instructions

on how to use OH196.

Figure 2-1 shows the software development process.

Debug Using an ICE In-circuit Emulator

Link Modules
Together
and Assign
Absolute
Address with

Create and
Maintain
Libraries with

OSD238

Convert to
Hexadecimal with

PROM-loadable Code

Write
Source File

Compile
with

Text Editor

C196

OH196

Source
Code

Object
Code

Linked
Object
Code

LIB196

RL196ASM196

TM

Figure 2-1: 80C196 program development process

Overview 2–5

• • • • • • • •

2.1.1 KEEPING TRACK OF FILES

We suggest to use the following filename extensions. This naming

convention is not required, but it allows utilities (like mk196) to execute

so-called 'suffix rules'. Note that all names and extensions are in lower

case, because on UNIX systems it is case sensitive.

Extension Description

.c

.c96
C file (.c is preferred, no extension is forced or assumed by
the compiler).

.h

.h96
Include files for C (.h is preferred, the compiler does not look
for .h96 by itself).

.a96

.asm

.src

Assembly source files (mk196 uses .a96).

.inc Include file for assembly.

.cmd Command file for asm196 or c196.

.obj OMF96 object file produced by c196 or asm196 .

.lst LIST files from c196 or asm196 .

.lnk Linker command control file.

.out File containing linked object with unresolved externals.

.abs File containing absolute object of application, no remaining
unresolved externals (default output file of rl196).

.m96 Linker MAP file.

.mak For Makefiles other than ’Makefile’ or ’makefile’.

.hex Hexadecimal output file by oh196 .

Table 2-1: Filename extensions

Programmers who at present work on MS-DOS but are thinking of future

migration to other platforms (UNIX, Windows NT, etc.) are advised to use

lower case characters and forward slashes where possible. This will

smoothen the future transition and it will not hurt right now. All the tools

are able to find files if forward slashes are used. (Note however that

MS-DOS still does not like you to say: c:/c196/bin/asm196)

Use caution with the extension .tmp , as some operating-system utilities

create temporary files with this extension. If you have files with the same

name and extension as these, your files are overwritten when the utility

creates its temporary file.

Chapter 22–6
O
V
E
R
V
IE
W

2.1.2 MACRO PROCESSING LANGUAGE

ASM196 includes a macro processing utility that allows you to substitute

one set of parameters for another when similar code sequences are used

several times. Using macros eliminates the tedium of rewriting these

sequences, minimizes the probability of entry errors, and increases

efficiency by reducing the duplication of effort by programmers.

See Chapter 7 for detailed information on using the macro processing

language.

2.2 ABOUT THIS MANUAL

This manual helps you design software based on the 80C196 family of

microcontrollers (8096-90, 8096BH, 80C196CA, 80C196CB, 80C196EA,

80C196EC, 80C196JQ, 80C196JR, 80C196JS, 80C196JT, 80C196JV, 80C196KB,

80C196KC, 80C196KD, 80C196KL, 80C196KQ, 80C196KR, 80C196KS,

80C196KT, 80C196LB, 80C196MC, 80C196MD, 80C196MH, 80C196NP,

80C196NT, 80C196NU, etc.) using the ASM196 assembly language. This

manual provides examples of assembly language source code and a

reference for assembly language directives and instructions. Except when

otherwise specified, information in this manual applies to all

microcontrollers in the 80C196 family. This manual also helps high-level

language programmers to interpret the assembler's output.

To effectively use the ASM196 assembler, you must be familiar with the

80C196 architecture, assembly language programming, high-level language

programming, and the software development process.

2.3 CONVENTIONS

This manual follows the notational conventions listed at the beginning of

this manual, in addition to the following conventions:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

[address]
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Regular square brackets ([]) in assem�

bly listings denote indirect or based ad�

dressing. Type the square brackets as

shown in the manual.

Overview 2–7

• • • • • • • •

2.4 CUSTOMER SUPPORT

The 80C196 software is under warranty. During the warranty period you

are entitled to the following:

• Free replacement of any defective media upon notification in

writing of the defect and product information.

• Telephone consultation and bug reporting.

• Our best efforts to replace or repair any software that does not meet

the specification described in the 80C196 documentation.

TASKING offers various support contracts that provide benefits as free

product updates, reduced rate upgrades, and telephone support. Contact

your local TASKING sales representative, for information about support

contracts and standard warranties. You will find the addresses and

telephone numbers in the "Read This First" Envelop included with this

package.

2.4.1 IF YOU HAVE A PROBLEM USING THE

SOFTWARE

To help expedite your calls, please have the following information

available when you contact us for help.

• The serial number of your software distribution. This number is

printed on the label of the tape, cassette, or first floppy of your

software distribution. In addition, you may be able to obtain the

serial number by running ASM196 with option -V, you may wish to

record the serial number here:

Product:

Serial:

• The product name, including host, target processor, and release

number.

• The exact command line that you used to invoke our tools when

you encountered the problem. Please include all switches.

• The exact error message that was printed. A screen dump will often

make this easy to record, and can provide very useful information.

• Any additional information that may be useful in helping to define

the problem.

Chapter 22–8
O
V
E
R
V
IE
W

TASKING
Quality Development Tools Worldwide

3

ASSEMBLER
INVOCATION

C
H

A
P

T
E

R

Chapter 33–2
IN
V
O
C
A
T
IO
N

3

C
H

A
P

T
E

R

Assembler Invocation 3–3

• • • • • • • •

This chapter shows you how to invoke the ASM196 assembler and

explains how the controls affect the assembly process. This chapter also

describes the outputs of the assembler. If you want to automate the

assembly process, Section 3.7 discusses the use of batch and command

files.

3.1 INVOCATION LINE

The syntax of the invocation line is:

[path]asm196 [options] source_file [controls]

Where:

path is the name of the drive plus directory names indicating the

location of the assembler.

options is an optional sequence of assembler options. The options

are described in detail in Section 3.2.

source_file is the name of the ASM196 source file including its path.

controls is an optional sequence of assembler controls. The controls

are described in detail in Chapter 4.

The ASM196 assembler normally produces two output files. These output

files reside on the same device and have the same name as the source file

but with the following extensions:

.lst This extension indicates that the output file contains a listing

of your source code. To specify a different listing filename,

use the print control. For more information about the

listing file, see Section 3.5.

.obj This extension indicates that the output file contains the

output object code. To specify a different object code

filename, use the object control.

To illustrate the construction and function of the invocation line, consider

the following example:

asm196 prog.src

Chapter 33–4
IN
V
O
C
A
T
IO
N

ASM196 assembles the source file prog.src . Since no controls have been

specified, the listing file has the name prog.lst and the object file has

the name prog.obj , the default conditions. Both the listing and the

object file reside on the same device and directory as prog.src . Default

conditions are also in effect for all the other control options.

On UNIX you can continue the invocation line on one or more additional

lines by entering the backslash (\) before you enter the carriage return or

line feed character. Note that with some UNIX shells arguments containing

special characters (such as '()' and '?') must be enclosed with ”” or

escaped. Example:

asm196 prog.src \
title\(’Project Review’\)

The assembler can detect two types of errors: console errors and source

file errors. Console errors are fatal and terminate the assembly process.

Source file errors, on the other hand, do not terminate the assembly

process. See Chapter 8 for the possible causes of errors and hints on how

to fix them.

3.2 ASSEMBLER OPTIONS

You can use assembler options only on the invocation line, as described in

Section 3.1. The format for a single option is:

-option_name [[{= | : | space}] argument]

Where:

– (minus sign) must be prefixed to every option name.

option_name is the name of the option. This name is case sensitive.

= , : or space are used to separate the option name from the argument.

argument the argument for an option. This is optional.

For example, the following invocation line sets up a listing file with a

pagewidth of 80 characters per line and a pagelength of 72 lines per page

to be titled section eight and to be started on a new page because of

the -e option.

–pw 80 –pl=72 –t:’section eight’ –e

Assembler Invocation 3–5

• • • • • • • •

Some options can toggle conditions on or off. To turn a condition off, you

have to append a minus sign to the option name, as in -p versus -p- or

-x versus -x-.

Most of the options can also be set using controls. However, the -case

option for example has no equivalent control. Also the error control has

no equivalent option. When equivalent controls and options exist, they

default to the same value.

The following table is a list of all options and their equivalent control (if

present). For a detailed description of each option that has an equivalent

control, refer to the description of the control in Chapter 4, Assembler
Controls Reference. Options that have no equivalent control are described

below.

Option Control Description

–? Display invocation syntax

–C[–] [no]cond Include conditionally–skipped source lines in list
file

–D set Define a symbol

–G[–] [no]gen Include macro expansion lines in list file

–I[–] [no]searchinclude Specify alternative search path for include files

–O[–] [no]optimize Turn on/off optimization

–U reset Undefine a symbol

–R restore Restore settings of some general control

–S save Save settings of some general control

–V Display version header only

–c[–] [no]cmain Allow public symbol ’main’ in source file

–ca[–] [no]copyattr Use segment type of current segment

–case[–] [no]case Assembler works case sensitive

–da[–] [no]directaddr Force direct addressing mode

–e eject Start a new listing page

error Generate error in list file with user–defined
message

–em[–] [no]extra_mnem Add extra jump mnemonics

–ep[–] [no]errorprint Specify where errors are to be displayed

–f file Read options and/or controls from file

Chapter 33–6
IN
V
O
C
A
T
IO
N

DescriptionControlOption

–fc farcode Specify code space configuration for 24–bit
models

–fd fardata Specify data space configuration for 24–bit
models

–fk farconst Specify constant space configuration for 24–bit
models

–g[–] [no]debug Include symbolic debug information in object file

–i include Add extra include file

–l[–] [no]list Display source lines in list file

–lb[–] [no]limit_bitno Do not allow bit number greater than 7

–ld[–] [no]linedebug Generate line numbers in object file

–md model Specify processor model

–nc nearcode Specify code space configuration for 24–bit
models

–nd neardata Specify data space configuration for 24–bit
models

–nk nearconst Specify constant space configuration for 24–bit
models

–o[–] [no]object Specify name of object file

–oc [no]optionalcolon Make the colon following a label declaration
optional

–omf omf Specify OMF96 verstion to generate

–p[–] [no]print Specify name of list file

–pl pagelength Set list page length

–pw pagewidth Set list page width

–ri[–] [no]relaxedif Allow undefined symbols in ’if’ statements

–sb[–] [no]symbols Include symbol information in list file

–sc source Add line number information

–so[–] [no]signedoper Set default behavior of operators to signed

–st[–] [no]subtitle Set page header subtitle in list file

–t title Set page header title in list file

–x[–] [no]xref Generate symbol cross–reference table in list
file

Table 3-1: ASM196 assembler options

Assembler Invocation 3–7

• • • • • • • •

Below are some detailed descriptions of options that have no equivalent

control.

-? Display an explanation of options on stdout .

-V Display version information on stdout and stop.

-f file Use file for command line processing. In this way you can

extend the command line. This option can be used more

than once, even between the controls.

3.3 ASSEMBLER CONTROLS

You can enter assembler controls on the invocation line, as described in

Section 3.1, or on a control line in your source code as described below.

The format for a control line is

$control_list [;comment]

Where:

$ (dollar sign) must be the first character of any control line, in

column 1.

control_list is a list of one or more controls separated by one or more

spaces or tabs.

; denotes the start of a comment.

comments is any valid ASCII character. Comment lines are optional.

Control lines must always be terminated by a carriage return or line feed

character. Control lines cannot be continued.

For example, the following control lines set up a listing file with a

pagewidth of 80 characters per line and a pagelength of 72 lines per page

to be titled section eight and to be started on a new page because of

the eject control.

$pagewidth (80) pagelength(72)
$title(’section eight’) eject ; Section 8 listing follows

Note that parameters to commands, such as 80 for pagewidth or

section eight for title , are placed inside parentheses.

Chapter 33–8
IN
V
O
C
A
T
IO
N

Some controls specify conditions that are either positive or negative (on or

off). The negative conditions are specified by prefixing no to the positive

form of the control. Thus, the negative form of xref is noxref and the

negative form of print is noprint .

All positive forms of controls have two-letter abbreviations by which they

can be specified. Thus the abbreviation for xref is xr and the

abbreviation for print is pr . The abbreviations for the negative forms of

the controls consist of the two-letter abbreviations for the positive form of

the command prefixed by no . For example, nopr is the abbreviation for

noprint as noxr is the abbreviation for noxref .

Most controls have default settings. The assembler automatically uses

these defaults unless you specify otherwise. Thus, you only enter controls

if you desire assembly conditions different from the default conditions.

You can enter controls and control parameters, both on the invocation line

and in source lines. Case is not significant.

3.3.1 PRIMARY AND GENERAL CONTROLS

Controls are categorized as either primary or general.

Primary controls set conditions that apply throughout the entire assembly

of a program. Place primary controls on the primary control lines of the

source file or on the invocation line. A primary control line is any control

line that appears before the first noncontrol line of the source program.

Blank lines and comment lines are considered to be noncontrol lines. A

primary control, either positive or negative, can appear only once in a

given program. Listing primary controls determine the construction of the

listing file, while object primary controls determine the construction of the

object file.

General controls cause an immediate action or an immediate change of

conditions. In the latter case, the condition specified by the general

control remains in effect until another general control causes it to change.

You can specify general controls on the invocation line or on control lines

anywhere in the source file. You can specify these controls many times

within a source file to set conditions during assembly. General controls

specified on the invocation line take effect before the assembler reads the

first source line, but have no precedence over general controls in the

source file.

Assembler Invocation 3–9

• • • • • • • •

One exception is the include control which can only appear once in a

line and only as the last entry of the line.

Table 3-2 lists all the primary and general controls and their abbreviations.

The default settings are shown where applicable. See Chapter 4 for a

detailed description of each control.

Control Name Abbreviation Default Type

case cs cs Primary

cmain cm nocm Primary

cond co co General

copyattr ca noca Primary

debug db nodb Primary

directaddr da noda Primary

eject ej n/a General

error(’string’) er n/a General

errorprint ep noep Primary

extra_mnem em noem Primary

gen ge noge General

include(pathname) ic n/a General

limit_bitno lb nolb Primary

linedebug ld nold Primary

list li li General

model(processor) md md(kb) Primary

optimize ot noot Primary

nearcode/farcode nc/fc nc Primary

nearconst/farconst nk/fk nk Primary

neardata/fardata nd/fd nd Primary

object oj oj(src.obj) Primary

omf(number) omf omf(2) Primary

optionalcolon oc nooc Primary

pagelength(number) pl pl(60) Primary

pagewidth(number) pw pw(120) Primary

print pr pr(src.lst) Primary

Chapter 33–10
IN
V
O
C
A
T
IO
N

TypeDefaultAbbreviationControl Name

relaxedif ri nori Primary

save/restore sa/rs n/a General

searchinclude(pathname) si nosi General

set/reset se/re n/a General

signedoper so noso Primary

source sc nosc General

subtitle(’string’) st nost General

symbols sb sb Primary

title(’string’) tt tt(modname) General

xref xr noxr Primary

Table 3-2: ASM196 assembler controls

3.3.2 CONTROL PROCESSING

The assembler processes controls in the following manner. Initially, the

assembler uses the default value for each control. The assembler then

processes the program text from left to right, starting at the invocation line

and then going from the first source line to the final source line.

The assembler sets each primary control encountered to the condition you

specified. Any further occurrence of the same primary control produces

an error message to that effect and the subsequent occurrence does not

affect the assembler processing.

Except for the list and eject controls, the assembler sets general

controls as the assembler scans each line. The assembler uses the last

condition of the general control it encounters, unless you insert a

restore in the middle. For example, in the following control line, nogen
is in effect because it is the last control on the control line:

$gen nogen gen nogen gen nogen

Remember that when both positive and negative forms of a control appear

on a control line, only the last control is active. Note also that the list
and eject controls become effective only after the current line is printed.

Assembler Invocation 3–11

• • • • • • • •

3.4 OUTPUT OBJECT FILE

The assembler produces an object file, with a .obj extension, that

contains machine language and data that you can load into memory for

execution or interpretation. This file also contains control information

governing the loading process. The object file can be in absolute or

relocatable object code format. An absolute object file contains absolutely

located segments and makes no external references. You can load this file

without passing it through the RL196 linker. A relocatable object file,

however, contains at least one relocatable segment and might make

external references. You must run this file through the RL196 linker so

that the linker can locate the relocatable segment to an absolute memory

address and resolve its external references. See the 80C196 Utilities User's
Guide, listed in Related Publications, for instructions on how to run the

RL196 linker.

3.5 LISTING FILE

The listing file provides you with a listing of your source program and

important information on the assembly process. This file contains any

information you supplied and all of the assembler-generated information.

Errors detected by ASM196 within the source code also appear in this file.

The assembler, by default, produces a listing file that has a pagewidth of

120 characters and a page length of 60 lines. Each page includes a page

header and a column heading, followed by the assembly output. Lines

that exceed the right margin setting, set by default or the pagewidth
control, are continued on the line directly below the original line

commencing at column 35.

The list file comes in two different formats dependant on the compilation

model. If model(nt) or model(np) is specified, the 24-bit (extended)

format is used, otherwise, the standard format (S) is applied. The main

difference between the two formats is that in the 24-bit format, addresses

are represented as six digit hexadecimal numbers and symbol values as

eight digit hex numbers while in the S format both are four digit hex

numbers. Because of the additional digits in the 24-bit format format,

certain fields are slightly moved to the right. For more details, refer to the

discussion on the body of list file, section 3.5.2.

Figure 3-1 shows an example of the format of the list file.

Chapter 33–12
IN
V
O
C
A
T
IO
N

80C196 MACRO ASSEMBLER ––> HAND CALCULATOR: MAIN <–– date PAGE 1

80C196 macro assembler V x. y R z SN00000–005 (c) year TASKING, Inc.

(C)1983,1990,1993 Intel Corporation

SOURCE FILE: sample.a96

OBJECT FILE: sample.obj

CONTROLS SPECIFIED IN INVOCATION COMMAND: xref

LOC OBJECT STMT SOURCE STATEMENT

1 $TITLE(’––> HAND CALCULATOR: MAIN <––’)

2

3 HC_MAIN MODULE MAIN,STACKSIZE(8)

4 ;

5 ;The program simulates a common hand calculator.

6 ;Available commands (DR the display register, MR the memory

;register):

7 ;

8 ; [operand1] op operand2 – where ’operand is a decimal

;number.

9 ; ’op’ can be +, –, * and /.

10 ; M+ – add DR to MR.

11 ; RM – transfer MR to DR.

12 ; M– – substract DR from MR (result in MR).

13 ; CM – clear MR.

14 ; ? or H – a help info is displayed.

15 ; EX – exit.

16 ;Commands can be written in upper or lower case letters.

17

18 EXTRN ER_Invalid_Command

19 PUBLIC MN_Result, MN_Exit_Flag

20 ;

21 ;Runtime conventions:

22 ; 1) Parameters are transferred on the stack.

23 ; 2) Word and byte funcs return their result in the

24 ; global reg MN_Result.

25 $INCLUDE(8096.INC)

=1 26 $nolist

86 ;;;;;;;;;;;;;;;;;;;;;;;

87 ;

Figure 3-1: Source listing example

Assembler Invocation 3–13

• • • • • • • •

80C196 MACRO ASSEMBLER ––> HAND CALCULATOR: MAIN <–– date PAGE 2

LOC OBJECT STMT SOURCE STATEMENT

88 ;Common definitions

000D 89 CR EQU 0DH

000A 90 LF EQU 0AH

0020 91 BLANK EQU 20H

0009 92 TAB EQU 09H

93 STRING MACRO Str ;Defines a length–

;prefixed string

94 LOCAL Len

95 Start_LC SET $

96 DCB Len, Str

97 Len EQU $–Start_LC–1

98 ENDM

99

0000 100 RSEG

0000 101 MN_Result: DSW 1 ;Result of byte or

;word functions

0002 102 MN_Exit_Flag: DSB 1 ;Exit flag, only bit

;0 is used

103

2080 104 CSEG at 2080H

105 EXTRN IO_Put_String, IO_Put_Char

106 EXTRN RD_Get_Line, RD_Get_Chaqr,

RD_This_Char

107 EXTRN RD_Skip_Blanks,RD_Check_EPL

108 EXTRN UT_FindB, UT_Help_Com

109 EXTRN ER_Put_Message

110 EXTRN RG_Eval, RG_Mem_Op, RG_Clear_MR,

RG_Recall_MR,

*** ___^

*** ERROR #10 IN STMT 110 (LINE 52), SYNTAX ERROR

111 EXTRN RG_Print_DR

2080 112 Start: ;... of main program

2080 A1000018 R 113 LD SP,#STAC ;Init StackPointer

2084 C9DC20 114 PUSH #STR_signon ;Print Signon

2087 EF0000 E 115 CALL IO_Put_String

208A 1102 R 116 CLRB MN_Exit_Flag ;Reset exit

;flag

208C 117 Main_Loop:

208C 300203E78E00 R 118 ! BBS MN_Exit_Flag,0,Exit

;Check for exit

2092 EF0000 E 119 CALL RG_Print_DR

2095 C93A00 120 PUSH #’:’ ;Print prompt

;character

2098 EF0000 E 121 CALL IO_Put_Char

209B EF0000 E 122 CALL RD_Get_Line ;Line is placed in

;RD_Line

Figure 3-1: Source listing example (continued)

Chapter 33–14
IN
V
O
C
A
T
IO
N

80C196 MACRO ASSEMBLER ––> HAND CALCULATOR: MAIN <–– date PAGE 3

LOC OBJECT STMT SOURCE STATEMENT

209E EF0000 E 123 CALL RD_Skip_Blanks

124

20A1 EF0000 E 125 CALL RD_This_Char ;Find command type

20A4 C9C720 126 PUSH #STR_1st_Chars

20A7 C800 R 127 PUSH MN_Result

20A9 EF0000 E 128 CALL UT_FindB

20AC 89FFFF00 R 129 CMP MN_Result,#0FFFFH

20B0 D708 130 BNE Command_OK

20B2 C90000 E 131 PUSH #ER_Invalid_Command

20B5 EF0000 E 132 CALL ER_Put_Message

20B8 27D2 133 BR Main_Loop

20BA 134 Command_OK:

20BA 640000 R 135 ADD MN_Result, MN_Result ;Do case

;MN_Result

20BD A300FC2000 R 136 LD MN_Result, Com_Tab[MN_Result]

20C2 C98C20 137 PUSH #Main_Loop ;Simulate indirect

;call

20C5 E300 R 138 BR [MN_Result]

139 ;

140 ;Tables and constants used for the above logic

20C7 141 STR_1st_Chars: STRING <’0123456789’,’+–*/’,’MRC?HE’>

20DC 145 STR_Signon: STRING <CR,LF,’8096–BASED CALCULATOR,

V1.0’,CR,LF>

20FC 149 Com_Tab:

20FC 0000000000000000 E 150 DCW RG_Eval,RG_Eval,RG_Eval,RG_Eval; 0–4

2104 0000000000000000 E 151 DCW RG_Eval,RG_Eval,RG_Eval,RG_Eval; 5–9

210C 0000000000000000 E 152 DCW RG_Eval,RG_Eval,RG_Eval,RG_Eval; +–

*/

2114 0000 E 153 DCW RG_Mem_Op ;M+ or M–

2116 0000 E 154 DCW RG_Recall_MR ;RM

2118 0000 E 155 DCW RG_Clear_MR ;CM

211A 00000000 E 156 DCW UT_Help_com, UT_Help_com ;? or H

211E 0000 157 DCW UT_Exit_com ;EX

*** ERROR #38 IN STMT 157 (LINE 93), UNDEFINED SYMBOL

158 ;

159 ; Exit loop

2120 160 exit:

2120 C92821 161 PUSH #STR_Signoff ;Print signoff

2123 EF0000 E 162 Call IO_Put_String

Figure 3-1: Source listing example (continued)

Assembler Invocation 3–15

• • • • • • • •

80C196 MACRO ASSEMBLER ––> HAND CALCULATOR: MAIN <–– date PAGE 4

LOC OBJECT STMT SOURCE STATEMENT

2126 27FE 163 BR $;Infinite loop

164 $GEN

2128 165 STR_Signoff: STRING <CR,LF,’ S T O P’,CR,LF>

2128 166+1 Start_LC SET $

2128 0F0D0A2020202053 167+1 DCB ??0003, CR,LF,’ S T O P’,CR,LF

2130 2054204F20500D0A

000F 168+1 ??0003 EQU $–Start_LC–1

2138 169 Start_LC SET $

2138 0F0D0A2020205320 170 DCB ??0003,CR,LF,’ S T O P’,CR,LF

2140 54204F20500D0A

171

2147 172 END

Figure 3-1: Source listing example (continued)

3.5.1 HEADER AND INTRODUCTORY LINES

Header information appears at the top of each page of the listing file and

contains the title, the date, and the page number as follows:

80C196 MACRO ASSEMBLER title date PAGE n

Where:

title is either the title specified by the title control or the

module name. The title appears to the right of the word

ASSEMBLER.

date is the system date.

n is the page number.

The first page of the listing file also contains the following introductory

lines:

80C196 macro assembler v x. y r z SN000000–005 (c) year TASKING, Inc.
(C)1983,1990,1993 Intel Corporation

SOURCE FILE: source
OBJECT FILE: object
CONTROLS SPECIFIED IN INVOCATION COMMAND: control_list

Where:

x.y specifies the version number of the assembler.

Chapter 33–16
IN
V
O
C
A
T
IO
N

z specifies the revision number of the assembler.

year specifies the copyright year.

source is the name of the source file including its path.

object is the name of the object file including its path, or if

noobject was specified, the entry <none> .

control_list is a list of all the controls you specified on the invocation

line.

3.5.2 SOURCE LINES

The body of the listing file consists of columns of information (fields).

The fields are:

• LOC for the location counter field, starts at column 1.

• OBJECT for the object code field, starts at column 6 (S format), 8

(24-bit format).

• STMT for the line number field, starts at column 28 (S format), 32

(24-bit format).

• SOURCE STATEMENT for the source field, starts at column 35 (S

format), 44 (24-bit format).

Source lines contain the following fields, shown in the standard (S) and

24-bit format:

• Location counter field (columns 1 through 4) (S), 1-6 (24-bit). This

field contains the hexadecimal value of the location counter. This

value is the address where the next byte of code or data is located.

The assembler adjusts the value displayed for any required

alignment if the next statement is a dsw, dcw, dsp , dcp , dsl , dcl ,

dsr , dcr , cseg , dseg , kseg , rseg , dseg , odseg , sseg , or org
directive. For absolute segments, the LOC field contains an absolute

address. For relocatable segments, the LOC field contains the offset

from the beginning of the segment currently being assembled. The

LOC field is displayed for all machine instructions, the

constant-definition directives (dcb , dcw, dcp , dcl , and dcr), the

storage-reservation directives (dsb , dsw, dsp , dsl , dsq , and dsr),

the segment-selection directives (cseg , dseg , kseg , odseg , oseg ,

reg , and sseg), the org directive, and for empty statements and

macro calls that are preceded by labels. Otherwise, the field is

blank.

Assembler Invocation 3–17

• • • • • • • •

• Set or Equ value (columns 3 through 6) (S), 3-10 (24-bit). If the

statement is a set or an equ directive, this field displays the value

of the expression in hexadecimal. The value is not aligned.

• Object code field (columns 6 through 21) (S), 8-25 (24-bit). This

field contains the object code in hexadecimal generated by the

assembler for the given line.

• Fixup indicator (column 23) (S), 27 (24-bit). When no fixup is

required, this field is blank. This field displays an R if the code

contains a relocatable reference. If the code contains an external

reference, this field contains an E. If the code contains a complex

expression, this field contains a C.

• Include indicator (columns 25 through 26) (S), 29-30 (24-bit). All

source lines that are from an include file contain an equal sign (=)

in column 25. Column 26 contains the include nesting indicator

which indicates the level of nesting, if any. For example, if you

include an include file, column 26 contains a 1 for the source lines

from that include file to indicate nesting level 1. If this include file

calls another include file, column 26 contains a 2 for the source

lines of the second include file, indicating nesting level 2.

• Line number field (columns 28 through 31) (S), 32-35 (24-bit). This

field contains the line number starting from 1. The line number is

sequentially incremented by one for every source line and macro

expansion line, but the line number is not incremented for

conditionally skipped lines, lines not assembled because of an if
directive. The line number increments for every non-skipped line,

whether the line is listed or not.

• Macro expansion indicator (columns 32 through 33) (S), 36-37

(24-bit). The first column contains a plus sign (+) if the line is a

macro expansion line. The second column contains macro

expansion nesting. Thus, 1 indicates the original macro, 2 indicates

a macro nested within the original macro.

• Expanded generic instruction indicator (column 34) (S), 38 (24-bit).

This field contains an exclamation point (!) if the source line

contains a generic instruction that is expanded into several machine

instructions or any of the machine instructions resulting from that

expansion.

Chapter 33–18
IN
V
O
C
A
T
IO
N

• Source statement field (column 35 (S), 39 (24-bit) and on). The

source line is reproduced exactly as entered, except that tabs are

converted to blanks. If a generic instruction is expanded into more

than one machine instruction and if the gen control is in effect, the

instructions resulting from the expansion are displayed, one

instruction per line.

3.5.3 ERROR LINES

When an error occurs, an error line appears in the listing immediately after

the source statement which caused the error. The error line format is as

follows:

*** ERROR # d IN STMT # n (LINE s [OF FILE f], <error–text>

Where:

d is the corresponding error number.

n is the assembly statement number from column 28 through 31 of the

listing file.

s is the source line number from your source file. If the source line is

from an include file the source line number is the line number within

file f .

If the error is a syntax error, a line preceding the error message line

indicates which token caused the error. The line consists of three asterisks

(***) followed by underscores (_) extending to the point in error. The

caret symbol (^) points to the token in error.

3.5.4 SYMBOL TABLE

The symbol table is a list of all symbols defined in the program along with

status information about the symbols. The assembler automatically

includes the symbol table listing in the listing file since symbols is the

default. If you specify xref , the assembler includes cross-reference

information in the symbol table.

Figure 3-2 shows the format of the symbol table. A page eject always

occurs between the end of the source listing and the start of the symbol

table.

Assembler Invocation 3–19

• • • • • • • •

80C196 MACRO ASSEMBLER ==> HAND CALCULATOR: MAIN <== date

SYMBOL TABLE AND CROSS–REFERENCE LISTING
––

 N A M E VALUE ATTRIBUTES AND REFERENCES

??0001 0014H NULL ABS.
82 83#

??0002 001FH NULL ABS.
86 87#

??0003 000FH NULL ABS.
107 108#

BLANK 0020H NULL ABS.
31#

COM_TAB 20FCH CODE ABS WORD.
75 88#

COMMAND_OK 20BAH CODE ABS ENTRY.
69 73#

CR 000DH NULL ABS. .
29# 86 86 107 107

ER_INVALID_COMMAND ––––– NULL EXTERNAL. . .
18# 34 70

ER_PUT_MESSAGE ––––– CODE EXTERNAL.
19# 71

EXIT 2126H CODE ABS ENTRY.
57 100#

HC_MAIN ––––– MODULE MAIN STACKSIZE(8).
3#

IO_PUT_CHAR ––––– CODE EXTERNAL.
46# 60

IO_PUT_STRING ––––– CODE EXTERNAL.
46# 54 102

LF 000AH NULL ABS. .
30# 86 86 107 107

MAIN_LOOP 208CH CODE ABS ENTRY.
35 56# 72 76

MN_EXIT_FLAG 0002H REG REL PUBLIC BYTE.
19 43# 55 57

MN_RESULT 0000H REG REL PUBLIC WORD.
19 42# 66 68 74 74 75 75 77

RD_CHECK_EOL ––––– CODE EXTERNAL.
47#

RD_GET_CHAR ––––– CODE EXTERNAL.
47#

RD_GET_LINE ––––– CODE EXTERNAL.
47# 61

RD_SKIP_BLANKS ––––– CODE EXTERNAL.
47# 62

RD_THIS_CHAR ––––– CODE EXTERNAL.
47# 64

Figure 3-2: Symbol table example

Chapter 33–20
IN
V
O
C
A
T
IO
N

RG_CLEAR_MR ––––– CODE EXTERNAL.
50# 94

RG_EVAL ––––– CODE EXTERNAL.
50# 89 89 89 89 89 90 90
90 90 90 91 91 91 91 91

RG_MEM_OP ––––– CODE EXTERNAL.
50# 92

RG_PRINT_DR ––––– CODE EXTERNAL.
50# 58

RG_RECALL_MR ––––– CODE EXTERNAL.
50# 93

SP 0018H NULL ABS. .
33# 52

START 2080H CODE ABS ENTRY.
51#

START_LC 212EH CODE ABS.
81# 83 85# 87 106# 108

STR_1ST_CHARS 20C7H CODE ABS BYTE.
65 80#

STR_SIGNOFF 212EH CODE ABS BYTE.
101 105#

STR_SIGNON 20DCH CODE ABS BYTE.
53 84#

STRING ––––– MACRO.
34# 80 84 105

TAB 0009H NULL ABS. .
32#

UT_EXIT_COM ––––– UNDEFINED
96

UT_FINDB ––––– CODE EXTERNAL.
48# 67

UT_HELP_COM ––––– CODE EXTERNAL.
48# 95 95

Figure 3-2: Symbol table example (continued)

Each page of the symbol table has the same header lines as the pages of

the source listing. The page numbers continue from the source listing into

the symbol table. In addition, the first page of the symbol table contains

the header:

SYMBOL TABLE LISTING

If you specified the xref control, the header reads:

SYMBOL TABLE AND CROSS–REFERENCE LISTING

The symbol table, like the source listing, is divided into fields. The

symbols are then listed in alphabetic order, except for the underscore (_)

coming first. Fields and symbols are listed as follows:

Assembler Invocation 3–21

• • • • • • • •

• NAME field (columns 1 through 31). The name of the symbol is

listed. Alternating periods and blanks (. . .) fill the field to

column 31.

• VALUE field (columns 35 through 39)(S), 35-43 (24-bit). The

address of the symbol is given in hexadecimal. For relocatable

symbols, the address reflects the symbol's offset from the segment.

For absolute symbols, the address is the absolute address where the

symbol is located. For undefined symbols, external symbols,

macros, and the module symbol, the value field contains hyphens

(----).

• ATTRIBUTES field (column 43 (S), 47 (24-bit) through the end of

the line). The attributes associated with each name are listed. The

attributes are separated by spaces. The attributes are:

NEAR or FAR appears for near/far attribute of the symbol's segment.

REG, OVERLAY, CONSTANT, FAR CONSTANT, CODE, FAR CODE, HIGH
CODE, DATA, STACK or NULL is the segment type of the symbol.

NUMBER appears for symbols that do not belong to any segment.

BYTE, WORD, POINTER, LONG, REAL, ENTRY or NULL is the data

type of the symbol. The size of a POINTER depends on the

processor model used, and is 2 bytes for 16-bit models and 4 bytes

for 24-bit models. The POINTER is of type NO_TYPE to avoid

symbol attribute mismatch warnings from the linker.

ABS appears for absolute symbols.

REL appears for relocatable symbols.

PUBLIC appears for public symbols.

EXTERNAL appears for external symbols.

MACRO appears for macros.

MODULE appears only for the module name symbol. Each assembly

unit has only one module.

MAIN indicates that the module is the main module of the

application.

STACKSIZE(n) gives the size of the stack required by the module.

Chapter 33–22
IN
V
O
C
A
T
IO
N

UNDEFINED appears for symbols that are not defined in the

program.

• REFERENCES (column 43 (S), 47 (24-bit) through the end of the

line). The reference field is present only if you specified xref with

the symbols control. This field contains a list of the line numbers

of all statements that use the given symbol. If the value of the

symbol is defined (or redefined) in the given statement, the line

number of the statement is followed by the number sign (#).

Spaces separate statement line numbers for a given symbol from

one another.

3.6 ERRORPRINT FILE

The errorprint file consists of all listing lines that contain errors. The

listing of erroneous lines matches the listing of these lines in the print file.

Each error line consists of three asterisks (***) followed by the error

number, the statement line number where the error occurred, and the

error message. See Chapter 8 for a complete list of error messages

produced by ASM196.

3.7 AUTOMATIC ASSEMBLER INVOCATION

TASKING offers three ways of automatically invoking a series of

commands: makefiles, batch files and command files. This section

demonstrates ways to use these features with TASKING software

development tools. Filenames and directory names appearing in this

section are examples.

3.7.1 USING MAKE UTILITY MK196

mk196 takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mk196 or written to the

standard output without executing them.

For a detailed discription of this utility, see 80C196 Utilities User's Guide,
Chapter MK196 Make Utility.

Assembler Invocation 3–23

• • • • • • • •

3.7.2 BATCH FILES

Batch files are useful when the same commands are invoked over and

over again. Instead of retyping the invocation line, you can create a batch

file to execute the command automatically. The same batch file can

operate on different sets of input files by passing the input filenames as

arguments. See examples in the next section. All batch files must have

the .bat extension.

Batch files can be chained, meaning one can invoke the next. Batch files

can also be nested. Nesting of batch files requires DOS version 3.3 or later

and the use of the DOS call command. When nesting, the called batch

file takes control directly. When the called batch file is complete, control

passes back to the calling batch file at the command immediately

following the one that invoked the called batch file.

Invoke the batch file by typing in the batch filename without the .bat
extension.

For example, the asm_rl.bat file contains the following lines:

asm196 file1.a96 debug
if errorlevel 1 goto :exit
rl196 file1.obj
echo assembled and linked ok
goto :end
:exit
echo asm failed
:end

To invoke the batch file, enter the batch filename at the prompt as follows:

asm_rl

When invoked, ASM196 assembles file1.a96 . If no error occurs, the

assembler creates the object file file1.obj and runs it through the RL196

linker; otherwise, DOS displays asm failed on your screen.

Chapter 33–24
IN
V
O
C
A
T
IO
N

As mentioned before, passing arguments to a DOS batch file enables the

same batch file to perform similar work on different programs or data each

time you execute the batch file. To rewrite the previous example,

asm_rl.bat contains the following:

asm196 %1.a96 debug
if errorlevel 1 goto :exit
rl196 %1.obj
echo assembled and linked ok
goto :end
:exit
echo asm failed
:end

Invoke the batch file with the following:

asm_rl file1

The argument file1 replaces the %1 parameter and the .a96 extension is

attached after it. The same process happens with the link line. You can

have up to nine arguments, %1 - %9. The %0 argument is the command

being executed. For more information on batch files, see the DOS
Reference manual for your system. To increase the number of arguments

passed, refer to the shift subcommand also found in this manual.

Since most typical applications consist of multiple object files, most likely

all your object filenames cannot fit in one line. One way to work around

this limitation is to use indirect input. See the 80C196 Utilities User's
Guide, listed in Related Publications, for information on how to link

multiple object files together.

3.7.3 LOG FILE

You can redirect the output from a command file to another file to obtain

a complete log of all console activity during the command file's execution,

including the invocation line for each program executed in the command

file. The following example creates a log file named asm_rl.log .

command < asm_rl.com > asm_rl.log

TASKING
Quality Development Tools Worldwide

4

ASSEMBLER
CONTROLS

C
H
A
P
T
E
R

Chapter 44–2
C
O
N
T
R
O
L
S

4

C
H
A
P
T
E
R

Assembler Controls 4–3

• • • • • • • •

This chapter explains each control in detail. Each control appears in

alphabetical order. Each control except for the error control has an

equivalent assembler option.

See the Conventions Used In This Manual at the beginning of this manual

for special meanings of type styles used in this manual.

With controls that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

Chapter 44–4
C
O
N
T
R
O
L
S

case

Function

Tells assembler to act case sensitive.

Syntax

Select the EDE | Assemebler Options | Project Options...
menu item. Enable or disable the Operate in case sensitive mode
check box in the Object tab.

case | nocase
–case | –case–

Abbreviation

cs | nocs

Class

Primary control

Default

case

Description

Use this control to tell the assembler to work in a case sensitive manner.

However, some general rules regarding case sensitivity must be

considered:

1. Options supplied on the command line (-? and -V) are always handled

case sensitive.

2. Controls supplied on the command line are always handled case

insensitive.

3. Keywords are always handled case insensitive.

When you use the nocase control:

4. All module names, public and external symbols are converted to upper

case.

5. All filenames are converted to lower case.

Assembler Controls 4–5

• • • • • • • •

When you use the default case control (or -case option):

6. None of the conventions mentioned in (4) or (5) is performed.

Example

The following example turns case sensitivity off:

asm196 main.a96 nocase

Chapter 44–6
C
O
N
T
R
O
L
S

cmain

Function

Allow public symbol 'main' in source.

Syntax

Select the EDE | Assemebler Options | Project Options...
menu item. Enable or disable the Allow public symbol ’main’ in
source (needed for cstart.a96) check box in the Object tab.

cmain | nocmain
–c | –c–

Abbreviation

cm | nocm

Class

Primary control

Default

nocmain

Description

The RL196 linker expects a public symbol 'main' in one of the object or

library files. When all objects are created from assembler source files, we

must define a public symbol 'main' in one of these files. However, 'main'

is a reserved word and may not be used in an assembler source file unless

the cmain control is used.

Example

asm196 main.a96 cmain

Assembler Controls 4–7

• • • • • • • •

cond

Function

Specifies whether conditionally-skipped source lines appear in the listing

file.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Include conditionally–skipped source
lines check box in the Listing tab.

cond | nocond
–C | –C–

Abbreviation

co | noco

Class

General control

Default

nocond

Description

Use this control to specify whether to include conditionally-skipped

source lines in the listing file. If you specify cond , the assembler includes

all of the source lines regardless of the result of the conditional assembly.

See Chapter 6 for more information on conditional assembly. If you

specify nocond , only the assembled source lines appear in the listing file,

meaning only the conditionally assembled lines evaluated to be TRUE

appear in the listing.

if /else /endif directive (Chapter 6)

list control

Chapter 44–8
C
O
N
T
R
O
L
S

copyattr

Function

Specifies whether to use segment type of current segment.

Syntax

Select the EDE | Assemebler Options | Project Options...
menu item. Enable or disable the Use segment type of current
segment check box in the Object tab.

copyattr | nocopyattr
–ca | –ca–

Abbreviation

ca | noca

Class

Primary control

Default

nocopyattr

Description

When symbols are defined using the SET/EQU directives, the segment

type of these symbols was the NULL segment type. However, for symbols

defined with the EXTRN keyword, the segment type of the current

segment was given to the symbol. The assembler will set the segment type

for symbols defined with SET/EQU according to the following rules:

1. If the segment type of the expression on the right hand side of SET/EQU

is of type NULL and the copyattr control is set, the segment type of the

current segment is used.

2. For all other segment types of the expression or when the copyattr
control is not set, the segment type of the expression is assigned to the

symbol being defined. This behavior is equal to older versions of the

assembler.

Assembler Controls 4–9

• • • • • • • •

Example

When invoked with asm196 –ca source :

l3 set 5h ; type = NULL

 dseg
 extrn e1:word ; type = DATA
l1 equ 10h ; type = DATA REL
lab: dsw 1

 rseg
l2 equ 12h ; type = REGISTER
l4 equ lab ; type = DATA REL

 cseg
 extrn e2:byte ; type = CODE
 end

Chapter 44–10
C
O
N
T
R
O
L
S

debug

Function

Specifies if symbol-table information is included in the object file.

Syntax

Select the EDE | Assemebler Options | Project Options...
menu item. Enable or disable the Generate symbolic debug
information check box in the Object tab.

debug | nodebug
–g | –g–

Abbreviation

db | nodb

Class

Primary control

Default

nodebug

Description

Use this control to include the symbol table information in the object file,

providing the object control is in effect. You must use this control if you

plan on debugging your application with an ICE -196 emulator. When

you specify nodebug , the assembler suppresses the symbol table

information. You cannot specify this control with the noobject control.

object control

symbol table listing (Chapter 3)

Assembler Controls 4–11

• • • • • • • •

directaddr

Function

Force direct addressing mode.

Syntax

Select the EDE | Assemebler Options | Project Options...
menu item. Enable or disable the Force direct addressing mode
check box in the Object tab.

directaddr | nodirectaddr
–da | –da–

Abbreviation

da | noda

Class

Primary control

Default

nodirectaddr

Description

This control forces the assembler to use the direct addressing mode, unless

another addressing mode is explicitly used in a statement.

The assembler cannot always determine the addressing mode for a

variable, and in that case it will choose what is most appropriate:

long/short or register direct. Consider the following syntax:

LD reg,var

When var is within the register range, the assembler will generate a

register direct load. If var is outside the register segment, the assembler

will normally generate a long-indexed load via r0 . However, with the use

of the directaddr control, the assembler will always try to generate a

direct register load. If var is not in the register segment, the assembler will

generate an error message.

Mixed Addressing Modes (Chapter 5)

Chapter 44–12
C
O
N
T
R
O
L
S

eject

Function

Causes the assembler to start a new listing page.

Syntax

eject
–e

Abbreviation

ej

Class

General control

Description

Use this control to continue the listing on a new page. The assembler

performs the page ejection after the current line is listed.

Example

Insert the following control line before the desired page division in your

source file. Make sure that the dollar sign ($) is in column 1.

$ej

Assembler Controls 4–13

• • • • • • • •

error

Function

Generate error in list file with user-defined message.

Syntax

error(’ text ’)

Abbreviation

er

Class

General control

Description

This control cannot be used on the command line and, subsequently, has

no associated option. The error control can be used to generate an error

in the list file with a user-defined error message. If the error control is

used within a macro definition, all references to the formal and local

parameter symbols are replaced with the actual parameter values or the

generated labels. This substitution can be suppressed by used angle

brackets around the symbol name.

Example

An example usage of the error control is:

MyAdd MACRO arg1, arg2
IFB <arg2>

$ERROR(’Macro called with empty argument: arg1, <arg2>’)
ELSE

add arg1, arg2
ENDIF
END

In the above example the formal parameter symbol arg2 is not replaced

with its value as it is surrounded by angle brackets. The formal parameter

symbol arg1 is replaced with the actual parameter value.

Chapter 44–14
C
O
N
T
R
O
L
S

errorprint

Function

Specifies where error lines and messages are to be directed.

Syntax

errorprint [(filename)] | noerrorprint
–ep [filename] | –ep–

where:

filename is the name of the error print file including its full path.

Abbreviation

ep | noep

Class

Primary control

Default

noerrorprint

Description

Use this control to specify whether error lines and messages are displayed

on the screen or stored in a file, specified by filename . The filename

you specify must differ from the listing filename with the filename .lst
extension. The assembler automatically displays the messages on the

screen if you do not specify a filename.

The noerrorprint control is the default. The assembler displays no

errors on the screen and does not produce an error print file.

Example

This example tells the assembler to store all messages in the file

file1.err .

asm196 file1.a96 errorprint(file1.err)

Assembler Controls 4–15

• • • • • • • •

extra_mnem

Function

Add extra jump mnemonics.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Add extra jump mnemonics check box in

the Object tab.

extra_mnem | noextra_mnem
–em | –em–

Abbreviation

em | noem

Class

Primary control

Default

noextra_mnem

Description

With extra_mnem you can use the following additional jump mnemonics

and generic jump mnemonics (16-bit or 24-bit) in your assembly source.

They have the same meaning as the original mnemonics in the first

column.

Original Mnemonics Description Equivalent Extra
Mnemonics

JH BH EBH > unsigned JGTU BGTU EBGTU

JNH BNH EBNH <= unsigned JLEU BLEU EBLEU

JC BC EBC >= unsigned JGEU BGEU EBGEU

JNC BNC EBNC < unsigned JLTU BLTU EBLTU

JE BE EBE = JZ BZ EBZ

JNE BNE EBNE <> JNZ BNZ EBNZ

JGT BGT EBGT > signed JGTS BGTS EBGTS

Chapter 44–16
C
O
N
T
R
O
L
S

Equivalent Extra
Mnemonics

DescriptionOriginal Mnemonics

JLE BLE EBLE <= signed JLES BLES EBLES

JGE BGE EBGE >= signed JGES BGES EBGES

JLT BLT EBLT < signed JLTS BLTS EBLTS

Example

This example tells the assembler to use the extra jump mnemonics.

asm196 main.a96 extra_mnem

Assembler Controls 4–17

• • • • • • • •

gen

Function

Causes macro expansion lines to be interspersed with original source lines.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Expand macros check box in the Listing
tab.

gen | nogen
–G | –G–

Abbreviation

ge | noge

Class

General control

Default

nogen

Description

Use this control to include the following items in the listing:

• macro expansion lines

• lines containing object code that cannot fit onto one line such as a

long dcb list

• sequences of machine instructions resulting from translation of a

generic instruction (e.g., dbnz to a far target)

If you specify nogen , only the original source text appears in the listing.

Chapter 44–18
C
O
N
T
R
O
L
S

Example

Your source file contains the following macro and macro call:

block macro numb,prefix
 count set 0
 rept numb
 count set count+1
 genlab prefix,%count ; Nested macro call.
 ; Genlab macro defined
 ; elsewhere
 endm
endm

cseg
block 3,lab
end

If you assemble with the gen control, your macro call line is expanded as

follows:

block 3,lab
+1 count set 0
+1 rept 3
+1 count set count+1
+1 genlab lab,%count
+1 endm
+2 count set count+1
+2 genlab lab,%count
+3 LAB1: dcb 0
+2 count set count+1
+2 genlab lab,%count
+3 LAB2: dcb 0
+2 count set count+1
+2 genlab LAB,%count
+3 LAB3: dcb 0

list control

macro processing (Chapter 7)

Assembler Controls 4–19

• • • • • • • •

include

Function

Causes the assembler to include the specified file in its processing.

Syntax

include(filename)
–i filename

where:

filename is the name of the include file including its full path.

Abbreviation

ic

Class

General control

Description

Use this control to tell the assembler to include the specified file in its

processing. You can enter this control on the invocation line or on a

control line after the module directive. If this control is one of several

controls on a control line, the include control must always be the last

control you specify. The nesting level for include files cannot be more

than nine deep.

Example

This invocation line tells the assembler to include the file kb_sfrs.inc in

its assembly:

asm196 file1.a96 include(kb_sfrs.inc)

Chapter 44–20
C
O
N
T
R
O
L
S

limit_bitno

Function

Do not allow bit numbers greater than 7.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Allow bit numbers larger than 7 check

box in the Misc tab.

limit_bitno | nolimit_bitno
–lb | –lb–

Abbreviation

lb | nolb

Class

Primary control

Default

nolimit_bitno

Description

When you use the JBS or JBC instruction with an external bit number, the

assembler will have to fill in the bit number. It is allowed to specify a bit

number which is larger than 7. If this is the case, then the bit register will

be increased by one and the bit number will be decreased by 8 until the

bit number is smaller than 8. If the limit_bitno control is used, all

external bit number with a value greater than 7 will generate an error.

Example

The following example does not allow bit numbers larger than 7 in its

assembly files:

asm196 main.a96 limit_bitno

Assembler Controls 4–21

• • • • • • • •

linedebug

Function

Generate line numbers in object file.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Generate line number information
check box in the Object tab.

linedebug | nolinedebug
–ld | –ld–

Abbreviation

ld | nold

Class

Primary control

Default

nolinedebug

Description

To generate line numbers in the object file use the control linedebug . It

can be used separate from the debug control. If the debug control is

used, line numbers are automatically generated. To suppress line numbers

use nold .

debug control

source control

Chapter 44–22
C
O
N
T
R
O
L
S

list

Function

Causes the display of subsequent source lines in the list file.

Syntax

list | nolist
–l | –l–

Abbreviation

li | noli

Class

General control

Default

list

Description

Use this control to list the source lines in the output listing file. If you

specify nolist , the assembler suppresses the listing of any source line

until the next list control is encountered. However, the assembler still

prints source lines containing errors. When a subsequent list control

causes the resumption of listing after its suppression due to nolist , the

assembler follows the listing settings originally in effect, such as the

settings of the pagewidth and pagelength controls.

cond control

gen control

save/restore control

Assembler Controls 4–23

• • • • • • • •

model

Function

Causes code for microcontroller to be generated.

Syntax

Choose a cpu from the EDE | CPU Model... menu item. Optionally

select one or more of the radio buttons Near Code /Far Code , Near
Const /Far Const , Near Data /Far Data .

model(processor)
–md processor

where:

processor Selects the instruction set the assembler uses in generating

code for a specific member of the 80C196 processor family.

Abbreviation

md

Class

Primary control

Default

model(kb)

Description

This control allows you to specify which processor/instruction set you are

using. The cb , ea , ec , np , nt and nu arguments of the model control also

enable the assembler to recognize the nearcode , farcode , nearconst ,

farconst , neardata , and fardata controls.

Specify the processor as one of the following:

61 to select the 8096-61.

90 to select the 8096-90.

Chapter 44–24
C
O
N
T
R
O
L
S

196 to select the 80C196KB. This argument to model is available

for backward compatibility and is equivalent to specifying

kb . For future compatibility, use the model(kb) control

specification instead of model(196) .

bh to select the 8096BH.

ca to select the 80C196CA. Specifying ca is equivalent to

specifying kr .

cb to select the 80C196CB. This argument can have an extra

suffix as described in the note below.

ea to select the 80C196EA. This argument can have an extra

suffix as described in the note below.

ec to select the 80C196EC. This argument can have an extra

suffix as described in the note below.

jq to select the 80C196JQ. Specifying jq is equivalent to

specifying kr .

jr to select the 80C196JR. Specifying jr is equivalent to

specifying kr .

js to select the 80C196JS. Specifying js is equivalent to

specifying kr .

jt to select the 80C196JT. Specifying jt is equivalent to

specifying kr .

jv to select the 80C196JV. Specifying jv is equivalent to

specifying kr .

kb to select the 80C196KB. Specifying kb is equivalent to

specifying 196 .

kc to select the 80C196KC.

kd to select the 80C196KD.

kl to select the 80C196KL. Specifying kl is equivalent to

specifying kr .

kq to select the 80C196KQ. Specifying kq is equivalent to

specifying kr .

Assembler Controls 4–25

• • • • • • • •

kr to select the 80C196KR.

ks to select the 80C196KS. Specifying ks is equivalent to

specifying kr .

kt to select the 80C196KT. Specifying kt is equivalent to

specifying kr .

lb to select the 80C196LB.

mc to select the 80C196MC.

md to select the 80C196MD.

mh to select the 80C196MH.

np to select the 80C196NP. This argument can have an extra

suffix as described in the note below.

nt to select the 80C196NT. This argument can have an extra

suffix as described in the note below.

nu to select the 80C196NU. This argument can have an extra

suffix as described in the note below.

The cb , ea , ec , np , nt and nu arguments of the model control can have

an additional suffix. Without a suffix, specifying xx is the same as

specifying xx –c , where xx is one of cb , ea , np , nt or nu . The following

six suffixes are possible:

xx –c to select the compatible mode and to use near code

addressing and near data/near const addressing.

xx –cnf to select the compatible mode and to use near code

addressing and near data/far const addressing.

xx –cf to select the compatible mode and to use near code

addressing and far data/far const addressing.

xx –e to select the extended mode and to use far code addressing

and near data/near const addressing.

xx –enf to select the extended mode and to use far code addressing

and near data/far const addressing.

xx –ef to select the extended mode and to use far code addressing

and far data/far const addressing.

Chapter 44–26
C
O
N
T
R
O
L
S

Example

asm196 file1.a96 model(nt)

nearcode nearconst neardata
farcode farconst fardata

Assembler Controls 4–27

• • • • • • • •

nearcode/farcode

Function

Specify code space configuration for 24-bit models.

Syntax

Select the EDE | CPU Model... menu item. Select the Near Code or

Far Code radio button.

nearcode | farcode
–nc | –fc

Abbreviation

nc | fc

Class

Primary control

Default

nearcode

Description

nearcode and farcode specify code space configuration for a member

of the 24-bit 80C196 family. nearcode specifies that the microcontroller

is configured in compatible mode. farcode specifies that the

microcontroller is configured in extended mode. These controls must be

preceded by a 24-bit model control. If you specify a 24-bit model
without a nearcode or farcode control, the processor code mode is

determined according to the near or far attribute in the first cseg
directive having a near or far attribute. If there is no cseg directive

with a near or far attribute, then the default cseg attribute is near .

Example

asm196 file1.a96 model(nt) fc

model control

Chapter 44–28
C
O
N
T
R
O
L
S

nearconst/farconst

Function

Specify constant space configuration for 24-bit models.

Syntax

Select the EDE | CPU Model... menu item. Select the Near Const or

Far Const radio button.

nearconst | farconst
–nk | –fk

Abbreviation

nk | fk

Class

Primary control

Default

nearconst

Description

nearconst and farconst specify the constant space configuration for

the 24-bit 80C196 family of microcontrollers. nearconst specifies that all

data, unless otherwise indicated, reside in the first 64 kilobytes of the

address space. farconst , on the other hand, means that all data, unless

otherwise specified, are located in the 16-megabytes address space. The

assembler uses these controls in the kseg directive when the near or

far attribute is omitted. When nearconst is in effect, then the near
segment attribute is assumed, otherwise the far attribute is assumed.

These controls must be preceded by a 24-bit model control.

Example

asm196 file1.a96 model(nt) nk

model control

Assembler Controls 4–29

• • • • • • • •

neardata/fardata

Function

Specify data space configuration for 24-bit models.

Syntax

Select the EDE | CPU Model... menu item. Select the Near Data or

Far Data radio button.

neardata | fardata
–nd | –fd

Abbreviation

nd | fd

Class

Primary control

Default

neardata

Description

neardata and fardata specify the data space configuration for the

24-bit 80C196 family of microcontrollers. neardata specifies that all data,

unless otherwise indicated, reside in the first 64 kilobytes of the address

space. fardata , on the other hand, means that all data, unless otherwise

specified, are located in the 16-megabytes address space. The assembler

uses these controls in the dseg and odseg directive when the near or

far attribute is omitted. When neardata is in effect, then the near

segment attribute is assumed, otherwise the far attribute is assumed.

These controls must be preceded by a 24-bit model control.

Example

asm196 file1.a96 model(nt) nd

model control

Chapter 44–30
C
O
N
T
R
O
L
S

object

Function

Assigns a name to the object file produced by the assembler.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Add the control to the Additional options field in the Misc tab.

object [(filename)] | noobject
–o filename | –o–

where:

filename is the name assigned to the object file, including its full path.

Abbreviation

oj | nooj

Class

Primary control

Default

object(sourcefile .obj)

Description

Use this control to assign a name to the object file produced by the

assembler, as specified by filename . If you do not specify a filename,

the assembler uses the default name for the object file, sourcefile .obj ,

where sourcefile is the filename being assembled. The noobject
control suppresses the production of the object file. Use noobject if you

only want to debug your source program for syntax and not produce an

object file.

Example

This invocation line tells the assembler to name the object file

module.obj .

asm196 file1.a96 oj(module1.obj)

Assembler Controls 4–31

• • • • • • • •

omf

Function

Specifies OMF96 version.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Select an OMF96 Version radio button in the Object tab.

omf(n)
–omf: n

where:

n is the number representing the OMF96 version:

0 - OMF96 V2.0

1 - OMF96 V3.0

2 - OMF96 V3.2 (default)

Abbreviation

omf

Class

Primary control

Default

omf(2)

Description

Use this control is used to specify the OMF96 verstion to generate. In a

previous version of the assembler you could use the control oldobject
to specify OMF96 V2.0. Also some users were advised to use the internal

control oo1 . The two controls are now combined in one control, omf .

Example

This invocation line tells the assembler to use the old OMF96 version V2.0.

asm196 file1.a96 omf(0)

Chapter 44–32
C
O
N
T
R
O
L
S

optimize

Function

Perform some optimizations.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Perform register optimization check

box in the Object tab.

optimize | nooptimize
–O | –O–

Abbreviation

ot | noot

Class

Primary control

Default

nooptimize

Description

When the optimize control is used, some register optimization is

performed.

Example

asm196 file1.a96 optimize

Assembler Controls 4–33

• • • • • • • •

optionalcolon

Function

Make the colon following a label declaration optional.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Treat the colon of a label as
optional check box in the Misc tab.

optionalcolon | nooptionalcolon
–oc | –oc–

Abbreviation

oc | nooc

Class

Primary control

Default

nooptionalcolon

Description

This control will make the colon following a label declaration optional.

Example

asm196 file1.a96 oc

Chapter 44–34
C
O
N
T
R
O
L
S

pagelength

Function

Specifies the listing's maximum number of lines per page.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enter the page length in the Page length (lines per page)
field in the Listing tab.

pagelength(n)
–pl n

where:

n is the number of lines desired per page.

Abbreviation

pl

Class

Primary control

Default

pagelength(60)

Description

Use this control to set the listing's maximum number of lines per page.

The header lines are counted toward the total. The minimum pagelength

is 10 lines per page. Specifying a number less than 10 causes an

invocation line error. If no pagelength is specified, the default is 60 lines

per page.

Example

This invocation line tells the assembler to list 70 lines per page.

asm196 file1.a96 pl(70)

Assembler Controls 4–35

• • • • • • • •

pagewidth

Function

Specifies the listing's maximum number of characters per line.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enter the number of characters in the Page width (characters
per line) field in the Listing tab.

pagewidth(n)
–pw n

where:

n is the maximum number of characters desired per line.

Abbreviation

pw

Class

Primary control

Default

pagewidth(120)

Description

Use this control to set the listing's maximum number of characters per line.

The pagewidth can range from 72 to 255 characters per line. Specifying a

number less than 72 or greater than 255 causes an invocation-line error.

The assembler wraps the lines that exceed the right margin setting to

column 35 of the line directly below. Source lines of more than 255

characters appear in the listing as truncated to 255 characters and are

accompanied by an error message to that effect.

Example

This invocation line tells the assembler to print 80 characters per line.

asm196 file1.a96 pw(80)

Chapter 44–36
C
O
N
T
R
O
L
S

print

Function

Sets the name of the listing file to the specified filename.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Generate listing file (.lst) check

box in the Listing tab.

print [(filename)] | noprint
–p filename | –p–

where:

filename is the desired name of the listing file, including its full path.

Abbreviation

pr | nopr

Class

Primary control

Default

print(sourcefile .lst)

Description

Use this control to set the name of the listing file. If you do not specify a

filename, the assembler uses the default filename for the listing file,

sourcefile .lst , where sourcefile is the filename being assembled.

The noprint control suppresses the production of a listing file.

Example

This invocation line tells the assembler to produce a listing file called

main.lst .

asm196 file1.a96 pr(main.lst)

Assembler Controls 4–37

• • • • • • • •

errorprint control

symbols control

xref control

Chapter 44–38
C
O
N
T
R
O
L
S

relaxedif

Function

Specifies whether an undefined symbol in an IF is allowed.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Allow undefined symbol in an IF check

box in the Misc tab.

relaxedif | norelaxedif
–ri | –ri–

Abbreviation

ri | nori

Class

Primary control

Default

norelaxedif

Description

The relaxedif control specifies whether an undefined symbol in an IF

statement is allowed. For example: the statement IF SYMBOL will

normally result in an error if SYMBOL is not defined. However, when

specifying the relaxedif option the IF statement will act as an IFDEF

and the statement is correct. IF SYMBOL will be FALSE.

Example

asm196 file1.a96 ri

set control

Assembler Controls 4–39

• • • • • • • •

save/restore

Function

Saves or restores the current setting of some general controls.

Syntax

save | restore
–S | –R

Abbreviation

sa | rs

Class

General control

Description

Use the save control to save the current settings of the list , cond , and

gen controls if a temporary setting is desired for a section of the source.

Use restore then to reinstate the save d setting where desired. An error

occurs if the assembler encounters a restore with no control save d or if

the number of restore operations exceeds the number of save
operations. You can nest these controls nine deep.

Example

The following lines shows how save and restore work:

$list
$save nolist ; This line is listed
$restore ; This line is not listed
$nolist save ; This line is listed
$restore list ; This line is not listed
TRUE equ 1 ; This line is listed

Chapter 44–40
C
O
N
T
R
O
L
S

searchinclude

Function

Specifies or suppresses search paths for include files.

Syntax

Select the EDE | Directories... menu item. Add one or more

directory paths to the Include Files Path field.

searchinclude(pathprefix [,...]) | nosearchinclude
–I pathprefix | –I–

where:

pathprefix is a string of characters that the assembler prepends to an

include file's filename. This string must include any special

characters that the operating system expects in a path prefix.

Abbreviation

si | nosi

Class

General control

Default

nosearchinclude

Description

Use this control to specify a list of possible path prefixes for include files.

Each pathprefix argument is a string that, when concatenated to a

filename, specifies the relative or absolute path of a file (including a

device name and directory name, if necessary). The assembler tries each

prefix in the order in which they are specified, until a legal filename is

found. If a legal filename is not found, the assembler issues an error.

An include file is a source text file specified with the include control in

the assembler invocation or on a control line in the source text. The

contents of each include file are inserted into the source text during

preprocessing.

Assembler Controls 4–41

• • • • • • • •

When searching for a file specified with the include(filename)
control, the assembler tests the path prefixes in the following order:

1. The current directory (no prefix).

2. The directories specified by the searchinclude list.

3. The directories in the C196INC environment variable, if defined.

4. The include directory, one directory higher than the directory containing

the asm196 binary. For example, asm196 is installed in

/usr/local/c196/bin , then the directory searched for include files is

/usr/local/c196/include .

The number of directories searched for include files are not limited by the

assembler.

The searchinclude and nosearchinclude controls affect only the

subsequent source text and remain in effect until the assembler encounters

a contradictory control. Specifying the searchinclude control more

than once adds to the search path prefix list. Specifying the

nosearchinclude control after the searchinclude control suppresses

the search path prefix list until the next occurrence of searchinclude .

You can specify these controls on the invocation line or on a control line.

Example

This example demonstrates the paths searched by the assembler when a

C196INC environment variable is defined and the searchinclude
control is specified.

The C196INC environment variable is defined as follows:

PC:

set C196INC=\proj001;\proj001\headers

UNIX:

setenv C196INC /proj001:/proj001/headers

The searchinclude control is specified in the assembler invocation as

follows:

searchinclude (/proj001/test_inc,/generic/stubs)

Chapter 44–42
C
O
N
T
R
O
L
S

The source text contains the following include control:

include(t_locate.inc)

The assembler is invoked in the root directory and executed from

/usr/local/c196/bin . The assembler searches for filenames in the

following order (UNIX notation is used):

1. The current directory: /t_locate.inc

2. From the searchinclude control: /proj001/test_inc/t_locate.inc

3. From the searchinclude control: /generic/stubs/t_locate.inc

4. From C196INC : /proj001/t_locate.inc

5. From C196INC : /proj001/headers/t_locate.inc

6. From the relative path: /usr/local/c196/include/t_locate.inc

include

Assembler Controls 4–43

• • • • • • • •

set/reset

Function

Set or reset a symbol.

Syntax

set(name) | reset(name)
–D name | –U name

where:

name is the name of a symbol that will have the value TRUE in

conditional expressions.

Abbreviation

se | re

Class

General control

Description

When symbols are used in the expression of an IF directive, the symbols

used must be defined by the programmer using the set and reset
controls. When the set control is used to define a symbol, the value of

the symbol is TRUE, and symbols defined with reset have value FALSE.

All undefined symbols have the value FALSE. Therefore, it is not necessary

to define all symbols, but only those symbols that have value TRUE.

Example

The following lines shows how set and reset work:

$set(I_AM_TRUE) reset(I_AM_FALSE)

if (I_AM_TRUE or I_AM_FALSE)
...
else
...
endif

Chapter 44–44
C
O
N
T
R
O
L
S

signedoper

Function

Changes default behavior of some operators to signed.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Treat relational operators (LE, GT,
etc) as signed check box in the Object tab.

signedoper | nosignedoper
–so | –so–

Abbreviation

so | noso

Class

Primary control

Default

nosignedoper

Description

In a previous version of the assembler all relational operators like 'LE',

'GT', et cetera, all used unsigned comparison of the 32-bit operand values.

However, the new unsigned relational operators should be used for this,

and not the old relational operators. To get the proper behavior you need

to include the control signedoper on the command line. If the control is

not used, the assembler is compatible with the old style of unsigned

comparison.

The control signedoper also changes the default unsigned behavior of

operators like addition, multiplication, etc. to signed behavior.

Example

asm196 test.a96 so

Assembler Controls 4–45

• • • • • • • •

source

Function

Specifies if line number information is based on actual line number or

statement number.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Base line information on source (not
statement number) check box in the Object tab.

source | nosource
–sc | –sc–

Abbreviation

sc | nosc

Class

General control

Default

nosource

Description

This control will generate line number information based on the actual line

numbers in the source file or the statement number (default). Use the

linedebug control to enable generation of line number information.

Example

asm196 test.a96 linedebug source

debug control

linedebug control

Chapter 44–46
C
O
N
T
R
O
L
S

symbols

Function

Causes symbol-table information to be included in the listing file.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enable or disable the Include symbol information check box

in the Listing tab.

symbols | nosymbols
–sb | –sb–

Abbreviation

sb | nosb

Class

Primary control

Default

symbols

Description

Use this control to include the symbol table information in the listing file.

Do not specify noprint with this control because noprint suppresses

the production of the listing file. The nosymbols control suppresses the

inclusion of symbol table information in the listing file.

print control

xref control

Assembler Controls 4–47

• • • • • • • •

subtitle

Function

Sets the page header subtitle of the listing file.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enter the subtitle in the Subtitle of listing file field in the

Listing tab.

subtitle(’ string ’) | nosubtitle
–st ’ string ’ | –st–

where:

string is a set of any valid ASCII characters.

Abbreviation

st | nost

Class

General control

Default

nosubtitle

Description

Aside from the title control it is also possible to use a subtitle for a

number of pages. The control subtitle must be used for this feature.

The given subtitle is used on the next generated page in the list file. To get

a proper subtitle for each page, use the following combination of controls

in the assembler source file:

$SUBTITLE(’This is a subtitle’)
$EJECT

Chapter 44–48
C
O
N
T
R
O
L
S

When the control is used, you must enclose the string in either

apostrophes (’ ’) or quotation marks (” ”). The same type of mark must

be used on both sides of the string. Thus subtitle(’ string ”) is not a

valid entry. If literal quotation marks appear in the title, the other type of

mark must be used as the string delimiters.

To suppress the use of subtitles, use nosubtitle . This will turn of

subtitles of the next generated page in the list file.

Example

This example shows how to include an apostrophe (’) in the desired

subtitle.

asm196 file1.a96 st(”TASKING’s module”)

Assembler Controls 4–49

• • • • • • • •

title

Function

Sets the page header title of the listing file.

Syntax

Select the EDE | Assembler Options | Project Options... menu

item. Enter the title in the Title of listing file field in the

Listing tab.

title(’ string ’)
–t ’ string ’

where:

string is a set of any valid ASCII characters.

Abbreviation

tt

Class

General control

Default

title(module_name)

Description

Use this control to assign the title of the listing. If you do not specify a

title, the assembler uses the module name as the default title. When the

control is used, you must enclose the string in either apostrophes (’ ’) or

quotation marks (” ”). The same type of mark must be used on both

sides of the string. Thus title(’ string ”) is not a valid entry. If literal

quotation marks appear in the title, the other type of mark must be used

as the string delimiters.

Example

This example shows how to include an apostrophe (’) in the desired title.

asm196 file1.a96 tt(”TASKING’s module”)

Chapter 44–50
C
O
N
T
R
O
L
S

xref

Function

Causes a symbol cross-reference listing to be included in the listing file.

Syntax

Select the EDE | Assemebler Options | Project Options...
menu item. Enable or disable the Include a cross–reference check

box in the Listing tab.

xref | noxref

Abbreviation

xr | noxr

Class

Primary control

Default

noxref

Description

Use this control to include a symbol cross-reference listing in the listing

file. The cross-reference listing shows the line numbers on which a

particular symbol appear. See Chapter 3 for the format of the

cross-reference listing. You cannot specify xref in the same assembly

with either nosymbols or noprint . Specifying noxref suppresses the

inclusion of a cross-reference table in the list file.

print control

symbols control

cross-reference listing (Chapter 3)

TASKING
Quality Development Tools Worldwide

5

ASSEMBLY
LANGUAGE

C
H

A
P

T
E

R

Chapter 55–2
A
S
S
E
M
B
L
Y

5

C
H

A
P

T
E

R

Assembly Language 5–3

• • • • • • • •

5.1 INTRODUCTION

This chapter provides a detailed presentation of the elements of assembly

language and statement syntax. It also describes the program format and

the different segment types used by the assembler.

The basic unit of the assembly language is the statement. The three types

of statements are instructions, directives, and controls. Chapter 6 describes

the assembler directives and Chapter 4 discusses the controls. This

chapter explains the types of terms that appear in a statement and the

order in which they must appear.

5.2 ASSEMBLY LANGUAGE COMPONENTS

An assembly language statement consists of fields, and the correct order of

these fields is defined by the statement format. Only the correct operands

appear in the given field, and each operand must be composed of valid

elements. The character set defines the set of valid elements that can

appear in any term. If any field contains invalid characters or if the fields

are in an incorrect order, the assembler generates an error.

5.2.1 CHARACTER SET

ASM196 uses the ASCII character set. All ASCII characters are valid, but

some of them have special meanings for the assembler, unless they appear

in a comment or in a string. Numbers, delimiters, reserved words, and

symbols all have special meanings and are discussed in the following

sections.

5.2.2 NUMBERS

ASM196 supports modulo-232 unsigned arithmetic, meaning the numbers

are unsigned 32-bit integers. Numbers must be presented to the

assembler as a series of valid digits followed by a base specifier. Table

5-1 shows the base specifiers and their valid digits. Case is not significant.

When no base specifier is explicitly stated, the decimal base is used.

Chapter 55–4
A
S
S
E
M
B
L
Y

Number Base

binary the digits 0 to 1, followed by B (or b).

octal the digits 0 to 7, followed by O or Q (or o or q).

decimal the digits 0 to 9, followed by D (or d) or no base
specifier.

hexadecimal the digits 0 to 9, the supplementary hexadecimal A to
F (or a to f), followed by H (or h). The first digit must
be in the range of 0 to 9. Use a leading 0 if the
number begins with A to F.

Table 5-1: ASM196 numbers and bases

5.2.3 LONG CONSTANTS

Long constants are 32-bit unsigned numbers. Use the dcl directive to

declare a long constant. See Chapter 6 for a description of the dcl
directive.

5.2.4 FLOATING POINT NUMBERS

Use the dcr directive, discussed in Chapter 6, to declare a floating point

number. The format of a floating point number is:

[sign]int_dec_digit[frac_dec_digit][E [sign][exp_dec_digit]]

where:

sign is the optional sign (+ or -). If not specified, + is used.

int_dec_digit are the decimal digits representing the integer part of the

floating point number.

frac_dec_digit are the decimal digits representing the fractional part of

the floating point number.

exp_dec_digit are the decimal digits representing the exponent part of

the floating point number. The exponent part is optional.

If not specified or if no digit is entered, the exponent part

is assumed to equal 1 (i.e., 10 to the 0th power). If the

sign is not explicitly entered, it is assumed to be positive.

Assembly Language 5–5

• • • • • • • •

The maximum absolute value of a floating point number is 3.37E38 . The

minimum absolute value is 1.17E–38 .

A floating point value occupies four contiguous memory bytes, which can

be viewed as 32 contiguous bits. The bits are divided into fields as

follows:

ÁÁÁ
ÁÁÁ

sign
ÁÁÁÁÁ
ÁÁÁÁÁ

exponent
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

fraction
ÁÁÁ
ÁÁÁ

(1 bit)ÁÁÁÁÁ
ÁÁÁÁÁ

(8 bits) ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

(23 bits)

Where:

sign bit is 0 if the floating point value is positive or zero, or 1 if

the floating point value is negative.

exponent field contains a value offset by 127 . In other words, the actual

exponent can be obtained from the exponent field value

by subtracting 127 . This field is all 0s if the floating point

value is zero.

fraction field contains the binary digits of the fractional part of the

floating point value, when it is represented in binary

scientific notation (see the following). This field is all 0s

if the floating point value is zero.

The byte with the lowest address contains the least-significant eight bits of

the fraction field. The byte with the highest address contains the sign bit

and the most-significant seven bits of the exponent field.

See the 80C196 Utilities User's Guide, listed in Related Publications, for

more information about floating point numbers.

The following examples illustrate these concepts.

Consider the following binary number, equivalent to the decimal value

10.25:

1010.01B

The period (.) in this number is a binary point. The same number can be

represented as:

1.01001B * 23

Chapter 55–6
A
S
S
E
M
B
L
Y

This is binary scientific notation, with the binary point immediately to the

right of the most significant digit. The digits 01001 are the fractional part,

and 3 is the exponent. This value is represented as follows:

• The sign bit is 0, since the value is positive.

• The exponent field contains the binary equivalent of 127 + 3 = 130.

• The leftmost digits of the fraction field is 01001, and the remainder

of this field is all 0's.

The complete 32-bit representation is:

0 10000010 01001000000000000000000

and the contents of the four contiguous memory bytes is as follows:

highest address: 01000001

 00100100

 00000000

lowest address: 00000000

Note that the most significant digit is not actually represented, since by

definition it is a 1 unless the floating point value is zero. If the floating

point value is zero, the entire 32-bit representation is all 0's.

For a second example, consider the fraction 1/16, or 0.0625. In binary,

this is:

0.0001B

In binary scientific we have:

1.0000B * 2–4

The actual exponent, -4, is represented as 123 (i.e., 127 - 4), and the

fraction field contains all 0's.

The largest possible value for a valid exponent field is 254, which

corresponds to an actual exponent of 127. The largest possible absolute

value for a positive or negative floating point value is therefore:

1.11111111111111111111111B * 2127

or approximately 3.37*1038

Assembly Language 5–7

• • • • • • • •

The lowest permissible exponent field value for a non-zero floating point

value is 1, which corresponds to an actual exponent of -126. The smallest

possible absolute value for a positive or negative floating point value is

therefore:

1.0B * 2–126

or approximately 1.17*10-38

5.2.5 DELIMITERS

Delimiters separate and terminate operands in an ASM196 statement just as

spaces serve to delimit words in an English sentence. The position of a

delimiter is important because it can radically affect the meaning of a

statement to the assembler. Table 5-2 shows the complete set of ASM196

delimiters and their definitions.

Character(s) Definition

space One or more spaces can be entered. Spaces serve as field
separators or symbol delimiters.

, Commas separate operands.

’ Apostrophes serve to delimit character strings.

() Parentheses delimit expressions.

[] Square brackets enclose base or index registers in
instruction operands.

< > Angle brackets enclose macro arguments.

% The percent sign indicates that the following macro argument
is to be evaluated as an expression before replacing the
formal parameter.

! The exclamation mark is used as a literalizer in macro
processing.

& The ampersand is used to separate formal parameters from
adjacent text.

LF The Line Feed (ASCII 0AH) is the line terminator.

CR The Carriage Return (ASCII 0DH) can optionally precede the
Line Feed.

HT The Horizontal Tab is treated as a space.

; The semicolon delimits the beginning of a comment.

Chapter 55–8
A
S
S
E
M
B
L
Y

DefinitionCharacter(s)

;; Two successive semicolons mark the start of a comment in a
macro definition. This comment is suppressed when the
macro is expanded.

The number sign prefixes an immediate value in immediate
addressing mode.

: The colon separates the name from the rest of a statement.

Table 5-2: ASM196 delimiters

5.2.6 RESERVED WORDS

Reserved words are names that have a specific meaning in the assembly

language so you cannot use them as symbols. Instruction mnemonics,

assembler and macro directives, and the predefined symbol stack are all

reserved words. If a reserved keyword is used, the following error is

generated:

ERROR #74: Reserved keyword used in invalid context

Appendix D contains a list with all the reserved words used by the

assembler.

5.2.7 PREDEFINED MACROS

Based on the MODEL control, the assembler set s/reset s some predefined

macros:

Name Value

_SFR_INC_ name of the SFR include file

_MODEL_xx_ boolean to indicate if model xx is used

_FAR_CODE_ boolean to indicate far code

_FAR_CONST_ boolean to indicate far const

_FAR_DATA_ boolean to indicate far data

_16_BITS_ boolean to indicate a 16–bit model

Assembly Language 5–9

• • • • • • • •

ValueName

_24_BITS_ boolean to indicate a 24–bit model

_OMF96_VERSION_ OMF version:
0 V2.0
1 V3.0
2 V3.2

Table 5-3: ASM196 predefined macros

The above macro symbols will not appear in the symbol table or in the

resulting object file. The linker will search certain model specific

directories for libraries and object files.

5.2.8 SYMBOLS

Symbols are names that you can define and use to represent memory

addresses, constants, macros, etc. A symbol contains up to 31 characters.

The first character must be a letter or a special character. The special

characters are the question mark (?) and the underscore (_). The

remaining characters can be letters, special characters, or the digits 0 to 9.

Case is not significant within symbols. Thus, the assembler treats

io_control the same as IO_CONTROL or Io_CoNtRoL . The special

characters are useful in creating more readable symbol names, especially

since the hyphen is not valid in a symbol name. Thus,

DATA_Buffer_START or DATA?Buffer?START are more easily

recognizable than is DATABufferSTART .

You can define a symbol by using a directive or by using the symbol as a

label. You can use the following directives to define a symbol: module ,

extrn , equ , set , macro , dcl , dcb , dcw, dcr , dsr , dsw, dsl , dsq , and

dsb . To define a symbol as a label, append a colon (:) after the symbol

name.

Define each symbol only once, unless the symbol is defined by the set
directive, in which case that symbol can be redefined only by another set
directive. Symbols local to macros override other symbols defined outside

the scope of the macro. See Chapter 7 for more information on the macro
directive.

Chapter 55–10
A
S
S
E
M
B
L
Y

5.2.9 ASSEMBLER-GENERATED SYMBOLS

The assembler generates numeric symbols for each local macro symbol

definition. The generated numeric symbols have the form ??dddd where

d is a decimal digit. For example, your program includes the following

macro which declares loop and eom as local symbols:

block macro g1,g2,g3,g4
 local loop, eom
 ld reg1,g1
 ld reg2, #g2
loop: g3 reg3,[reg2]+
 g4 eom
 dbnz reg1,loop
eom: endm

When you assemble your program with the gen control, the following

output can be seen in the listing file:

test module main

rseg at 30h
 reg1: dsw 1
 reg2: dsw 1
 reg3: dsw 1
 size: dsw 1
 tab: dsw 1

block macro g1,g2,g3,g4
 local loop, eom

 ld reg1,g1
 ld reg2, #g2
loop: g3 reg3,[reg2]+
 g4 eom
 dbnz reg1,loop
eom: endm

Assembly Language 5–11

• • • • • • • •

cseg
 ld size, #3
 ld tab, #4
 clr reg3
 block size, tab, add, !;
 +1 ld reg1,size ;macro expansion
starts
 +1 ld reg2, #tab
 +1 ??0001: add reg3,[reg2]+
 +1 ; ??0002
 +1 dbnz reg1,??0001
 +1 ??0002: ; macro expansion
ends
 div reg3, #size
 block size, tab, cmp, bge
 +1 ld reg1,size ; macro expansion
starts
 +1 ld reg2, #tab
 +1 ??0003: cmp reg3,[reg2]+
 +1 bge ??0004
 +1 dbnz reg1,??0003
 +1 ??0004: ; macro expansion
ends

 end

Note that in the listing file, the loop and eom local symbols are replaced

with ??0001 through ??0004 . These numbers represent the number of

symbols created when the assembler expanded the macro. The most

recent symbol name generated always indicates the total number of

symbols created for all macro expansions.

Treat assembler-generated symbols the same way as reserved words to

avoid duplication of symbol names.

5.2.10 GENERIC INSTRUCTIONS

In the asm196 assembler generic instructions can be used to let the

assembler decide what instructions can be used best. Generic instructions

are available for jump and call instructions.

Chapter 55–12
A
S
S
E
M
B
L
Y

The generic call instruction (mnemonic call) will select the proper call

instruction (scall , lcall) based on the offset to the label being called to

the current address. When the offset ranges from -1024 to +1023 decimal,

the scall instruction is generated. For offsets ranges between -32768 and

+32767 decimal, the lcall instruction is generated. For offsets outside the

latter range, we must use the ecall instruction and one of the 24-bit

memory models. This instruction cannot be generated using the generic

call instruction.

The generation of the correct instructions for the generic jump instructions

is more complex. The generic jump instructions are:

16-bit memory model:

bbc bbs bc be bge
bgt bh ble blt bnc
bne bnh bnst bnv bnvt
bst bv bvt dbnz dbnzw

and

24-bit memory model:

ebbc ebbs ebc ebe ebge
ebgt ebh eble eblt ebnc
ebne ebnh ebnstebnv ebnvt
ebst ebv ebvt edbnzedbnzw

The normal jump instructions (except sjmp , ljmp and ejmp) can jump

within the range of -128 to +127 decimal. When the offset for the generic

jump is within this range, the corresponding normal jump instruction is

generated. However, when the offset falls outside of this range, the generic

jump instruction will be negated and an appropriate direct jump

instruction is generated. Consider the following example:

.

.
jmp_label: bge my_label
.
.
my_label:
.
.

Assembly Language 5–13

• • • • • • • •

When the offset between jmp_label and my_label is not within the

range of -128 to +127 decimal, the asm196 assembler will generate object

code as if the source code was given as:

.

.
jmp_label: blt tmp_label
 sjmp my_label
tmp_label:
.
.
my_label:
.
.

The object code for the sjmp instruction will only be generated if the

offset is within the range -1024 to 1023 decimal. The offsets for each of

the jumps are (in decimal):

sjmp –1024 +1023
ljmp –32768 +32767
ejmp –8388608 +8388607

The ejmp instruction will only be generated when a 24-bit memory model

is used.

5.2.11 ADDITIONAL MNEMONICS

In the asm196 assembler you can use additional mnemonics as a

substitute for some jump instructions and their corresponding generic

instructions (16-bit and 24-bit). The additional mnemonics are listed in

Table 5-4. Note that you can only use the additional mnemonics if the

extra_mnem control is in effect.

Original Mnemonics Description Equivalent Extra
Mnemonics

JH BH EBH > unsigned JGTU BGTU EBGTU

JNH BNH EBNH <= unsigned JLEU BLEU EBLEU

JC BC EBC >= unsigned JGEU BGEU EBGEU

JNC BNC EBNC < unsigned JLTU BLTU EBLTU

JE BE EBE = JZ BZ EBZ

JNE BNE EBNE <> JNZ BNZ EBNZ

Chapter 55–14
A
S
S
E
M
B
L
Y

Equivalent Extra
Mnemonics

DescriptionOriginal Mnemonics

JGT BGT EBGT > signed JGTS BGTS EBGTS

JLE BLE EBLE <= signed JLES BLES EBLES

JGE BGE EBGE >= signed JGES BGES EBGES

JLT BLT EBLT < signed JLTS BLTS EBLTS

Table 5-4: Additional mnemonics

5.2.12 MIXED ADDRESSING MODES

The asm196 assembler sometimes uses two different addressing modes

for one and the same variable: long/short-indexed and register direct

addressing. When the address is within the window range (and

windowing is used) at run-time two different physical memory locations

are addressed. To avoid this problem the following syntactical additions

are made to the assembler:

Whenever a base register (either implicit or explicit) is used in an

indexed addressing mode you can use the following modifiers to force

some form of addressing mode:

@r register direct

@e extended-indexed

@l long-indexed

@s short-indexed

To illustrate the above, consider the following example:

RSEG
r0 EQU 0H:WORD
r1: DSW 1
reg: DSW 1

DSEG
var: DSW 1

CSEG
LD reg, r0 ; register direct
LD reg, var ; long–indexed via r0
LD reg, var[r1] ; long–indexed via r1

Assembly Language 5–15

• • • • • • • •

; If we know that ’var’ is within the range –128 to 127, we
; can force short–indexed addressing.

LD reg, var@s ; short–indexed via r0
LD reg, var@s[r1] ; short–indexed via r1

; If we know that ’var’ is within the register file we can
; use ’var’ as a register.

LD reg, var@r ; register direct

; However it is not possible to use the ’@r’ when a base
; register is explicitly given.

LD reg, var@r[r1] ; ERROR
END

The above example shows only some of the possible uses of the @-letter

suffix. In general, the following syntax can be used in the operands:

reg, [base–reg] ; indirect, no @–letter
reg, #byte ; immediate, no @–letter
reg, offset @–letter [base–reg] ; indexed, @–letter

When three-operand instructions are used, only one indexed addressing is

allowed. This indexed addressing may contain one of the @-letter suffixes

to force some other addressing mode.

5.2.13 LOCATION COUNTER

Use the dollar sign ($) to reference the current location within the active

segment of the program.

5.2.14 STRINGS

Strings are a sequence of printable ASCII characters delimited by a

beginning and an ending apostrophe (’). Characters that appear within

the string delimiters are treated literally by the assembler and do not

possess their usual special meaning. Thus, 'STACK' is the character string

S–T–A–C–K and not the reserved word stack , 'FFH' is the character string

F–F–H and not the hexadecimal number FF, and '$' is the literal dollar

sign and not the location counter.

Chapter 55–16
A
S
S
E
M
B
L
Y

If the apostrophe is itself to be the initial or the terminal character of the

string, two apostrophes must appear before the initial apostrophe string.

For example, type ’’’tis the season’ to delimit the string ’tis the
season . Entering only one apostrophe does not preserve the initial

apostrophe as part of the string.

Within strings, case is significant. Thus, 'Bigfoot ' is not the same string

as 'BIGFOOT'.

You can use strings as operands to the dcb directive, discussed in Chapter

6, and as operands in an expression. When used in a dcb directive, the

string length can be anywhere from zero (i.e., a null string) to 255. When

a string is used as an operand in an expression, the string can contain only

one or two characters.

5.3 EXPRESSIONS AND BASIC OPERANDS

In the new definition of the object format, OMF96 v3.2, it is possible to

include complete expressions in the object file. This enables us to have a

better control over the various expressions that can be used. One simple

example of a new type of expression that is allowed is:

DSEG
EXTRNA, B

Var EQU A + B

To maintain compatibility with previous versions of the assembler, use the

omf control or –omf option to select the version of the object format that

is used. To enable the new expression syntax, use omf(2) in the

invocation syntax of the assembler.

Basic operands are numbers, user-defined symbols, the predefined symbol

($) for the active location counter, the predefined variable (stack) for the

bottom of the stack, and strings of one to four characters. An expression

consists of one of the following items:

• a single basic operand

• a single expression acted upon by a prefix unary operator

• two expressions operated on by an infix operator

Assembly Language 5–17

• • • • • • • •

A prefix unary operator is meaningful only if it precedes a single basic

operand. Thus, -25 is meaningful, as is NOT a. The text /32 and >
limit are not meaningful. In order for the latter two operations to be

meaningful, two basic operands are required. Thus, 166/32 is

meaningful, as is total > limit .

Use expressions to define constants. Expressions are either defined at

assembly time (absolute expressions) or at relocation time (termed

relocatable expressions). When any expression is defined, each operand

in the expression is evaluated as a 16-bit unsigned integer, an integer in

the range of 0 to 0FFFFH.

5.3.1 BASIC OPERANDS

The five kinds of basic operands are:

Symbols User-defined symbols can represent a memory address, a

constant, or an external name that is defined in some other

module as either a constant or an address.

Numbers Scalar quantities are represented as numbers. You can

express them in binary, octal, decimal or hexadecimal.

When no base is explicitly stated, decimal is used by default.

$ The dollar sign ($) is a predefined symbol that represents the

present value of the active location counter.

stack The predefined variable stack represents the bottom of the

stack.

Strings Only one- and two-character strings can serve as operands

in expressions. The assembler interprets a one-character

string as a one-byte constant and sets it equal to the ASCII

value of the character. The assembler interprets a

two-character string as a word. The low-order byte of the

word is set equal to the ASCII value of the first character of

the string, and the high-order byte is set equal to the ASCII

value of the second character of the string. The assembler

interprets a three or four-character string as a double word.

Chapter 55–18
A
S
S
E
M
B
L
Y

5.3.2 ATTRIBUTES OF EXPRESSION OPERANDS

Every expression has three attributes: type, relocatability, and value. Each

attribute's description is as follows.

TYPE ATTRIBUTE

The type attribute states the type of segment (register , code , data ,

stack , overlay or null) to which the operand belongs. For example,

an operand defined in the code segment is of type code . For each of the

five kinds of basic operands and for unary and binary expressions, type is

defined according to the following rules:

Symbols

For user-defined symbols, the type depends upon whether the symbol is

defined as a label or via a directive such as equ , set , or extrn .

If you define a symbol as a label or with the extrn directive, the type is

the type of the active segment. For example, if the active segment is code
and you declare an external symbol, the type of the symbol is code .

If you define a symbol via a set or equ directive, its type is defined

according to the following rules:

1. If the segment type of the expression on the right-hand side of set or

equ is of type null and the new copyattr control is set, the segment

type of the current segment is used.

2. For all other segment types of the expression or when the copyattr
control is not set, the segment type of the expression is assigned to the

symbol being defined.

Assembly Language 5–19

• • • • • • • •

For example (when invoked with asm196 –ca source_file):

l3 SET 5H ; type = NULL

DSEG
EXTRN e1:WORD ; type = DATA

l1 EQU 10H ; type = DATA REL
lab: DSW 1

RSEG
l2 EQU 12H ; type = REGISTER
l4 EQU lab ; type = DATA REL

CSEG
EXTRN e2:BYTE ; type = CODE
END

Numbers and strings

For numbers and for strings the segment type is null . Strings are treated

like numbers when the length of the string is less or equal to four

characters.

The location counter symbol ($)

For $, the type is the type of the active segment.

Bottom of the stack (stack)

For stack, the type is always stack .

Unary and Binary Operators

Expressions resulting from unary operations (omf(0) and omf(1)):

+ is the only unary operation that can be applied to a memory address.

The type of the resulting expression is the type of the memory address.

When any unary operation is applied to numbers, the type of the

resulting expression is always null .

Expressions resulting from binary operations (omf(0) and omf(1)):

The only valid expressions containing a number and a memory address

are the following:

memory_address – number
memory_address + number
number + memory_address

Chapter 55–20
A
S
S
E
M
B
L
Y

The resulting type is always that of the memory address.

When any binary operation is applied to two numbers, the resulting

type is always null .

The only binary operations you can apply to two memory addresses

are subtraction and comparison. Note that both memory addresses

must belong to the same segment (i.e., they both have the same type

and relocatability). The resulting expression is always of type null .

When an expression is the result of a binary or unary operation, the type

attribute is determined using the following rules (omf(2)):

1. When the unary plus '+' operator is used, the type attribute of the

expression is equal to the type attribute of the operand.

2. When any unary operator, other than unary plus, is used, the type attribute

of the expression is null .

3. When the addition operator is used, the type attribute is defined using the

following rules:

a. When both operands have type null , the expression will also be of

type null .

b. When neither operands are of type null , the expression will be of

type null .

c. When one operand is of type null and the other operand is not, the

expression will have the type of the operand that is not of type null .

4. When the substraction operator is used, the type attribute is defined using

the following rules:

a. When the operand being substracted is not of type null , the

expression will be of type null .

b. When the operand being substracted is of type null , the expression

will have the type of the operand that is substracted from.

5. For all other binary operators other than addition and substraction, the

expression will be of type null .

The above rules are applied to each sub-expression to determine the type

attribute of complex expressions.

Assembly Language 5–21

• • • • • • • •

RELOCATABILITY ATTRIBUTE

The relocatability attribute determines whether you declared the operand

as absolute , relocatable , or external .

Expressions can be absolute , relocatable , external , or complex .

The type of the expressions are included in the assembler list file using the

following indicating letters:

R Relocatable expression

E External expression

C Complex expression

The value of an expression or operand depends on the relocatability

attribute, and is based on the following rules:

1. ABSOLUTE: The value of the expression or operand is fixed and there is

no need for further evaluation. After the linker/locater phase, the value

remains the same regardless of the location in memory. Examples of

absolute expressions are numeric constants.

2. RELOCATABLE: The value defines the offset relative to the beginning of

the current segment. After the linker/locater phase the value is incemented

with the base address of the corresponding segment.

3. EXTERNAL: The value is unknown in the current module, except for the

name of the symbol. The linker/locater will search among the known

public symbols for the value of the external.

4. COMPLEX: The value is unknown in the current module, and consists of

an expression with one or more external symbols. The complete

expression tree is stored in the object file. The linker/locater will evaluate

the expression to determine the value (which should be ABSOLUTE).

VALUE ATTRIBUTE

The value attribute is always a 32-bit two's-complement number. If the

type is null (pure number), the value of the expression is a typeless

number. If the segment is anything other than null , the value is a

memory address. The precise address cannot be defined until link-time in

the case of relocatable expressions. All other addresses can be evaluated

by the assembler as absolute addresses.

Chapter 55–22
A
S
S
E
M
B
L
Y

5.3.3 ABSOLUTE EXPRESSIONS

Absolute expressions are expressions that are evaluated during assembly

time and they can appear anywhere in the program. Table 5-5 lists the

valid operators for absolute expressions according to their precedence, the

order in which they are evaluated.

Operator(s) Function

nul test argument in the macro

** calculate the power of two operands

MSW, LSW
HIGH, LOW

mask some part of an unsigned 32–bit
value. MSW selects the most significant
word, LSW the least significant word,
HIGH the top 8 bits of the LSW, and LOW
the lower 8 bits of the LSW

*, /, mod, shr, shl multiply, divide, mod (take remainder only),
shift right, shift left

+, – addition, subtraction (unary and binary)

eq (=), ne (<>),
gt (>), ge (>=),
lt (<), le (<=)
ugt, uge, ult, ule

relational operators and their symbolic
representations within parentheses. equal,
not equal, greater than, greater than or
equal, less than, less than or equal

NOT logical inversion (bit by bit)

AND logical conjunction (bit by bit)

OR, XOR logical disjunction and exclusive OR (bit by
bit)

Table 5-5: Valid operators for ASM196 absolute expressions listed by
precedence (highest to lowest)

You can use the nul unary operator in a macro definition to test for the

existence of a macro argument. If the actual argument is not defined, the

operator returns TRUE, and FALSE otherwise. This kind of testing can also

be accomplished by using the new IF conditional directives. See Chapter 7

for more information on macro definitions.

Relational operators and nul produce a result that is interpreted as being

either logical true (represented by 0FFFFH) or logical false (represented by

0H).

Assembly Language 5–23

• • • • • • • •

The four relational operators lt , le, gt and ge can either compare

unsigned or signed values depending on the signedoper control. The

four operators ult , ule , ugt and uge always do an unsigned comparison

of its operands.

An operator composed of letters, such as NOT, XOR, MSW, or LSW, must be

separated from an adjacent symbol by at least one space. Thus, for the

operator XOR and the symbol size , size XOR 1 or size XOR 1 are

both valid, while sizeXOR 1 and size XOR1 are not and result in an

error.

The MSW and LSW operators can be used to get the lower or upper 16 bits

of a 32-bit value. Here is an example that uses both:

$model(NT)
RSEG

ind_addr: DSL 1 ; indirect address of routine
CSEG AT 0FF2080h
; ...
LD 1CH,ind_addr ; get lower 16 bits
LD 1Eh,ind_addr+2 ; get upper 16 bits
PUSH #MSW backhere ; push msw of return addr
PUSH #LSW backhere ; push lsw of return addr
EBR [1CH] ; jump to the routine

backhere: ; and get back here later
; ...
RET
END

As a rule, for an expression to be both absolute and be completely

computable at assembly time, all operands in the expression must be

absolute. However, the assembler can evaluate an expression as being

absolute and of null type at assembly time if the expression meets the

following requirements:

• The expression contains subtraction or any of the relational

operators listed in Table 5-5.

• The operands subtracted are relocatable but of the same segment

type.

During the evaluation, segments of the same types cancel out.

Chapter 55–24
A
S
S
E
M
B
L
Y

5.3.4 RELOCATABLE EXPRESSIONS

Relocatable expressions are those expressions that are evaluated only

during link-time. Relocatable expressions are valid only when they are

composed of either one relocatable or one external symbol, plus or minus

an optional two's-complement constant that is computed during

assembly-time. Thus, the permissible forms are a relocatable or an

external symbol plus or minus a constant, or a constant plus a relocatable

or an external symbol. A constant minus a relocatable or an external

symbol is not permitted. Thus, relo–5 , exto+3 , and 12+relo are valid,

but 13–exto is not.

Relocatable expressions that are based upon an external symbol can

appear only when specifying operands to statements that generate object

code (i.e., only in machine instructions and code definition directives).

The following example illustrates the possible relocatable expressions:

DSEG AT 24H
abslab: DSW 1

DSEG
EXTRNextlab:WORD

rellab: DSW 1

CSEG
DCW abslab + abslab
DCW abslab – abslab
DCW abslab + rellab
DCW abslab – rellab; ERROR
DCW abslab + extlab
DCW abslab – extlab; ERROR
DCW rellab + abslab
DCW rellab – abslab
DCW rellab + rellab; ERROR
DCW rellab – rellab
DCW rellab + extlab; ERROR
DCW rellab – extlab; ERROR
DCW extlab + abslab
DCW extlab – abslab
DCW extlab + rellab; ERROR
DCW extlab – rellab; ERROR
DCW extlab + extlab; ERROR
DCW extlab – extlab; ERROR
END

Assembly Language 5–25

• • • • • • • •

The lines with the comment "ERROR" will generate the following error:

ERROR #12, ILLEGAL BINARY OPRATION.

This error is generated because of an illegal combination of absolute and

relative expressions.

5.3.5 EXTERNAL BIT NUMBERS

With omf(2) it is possible to used external bit numbers in the conditional

bit jump instructions like BBS, EBBC, and JBC. For example, the following

statement is legal when using the omf(2) control:

RSEG
EXTRNBitno

BReg:DSB 1

CSEG
Lab:

...
BBS BReg, Bitno, Lab
...
END

Chapter 55–26
A
S
S
E
M
B
L
Y

5.4 STATEMENT FORMAT

The assembly source program statement consists of four fields: the label

field, the operation field, the operand field, and the comment field. Each

field is optional. Thus, the correct syntax for a statement is as follows:

[label[:]|name][operation][operand,...][;comment]<CR,LF>

Where:

label: contains a label name. A label differs from a name in that a

label must be followed by a colon unless the control

optionalcolon is used. In that case the colon is optional. A

label can appear before machine instructions, macro calls,

storage reservation directives, constant-definition directives,

and empty statements. The value of a label is the value of

the program counter at the beginning of the instruction or

constant, after achieving the required alignment. The value

of a label of an empty statement is the value of the program

counter at the beginning of the next instruction or constant.

Use a label to quickly reference a position within the code.

name contains a tag name that is used to associate a set of

attributes. The assembler does not reserve a storage space

for this field.

operation contains a machine-instruction mnemonic code, a directive

mnemonic, or a user-defined macro name. The contents of

the operation field determine which instruction the machine

is to execute.

operand contents and syntax depend on the specific operation in the

statement. Some operations take more than one operand.

The contents of the operand field specify which operands are

used in the operations. The operand(s) can be simple

names, expressions involving names and numeric operators,

or an address expression that defines the method (indirect or

indexed) by which another operand is to be accessed. Only

certain operands are allowed with certain operations. See

Section 5.3 for more information on basic operands.

Assembly Language 5–27

• • • • • • • •

;comment allows the placement of a natural-language description on

each statement. The assembler takes no action on the

comment, but includes it in the listing file. Therefore, special

characters appearing in the comment field do not cause the

assembler to perform any special function. The comment

field must begin with a semicolon (;) and can contain any

symbols in the ASM196 character set. All text appearing

between the semicolon and the next line feed is taken as a

comment.

5.4.1 ADDITIONAL STATEMENT RULES

Statements must also meet the following requirements:

• No continuation lines are allowed in ASM196. All parameters in a

given statement must be placed on the same line.

• Each statement must be terminated by a line feed. A carriage return

can optionally precede the line feed.

• Blank characters (spaces) can appear anywhere in a statement

except within numbers, names, and special symbols. Thus, data
buffer is two names, not one, and ; ; is not the same as ;; .

• An empty line, one containing only blanks, comments, or null, can

appear anywhere within a program.

• A line that contains only a label can appear only within a segment.

It cannot appear before the first xseg directive.

5.5 PROGRAM FORMAT

When assembly language statements are combined to form programs that

direct the processor to do something, the assembler follows a set of rules

that govern the format of its input. The format for such assembly units is

presented below. See the notation conventions and Chapter 2 for

conventions used in this manual.

[{ primary control line (s) }]
[module attribute]
[statement (s)]
end

Chapter 55–28
A
S
S
E
M
B
L
Y

Generally, an assembly unit begins with one or more primary control lines,

although you can omit primary control lines entirely. See Chapter 4 for a

detailed discussion of the form and function of ASM196 controls, which

determine the operation of the assembler as it encounters statements.

The module directive allows the assignment of attributes to the module

being assembled. See Chapter 6 for a description of these attributes.

The ASCII SUB, or Ctrl-Z, character can appear as the last character in a

file. The ASCII value of this character is 1A hexadecimal. DOS uses this

character for an end-of-file marker and all characters following the Ctrl-Z

are skipped by the ASM196 assembler.

Many statements are meaningful and valid only if they appear in a specific

context. Thus, a machine instruction can appear only within a code

segment. The rules governing a statement are stated in the description of

the statements.

Figure 5-1 presents an assembly-unit program structure.

$TITLE(’––> HAND CALCULATOR: MAIN <––’)

HC_MAIN MODULE MAIN,STACKSIZE(8)

;

;The program simulates a common hand calculator.

;Available commands (DR the display register, MR the memory register):

;

;Commands can be written in upper or lower case letters.

 EXTRN ER_Invalid_Command

 PUBLIC MN_Result, MN_Exit_Flag

;

$INCLUDE(8096.INC)

$NOLIST

$LIST

;

RSEG

MN_Result: DSW 1 ;Result of byte or word functions

MN_Exit_Flag: DSB 1 ;Exit flag, only bit 0 is used

CSEG at 2080H

EXTRN IO_Put_String, IO_Put_Char

EXTRN RD_Get_Line, RD_This_Char

EXTRN RD_Skip_Blanks

EXTRN UT_FindB, UT_Help_Com, UT_Exit_Com

EXTRN ER_Put_Message

EXTRN RG_Eval, RG_Mem_Op, RG_Clear_MR, RG_Recall_MR,

EXTRN RG_Print_DR

Figure 5-1: Assembly-unit program structure

Assembly Language 5–29

• • • • • • • •

Start: ;... of main program

LD SP,#STACK ;Init StackPointer

PUSH #STR_signon ;Print Signon

CALL IO_Put_String

CLRB MN_Exit_Flag ;Reset exit flag

Main_Loop:

BBS MN_Exit_Flag,0,Exit ;Check for exit

CALL RG_Print_DR

PUSH #’:’ ;Print prompt character

CALL IO_Put_Char

CALL RD_Get_Line ;Line is placed in RD_Line

CALL RD_Skip_Blanks

CALL RD_This_Char ;Find command type

PUSH #STR_1st_Chars

PUSH MN_Result

CALL UT_FindB

CMP MN_Result,#0FFFFH

BNE Command_OK

PUSH #ER_Invalid_Command

CALL ER_Put_Message

BR Main_Loop

Command_OK:

ADD MN_Result, MN_Result ;Do case MN_Result

LD MN_Result, Com_Tab[MN_Result]

PUSH #Main_Loop ;Simulate indirect call

BR [MN_Result]

;

;Tables and constants used for the above logic

STR_1st_Chars: DCB ’0123456789’,’+–*/’,’MRC?HE’,0

STR_Signon: DCB CR,LF,’8096–BASED CALCULATOR, V1.0’,CR,LF,0

Com_Tab:

DCW RG_Eval,RG_Eval,RG_Eval,RG_Eval, RG_Eval ; 0–4

DCW RG_Eval,RG_Eval,RG_Eval,RG_Eval, RG_Eval ; 5–9

DCW RG_Eval,RG_Eval,RG_Eval,RG_Eval ; +–*/

DCW RG_Mem_Op ;M+ or M–

DCW RG_Recall_MR ;RM

DCW RG_Clear_MR ;CM

DCW UT_Help_com, UT_Help_com ;? or H

DCW UT_Exit_com ;EX

;

; Exit loop

exit:

PUSH #STR_Signoff ;Print signoff

Call IO_Put_String

BR $;Infinite loop

$GEN

STR_Signoff: DCB CR,LF,’ S T O P’,CR,LF, 0

END

Figure 5-1: Assembly program structure (continued)

Chapter 55–30
A
S
S
E
M
B
L
Y

5.6 SEGMENTS

A segment is a piece of memory defined within a module or a section of

memory used by the application programs. Each segment has a specific

function. The five segment types in ASM196 are:

• the non-overlayable register segment

• the overlayable register segment

• the non-overlayable data segment

• the overlayable data segment

• the stack segment

• the user defined stack segment

• the code segment

• the constant segment

5.6.1 REGISTER SEGMENT (OVERLAYABLE AND

NON-OVERLAYABLE)

The register segment is a portion of memory allocated in the register

section. You can use variables belonging to the register segment as

registers throughout the program. You can specify only storage

reservation variables within this segment. If a register segment is declared

using the oseg directive (see Chapter 6), it is tagged as overlayable. The

RL196 linker can overlay it with other overlayable register segments if they

are not active simultaneously. Non-overlayable segments cannot be

overlaid.

5.6.2 DATA SEGMENT (OVERLAYABLE AND

NON-OVERLAYABLE)

The data segment is a portion of memory allocated in a RAM section. You

can use variables belonging to this segment as memory-referenced

operands using direct, indirect, indexed, or based-addressing modes or

extended indirect and extended index modes for 24-bit models. You can

specify only storage reservation variables within this segment. If a data

segment is declared using the odseg directive (see Chapter 6), it is tagged

as overlayable. The RL196 linker can overlay it with other overlayable

data segments if they are not active simultaneously. Non-overlayable

segments cannot be overlaid.

Assembly Language 5–31

• • • • • • • •

5.6.3 STACK SEGMENT

The stack segment is a portion of memory allocated in a RAM section.

You can reference variables belonging to this segment using the based

addressing mode using the stack pointer or any other register used as a

pointer. You cannot define code or storage variables within this segment,

which is solely for efficient stack use. To reference a static variable within

the stack segment, specify the (negative) offset from the bottom of the

stack (highest memory address), the initial value of the stack pointer. Note

that the stack grows downwards. Because of the special character of stack

segments, all stack segments are placed contiguously in one section of

RAM.

5.6.4 USER DEFINED STACK SEGMENT

The user defined stack segment, declared using the sseg directive (see

Chapter 6), provides you with a way to declare a stack segment in an

assembly module. Since the linker will locate the stack in this user defined

stack, the user defined stack segment must be treated like the stack

segment (see 5.6.3). Note that the user defined stack segment can only be

specified in assembly. It does not define a second stack segment, it

overrides the default stack segment "computed" by the linker.

The following example declare a user defined stack with a size of 256

bytes:

SSEG
DSB 0100H
.
.
END

Note that you can still override the user defined stack size in the module

with the linker STACKSIZE control.

Chapter 55–32
A
S
S
E
M
B
L
Y

5.6.5 CODE SEGMENT

The code segment is a portion of memory allocated in a ROM section.

Use this segment to store program constants and code. You can reference

variables belonging to the code segment as memory-referenced operands

using direct, indirect, based, or indexed-addressing modes, or

extended-indirect or indexed modes for 24-bit models or as the targets of

branch and call instructions.

5.6.6 CONSTANT SEGMENT

The constant segment is a portion of memory allocated in a ROM section.

This segment is used for constants only. Variables which belong to such

segments can be used as memory referenced operands.

5.7 ABSOLUTE AND RELOCATABLE SEGMENTS

You can define a segment as either absolute or relocatable. When you

define an absolute segment, the assembler creates a new segment. This

segment displaces a previous absolute segment, if one existed.

When a relocatable segment is defined, the assembler continues from the

previous relocatable segment of that type, if any exists. Thus, the object

module contains at most one relocatable segment of each type and an

unlimited number of absolute segments. Absolute segments do not require

relocation, but they can contain public symbols and references to other

segments or modules.

The assembler attaches an alignment attribute to each non-empty

relocatable segment. This attribute determines whether the segment starts

on a byte, a word, or a long-word boundary, thus ensuring proper

alignment of all symbols within the given segment. When object files are

linked, the segments are placed in the required section of memory and

aligned according to their alignment attribute. Because of the special

character of stack segments, all stack segments are placed contiguously in

one section of RAM.

Assembly Language 5–33

• • • • • • • •

When writing code for a 24-bit processor, code, data, and constant

segments can be defined as near or far. When near code segment

configuration is selected, the processor is configured in compatible code

mode and all code addresses are specified as 16-bit offsets from 0FF0000H

base. Code which ends up in this page is referred to as 'high code'. When

far code segment is selected, referencing code may require usage of 24-bit

offsets. Defining data/constants segments as near provides the possibility

of using 16-bit addressing for accessing variables in data/constant

segments, while defining those segments as far means for some of the

variables can only be accessing by using extended load and store

instructions. Two relocatable code, data or constant segments are of the

same type if they are defined with the same directive (cseg , odseg , dseg ,

or kseg) and have the same segment attribute (near or far).

5.8 STACK OVERFLOW

Some 80C196 models have support to detect stack overflow. This

StackOverflow Module (SOM) has 2 SFRs that store the upper and lower

SP boundaries. The linker generates two symbols, _TOP_OF_STACK_ and

_BOTTOM_OF_STACK_, that represent the upper and lower stack

boundaries. It is up to you to load the SFRs with the linker generated

symbols in your program. For example:

EXTRN _TOP_OF_STACK_
EXTRN _BOTTOM_OF_STACK_
 .
 .
LD TMPREG0, #_TOP_OF_STACK_
ST stack_top, TMPREG0
LD TMPREG0, #_BOTTOM_OF_STACK_
ST stack_bottom, TMPREG0
 .
 .

The two symbols _TOP_OF_STACK_ and _BOTTOM_OF_STACK_ will be

set to the boundaries on the stack. If the stack is located at 0300H with a

size of 0100H the stack pointer SP will be initialized with 0400H and

_TOP_OF_STACK_ and _BOTTOM_OF_STACK_ will have the values

0402H and 02FEH respectively. This is conform the specification of the

SOM. The upper limit comparator compares for a SP >= stack_top
condition while the lower limit comparator compares for a SP <=
bottom_stack condition. If at a later date the behavior of SOM changes,

you can easily load other values, for example:

Chapter 55–34
A
S
S
E
M
B
L
Y

LD TMPREG0, #_TOP_OF_STACK_ – 2
ST stack_top, TMPREG0
LD TMPREG0, #_BOTTOM_OF_STACK_ + 2
ST stack_bottom, TMPREG0

TASKING
Quality Development Tools Worldwide

6

ASSEMBLER
DIRECTIVES

C
H

A
P

T
E

R

Chapter 66–2
D
IR
E
C
T
IV
E
S

6

C
H

A
P

T
E

R

Assembler Directives 6–3

• • • • • • • •

This chapter describes the directives recognized by the ASM196 assembler.

Directives specify auxiliary information such as storage reservation,

segment selection, location counter control, code and symbol definition,

and conditional assembly.

These directives are grouped into seven categories. Table 6-1 describes

each category and its function.

Category Function Directives

module level These directives specify
information that affect the module
as a whole.

module, end
public, extrn

segment selection These directives specify the
segment to be created.

cseg, dseg, kseg,
rseg, oseg,
odseg, sseg

location counter These directives explicitly sets the
location counter.

org, at

symbol definition These directives assign constant
values to symbols.

equ, set

constant definition These directives define constants
to be inserted in the program.

dcb, dcw, dcl, dcr

storage reservation These directives reserve storage
space for program variables.

dsb, dsw, dsp,
dsq, dsl, dsr

conditional assembly These directives allows control
over the flow of of the assembler
processing of statements.

if, endif else

Table 6-1: Functions performed by directives

You can intersperse directives between instructions throughout your

program. Only one directive can appear on a given statement line.

The remainder of this chapter explain each directive in detail. The

directives appear in alphabetical order.

See the Conventions Used In This Manual at the beginning of this manual

for special meanings of type styles used in this manual.

Chapter 66–4
D
IR
E
C
T
IV
E
S

cseg, dseg, kseg, oseg,

odseg, rseg and sseg

Function

Specify the type of segment to be created.

Syntax

{ cseg | dseg | odseg | oseg | rseg | kseg | sseg }
[rel | at base_address]

where:

cseg designates a code segment.

dseg designates a data segment.

odseg designates an overlayable data segment.

oseg designates an overlayable register segment.

rseg designates a non-overlayable register segment.

kseg designates a constant segment.

sseg designates a user defined stack segment.

rel specifies a relocatable segment. The rel option is the

default if you do not explicitly specify rel or at .

at specifies an absolute segment, beginning at address

base_address .

Type

Segment selection

Description

Use these directives to specify the type of segment to be created. These

directives terminate the current segment (deactived segment), and initiate a

new segment as specified in the directive. The specified segment remains

active until you specify another segment or until the assembler reaches the

end of the program.

Assembler Directives 6–5

• • • • • • • •

If the deactivated segment was absolute, the directive you specify closes

that segment. The assembler then creates a new absolute segment if you

specify the at option. If the deactivated segment was relocatable, then

the assembler records its location counter so that it can be resumed when

that relocatable segment is reselected.

If you specify a relocatable segment using the rel option, the assembler

continues the previous relocatable segment of that type, if any exists. If

none exists, the assembler creates a relocatable segment of that type.

Specifying at creates an absolute segment that starts at the address given

by base_address .

The assembler restricts statements appearing within segments according to

the type of the segment as shown below.

• Register segments (overlayable or not) and data segments cannot

contain constant-definition directives or machine instructions.

• Code segments cannot contain storage-reservation directives.

• Data segments cannot contain constant-definition directives and

machine instructions.

• Constant segments cannot contain storage reservation directives and

machine instructions.

These directives also specify the segment type of all external symbols

specified within their scope while the segment is active. Thus, the

segment type of an external symbol is always that of the currently active

segment.

Since the active segment has no default initial value, you must place a

segment-selection directive before the first piece of memory is define (i.e.,

before entering any machine instruction, constant-definition directive, or

storage-reservation directive).

If a 24-bit model() control is specified, each segment defined with the

cseg, dseg, odseg and kseg directives has a near or far attribute. That

attribute, if not specified in the directive, is determined according to the

following rules:

• For data and constant segments, if a fardata/farconst primary control

is specified segments are far; otherwise, they are near, except if they

are absolute and the starting address is above 0FFFFH.

• For the first code segment defined in a program, the segment

attribute is far if the farcode primary control is specified; otherwise

it is near.

Chapter 66–6
D
IR
E
C
T
IV
E
S

• For the second, third, etc. code segment define with the cseg

directive, the same value of the near/far segment attribute is

assumed as in the first cseg directive.

If a 24-bit model() control is specified, you are not allowed to have both

near and far code segments in one module simultaneously. If no 24-bit

model() control is specified, neither near or far segment attribute are

allowed in segment definition directives.

Assembler Directives 6–7

• • • • • • • •

dcb

Function

Defines a byte constant in a const or code segment.

Syntax

[label :] dcb { expression | string } [, ...]

where:

label is a valid label name followed by a colon (:).

expression is a valid expression.

string can be a string of m characters, where m can be any

non-negative integer.

Type

Constant definition

Description

Use this directive to specify a list of byte values, each represented by an

expression, to be inserted one after the other starting at the position of the

active location counter. The expressions can be relocatable or absolute,

but must be in the range of -128 to +255 inclusive. Since the assembler

does not use the higher bit, sign information is lost for values outside the

range of -128 to +127 , inclusive. For relocatable expressions, the linker

checks the range of the expression during link-time.

The dcb directive is the only statement that can accept a null string or a

string of more than two characters. A null string (i.e., length = zero)

generates no code. A string of m characters is coded as a sequence of m
bytes, each byte having the ASCII value of the respective character in the

string.

If you place the location counter symbol ($) in any of the expressions in

the dcb directive, the assembler interprets its value as the address before

the first byte in the list. You can also use the value of the location counter

to define the optional label, and to define any previous labels if they are

separated from the present statement by statements that do not affect the

value of the location counter.

Chapter 66–8
D
IR
E
C
T
IV
E
S

Constant-definition directives can appear only in code segments (cseg)

and and constant segments (kseg).

Example

kseg

A equ 2 ;variable A is 2
B equ 24 ;variable B is 24

dcb ’ABCDEF’ ;six bytes with ASCII
 ;of the characters
dcb 10*A ;one byte, value 20
dcb A,B+10 ;two bytes, values 2,34

Assembler Directives 6–9

• • • • • • • •

dcl

Function

Defines a long constant in a const or code segment.

Syntax

[label :] dcl expression [, ...]

where:

label is a valid label name followed by a colon (:).

expression is 32-bit value expression.

Type

Constant definition

Description

Use this directive to specify a list of 32-bit values, each represented by

expressions, to be inserted one after the other, starting at the position of

the location counter. The assembler adjusts the location counter by

incrementing it by one, if necessary, to correct alignment so that first

element begins on a word boundary.

The expression can be relocatable. For each expression, the 32-bit value

is stored with the low-order word first in the lowest address, followed by

the high-order word.

If you place the location counter symbol ($) in any of the expressions, the

assembler interprets its value as the address before the first element in the

list. You can also use this value to define the label in the directive and to

define previous labels if they are separated from this statement by

statements which do not affect the location counter.

Constant-definition directives can appear only in code segments (cseg)

and and constant segments (kseg).

Chapter 66–10
D
IR
E
C
T
IV
E
S

dcp

Function

Defines a pointer constant in a const or code segment.

Syntax

[label :] dcp expression [, ...]

where:

label is a valid label.

expression is a valid expression.

Type

Constant definition

Description

The dcp directive specifies a list of pointer values, each represented by an

expression, to be inserted one after the other, starting at the position the

location counter is pointing to. The pointer size is 2 bytes in 16-bit mode

and 3 bytes in 24-bit mode. The pointers are always aligned on a word

boundary.

The expression can be relocatable. For each expression, the value is

stored with the low-order byte first.

If the segment type of the expression is null, the value is treated as an

offset and must be in the range (-0FFFFFFH, +0FFFFFFH) for 24-bit mode

or (-0FFFFH, +0FFFFH) for 16-bit mode; since the highest byte is ignored,

the sign value is lost for values outside the range (-800000H, +7FFFFFH)

for 24-bit mode or (-8000H, +7FFFH) for 16-bit mode. If the segment

type is not Null, then the value is treated as an address and must be in the

range (0, 0FFFFFFH) for 24-bit mode or (0, 0FFFFH) for 16-bit mode.

If the location counter symbol appears in any of the expressions, it stands

for its value before the first element in the list. This value is also used for

defining the label in the directive, and for defining previous labels if they

are separated from the current statement by statements which do not affect

the location counter.

Assembler Directives 6–11

• • • • • • • •

dcr

Function

Defines a floating point constant in a const or code segment.

Syntax

[label :] dcr float_num [, ...]

where:

label is a valid label name followed by a colon (:).

float_num is a floating point number.

Type

Constant definition

Description

Use this directive to specify a list of one or more floating point numbers

(not expressions) to be inserted one after the other starting at the position

of the location counter. The assembler adjusts the location counter by

incrementing it by one, if necessary, for correct alignment, so that the first

element begins on a word boundary. For more information on floating

point numbers, see the 80C196 Utilities User's Guide listed in Related
Publications.

Constant-definition directives can appear only in code segments (cseg)

and and constant segments (kseg).

Chapter 66–12
D
IR
E
C
T
IV
E
S

dcw

Function

Defines a word constant in a const or code segment.

Syntax

[label :] dcw expression [, ...]

where:

label is a valid label name followed by a colon (:).

expression is a valid expression.

Type

Constant definition

Description

Use this directive to specify a list of word values, each represented by an

expression, to be inserted one after the other, starting at the position of the

location counter. The assembler adjusts the location counter by

incrementing it by one, if necessary, for correct alignment so that the first

word begins on a word boundary.

The expressions can be relocatable or absolute. For each expression, the

assembler stores the expression's 16-bit value with the low-order byte in

the first (lower-order) address, followed by the high-order byte in the

higher order address.

If you place the location counter symbol ($) in any of the expressions, the

assembler interprets its value as the address before the first word in the

list. You can also use this value to define any previous labels if they are

separated from the present statement by statements that do not affect the

value of the location counter.

Constant-definition directives can appear only in code segments (cseg)

and and constant segments (kseg).

Assembler Directives 6–13

• • • • • • • •

dsb, dsl, dsp,

dsr, dsw, and dsq

Function

Reserve storage space for program variables.

Syntax

[label :] { dsb | dsw | dsp | dsl | dsq | dsr } expr

where:

label is a valid label name followed by a colon (:).

expr is a valid absolute expression of null segment type

containing no forward references.

dsb specifies byte variables, no alignment required.

dsw specifies word variables, adjustment to a word boundary

required.

dsp specifies a pointer variable. In 16-bit mode this is a 2-byte

variable, adjusted to a word boundary. In 24-bit mode this is

a 3-byte variable. If the dsp is in register space it is

long-word aligned. If it is in normal data space it is word

aligned.

dsl specifies long-word variables, adjustment either to a

long-word boundary if in a register segment or to a word

boundary if in a data segment.

dsq specifies quad-word variables, adjustment either to a

quad-word boundary if in a register segment or to a word

boundary if in a data segment.

dsr specifies floating point number variables, adjustment to word

boundary.

Type

Storage reservation

Chapter 66–14
D
IR
E
C
T
IV
E
S

Description

Use these directives to reserve storage for program variables. Specify dsb
to define storage for byte variables. No adjustment is made to the

boundary. Specify dsw to define storage for word variables. The

assembler adjusts the location counter so that the symbols start on a word

boundary. dsp defines storage for 24-bit pointer variables and adjustment

for long word or word is performed depending on the segment type.

Specify dsl to define storage for long-word variables. The assembler

adjusts the location counter to ensure that the symbols start on word or

long-word boundaries.

Specify dsq to reserve the storage for a quad word aligned piece of

memory. The corresponding dcq keyword is not implemented as it would

require 64-bit addressing, which is not possible. The dsq keyword can be

used to allocate the storage needed for a register in conjunction with the

ebmovi instruction:

RSEG
Tmp0:DSQ 1
Tmp8:DSW 1

CSEG
EBMOVI Tmp0, Tmp8

END

In the list file of the assembler, the register segment will be QUAD WORD
alignment, and the type of the Tmp0 register will be LONG.

Specify dsr to define storage for floating point numbers. The assembler

adjusts the location counter so that the symbols starts on word boundaries.

The storage-reservation directives cannot appear in the code segment.

The label, if specified, is set to the value of the location counter after the

assembler aligns this value as required by dsw, dsp , dsl , or dsr . You can

also use this value to define previous labels if they are separated from this

statement by statements that do not affect the value of the location

counter.

Assembler Directives 6–15

• • • • • • • •

The assembler reserves storage by incrementing the active location counter

by expression * n where n=1 for dsb , n=2 for dsw, or n=4 for dsr and

dsl . The location counter is incremented by expression *2 for dsp in

16-bit mode, and by expression *4 – 1 in 24-bit mode. This last

expression means that a dsp always leaves one byte free at the odd

address following the dsp . For all storage reservation directives the

expression must be absolute and of null segment type and must not

contain forward references.

Chapter 66–16
D
IR
E
C
T
IV
E
S

end

Function

Signifies the end of the module.

Syntax

end

Type

Module level

Description

Use this directive to signify the end of the module. You must place this

directive as the final statement in a program. The assembler flags any

statement placed after the end directive as an error.

Assembler Directives 6–17

• • • • • • • •

equ, set

Function

Assign constant values to symbols.

Syntax

symbol_name { equ | set } expression [: data_type]

where:

symbol_name is the name of the symbol to be defined.

expression defines the segment type, relocatability, value, and data

type of the symbol.

data_type is byte , word , dword , long , pointer , entry , real , or

null .

Type

Symbol definition

Description

The directives equ and set are used to define symbols.

Use set and equ to define the attributes (segment type, relocatability,

value and data type) of the symbol to be that of expression . If

expression has the null segment type, the segment type and

relocatability for symbol is that of the current segment type, otherwise the

segment type and relocatability of expression is used. You cannot

redefine symbols defined by equ directive. However, you can redefine

symbols defined by set but only with another set directive.

The expression value cannot contain any external symbols, but can

contain one level of forward reference. You must then define this

forward-referenced symbol somewhere in your program.

The optional data_type must match the segment type of the expression.

Thus, byte , word , dword , long , pointer , real , and null are allowed

everywhere, while entry is allowed only for a code segment.

Chapter 66–18
D
IR
E
C
T
IV
E
S

Example

level set 1 ;level is 1
A equ level:byte ;A is a byte with value 1

level set level+1 ;increment level
B equ level:dword ;B is a double word with value 2

Assembler Directives 6–19

• • • • • • • •

extrn

Function

Declares symbols as externals.

Syntax

extrn { symbol_name [: data_type] } [, ...]

where:

symbol_name is the name of a symbol to be declared as external.

data_type must be byte , word , dword , long , pointer , entry ,

real or null .

Type

Module level

Description

Use this directive to declare one or more symbols as externals (i.e.,

defined and located in other modules but used by the present module).

You must declare each such symbol public within the other modules.

These symbols cannot be defined in the present program.

The segment type of the symbols is set to that of the active segment. For

example, to define an external symbol of type code , you must place the

extrn directive that specifies the symbol within a code segment (cseg).

The data_type value must match the segment type. Thus, byte , word ,

dword , long , pointer , real , and null are allowed everywhere, while

entry is allowed only in a code segment.

To define an external symbol with the null segment type, define the

symbol before entering the first segment-selection directive in the

program.

Chapter 66–20
D
IR
E
C
T
IV
E
S

if, else, and endif

Function

Determines the lines of code the assembler processes.

Syntax

if_expression
 statement(s)
[else]
 statement(s)
endif

where:

if_expression is one of the following conditional if directives:

if_expression True condition

IF expr least significant bit of expr = 1

IFEQ expr expr = 0

IFNE expr expr <> 0

IFLT expr expr < 0

IFLE expr expr <= 0

IFGT expr expr > 0

IFGE expr expr >= 0

IFDEF symbol symbol defined

IFNDEF symbol symbol not defined

IFB < str > str is empty

IFNB < str > str is non–empty

IFIDN < str1 >, < str2 > str1 is equal to str2

IFNIDN < str1 >, < str2 > str1 is not equal to str2

All comparisons between expr and 0 are signed. The state of the

signedoper control has no influence here.

When symbol is a forward reference, the symbol is considered as not

defined.

Assembler Directives 6–21

• • • • • • • •

These four conditional directives can be used in normal assembly code,

but are mostly used in macro definitions to test for availability of

arguments. The angle brackets are required in the assembler source file.

expr is a valid absolute expression (that contains no

forward references).

symbol is a valid identifier.

str , str1 , str2 is a valid string.

statement(s) is one or more valid statements.

Type

Conditional assembly

Description

Use these directives to control which lines of code the assembler

processes. These directives provide for conditional assembly processing of

statements based upon assembly-time evaluation of user-defined

expressions.

The expr value must be a valid absolute expression (that contains no

forward reference). If the expression in the if_expression line is

evaluated and proves true (least significant bit = 1), the assembler

assembles the statements between if_expression and the optional

else or the mandatory endif (whichever comes first). If the

if_expression line proves false (lsb = 0), the assembler skips the

statements between the if_expression line and the optional else line,

and assembles any statements between the else line or the endif , if

else does not appear.

All undefined symbols and forward references are evaluated to false by the

assembler if the relaxedif control is specified. norelaxedif is the

default control, so if you have undefined symbols in an if_expression
the assembler will issue an error.

The statements between an if_expression directive and its ending

endif constitute a conditional assembly block. Conditional-assembly

directives can appear anywhere in a program, including within macros.

However, if a conditional assembly block is initiated in a macro definition,

its endif must also lie in that macro.

Chapter 66–22
D
IR
E
C
T
IV
E
S

When statements are not assembled due to conditional-assembly directives

they are effectively not in the program, though they can be listed if you

specify the cond control. Therefore, any symbols defined in

assembler-skipped statements are not available to the rest of the program.

Avoid referring to any symbols that are defined in lines that can be

skipped due to conditional assembly.

Conditional assembly blocks can be nested within one another (i.e.,

if/else/endif blocks within another if/else/endif block). Be sure

to maintain congruence of if lines and their respective endif lines. The

maximum depth of nesting is nine.

Example

The following macro definition shows an example usage of the IFB
conditional directive:

MyAddMACROsrc1, src2, res
IFB <src2>

add res, src1
ELSE

add res, src1, src2
ENDIF
ENDM

Assembler Directives 6–23

• • • • • • • •

module

Function

Assigns the module name and type.

Syntax

module_name module [attr , ...]

where:

module_name is the desired name of the module.

attr is either main or stacksize(n) .

main specifies that the module is to be of type main . If none is entered,

the default is non-main .

stacksize(n) defines the amount of stack in bytes required by the

module. n must be an even number. The default is zero bytes.

When the cmain control is in effect, cmain must be used instead of main .

Type

Module level

Description

Use this directive to assign a name to the module. The assembler includes

this name in the object file and uses this name to identify the object

module. If you omit the module directive, the assembler uses the source

filename without the extension as the default module name.

The module directive can appear at most once in a program. You must

place this directive at the beginning of the program before non-control

lines.

Chapter 66–24
D
IR
E
C
T
IV
E
S

org

Function

Sets the value of the location counter to the evaluated expression.

Syntax

org expression

where:

expression is an expression that can be evaluated to an address.

Type

Location counter control

Description

Use this directive to set the value of the location counter equal to the

evaluated expression. The expression cannot contain a forward reference.

The segment type of the expression must match the type of either the

active segment or null . For example, if the active segment's type is

data , the expression's type must be data or null .

If the active segment is absolute, the expression also must be absolute and

represent some absolute memory address not below the base_address
of the segment. If the active segment is relocatable, the assembler

interprets the expression as an offset from the beginning of the given

segment and so the expression can be absolute or relocatable.

Refrain from making backward references where the org directive points

back into a code segment thus causing redefinition of previously defined

code or data. Unpredictable results can occur.

Since the org directive does not create a new segment, it can create gaps

in the segment. Such gaps are not filled by any other segments and

remain after the relocation and linkage process has been executed.

Assembler Directives 6–25

• • • • • • • •

public

Function

Declares symbols as public.

Syntax

public symbol_name [, ...]

where:

symbol_name is the name of a symbol to be declared public.

Type

Module level

Description

Use this directive to declare one or more symbols public. You must define

public symbols somewhere in the program either by using a

symbol-definition directive, or by naming the symbol as a label. Declaring

a symbol public allows other modules to access the symbol. Macro

names, module names, reserved words, and external symbols cannot be

declared public.

Chapter 66–26
D
IR
E
C
T
IV
E
S

TASKING
Quality Development Tools Worldwide

7

MACRO
PROCESSING

C
H

A
P

T
E

R

Chapter 77–2
M
A
C
R
O
S

7

C
H

A
P

T
E

R

Macro Processing 7–3

• • • • • • • •

7.1 INTRODUCTION

A macro is a facility for simplifying coding of often-used sequences of

instructions and assembler directives replacing one set of parameters with

another. Often during a program development, instruction sequences are

repeated several times with only certain parameters changed.

For example, suppose you write a routine that moves thirty-five bytes of

data from one memory location to another. A little later, you find yourself

writing another routine that moves forty-five bytes from a different source

field to a different destination field. If the two routines use the same

coding techniques, they probably are identical except for three parameters:

the character count, the source field starting address, and the destination

field starting address. Certainly, it would be handy if you had some way

to regenerate that original routine substituting the new parameters rather

than rewriting the code. The macro facility provides this capability and

offers several other advantages over simply rewriting the code every time

it is needed.

7.2 THE ADVANTAGES OF USING MACROS

Macros provide four distinct advantages:

1. By eliminating the tedium of rewriting, using macros minimizes the

probability of entry error.

2. Symbols used in macros can be restricted so that they have meaning only

within the macro itself. Therefore, you need not worry that you will

accidentally duplicate a symbol used in the macro. Also, a macro can be

used any number of times in the same program without duplicating any of

its own symbols.

3. An error detected in a macro need be corrected only once regardless of

how many times the macro appears in the program, thus reducing

debugging time.

4. Increased efficiency is gained by reducing the duplication of effort by

programmers. Frequently used macros can be made available to all

programmers.

Macros also aid the development of structured programming and thereby

help produce more readable documentation. Using macros to segment

code blocks provides clear program notation and simplifies tracing the

flow of the program.

Chapter 77–4
M
A
C
R
O
S

7.2.1 AN EXAMPLE OF MACRO USE

A macro can be described as a routine defined by a formal sequence of

prototype instructions that, when called within a program, results in the

replacement of each such call with a code expansion consisting of the

actual instructions represented. The following example illustrates macro

definition, call, and expansion.

Suppose you want to place a standard greeting in a typical business form

letter then list the specific flight number, departure time, destination, and

arrival time for the given specific passenger. A macro, cnfirm , can be

defined that

1. welcomes the passenger, then

2. lists the flight number (fno), departure time (dtime), arrival time (atime)

at the destination (dest).

The macro cnfirm has four formal parameters to be replaced. Thus the

macro could be:

cnfirm 13, ”1:00”, ”Jamaica”, ”11:00”

Another macro, greet , is the standard message. Its only parameter is the

passenger's name. Thus the entire text of the message can be placed in a

source file in the form:

greet ”Mr. Smith”
cnfirm 13, ”1:00”, ”Jamaica”, ”11:00”

We trust you will enjoy the dream trip of your life.

Sincerely,
D. Jones, Manager Air Freight

After the source file is passed through a macro processor and the macro

calls are expanded, the following letter is produced:

Dear Mr. Smith:

Peninsula–Panhandle Airlines welcomes you as a
passenger. We are pleased to confirm your reservation
on Flight #13 which leaves at 1:00 PM and arrives in
Jamaica at 6:00 PM (local time).

We trust you will enjoy the dream trip of your life.

Macro Processing 7–5

• • • • • • • •

Sincerely,
D. Jones, Manager Air Freight

While this example illustrates the substitution of parameters in a macro, it

overlooks the relationship of the macro processor to the assembler. The

purpose of the macro processor is to generate source code that is then

assembled.

7.3 MACROS AND ROUTINES

Macros differ from routines invoked by the call instruction as follows:

• Routines necessarily branch to another part of the program, while

macros generate in-line code. Thus, a program contains only one

version of a given routine, but it contains as many versions of a

given macro as there are calls for that macro.

• A macro does not always generate the same source code; a routine

does. By changing the parameters in a macro call, the source code

produced by the macro changes. Thus, the macro is more of a

general-purpose tool used to generate customized source code as

required by the particular programming situation.

• Macro expansion and code customization occur at assembly time

and at the source-code level. Routines, on the other hand, reside

within the program and require additional execution time for

parameter passing and transfer of control.

Whether to use a a macro or a routine depends on the situation. The

main tradeoff is between the additional space required by the macro or

the additional time required to pass parameters and transfer control to a

routine. In some cases, a single routine is more efficient than multiple

in-line macros. In situations involving a large number of parameters, the

use of macros can be more efficient. Also note that macros can call

routines and routines can contain macros. Though both routines and

macros can be used to implement common code, only macros can

generate common data structures.

Chapter 77–6
M
A
C
R
O
S

7.4 MACRO DIRECTIVES AND MACRO CALLS

The assembler recognizes the following macro directives:

• macro directive

• endm directive

• local directive

• rept directive

• irp directive

• irpc directive

• exitm directive

• .strlen. directive

• macro call

All of the preceding directives except the .strlen. directive and macro

call are related to macro definition. The .strlen. directive determines

the length of a string. The macro call initiates the macro expansion and

parameter substitution process.

7.4.1 MACRO DEFINITION

Macros must be defined in your program before you use them. A macro
directive initiates a macro definition. The macro definition lists the

macro's name and the formal parameters to be replaced during the macro

expansion. The endm directive terminates a macro definition. The

prototype instructions, bounded by the macro and the endm directives,

are called the macro body.

When labels used in a macro body have global scope, duplication errors

occur if the macro is called more than once. To limit the scope of a label,

use the local directive. This directive assigns a unique value to the

symbol each time the macro is called and expanded. Formal parameters

also have limited scope.

See Section 5.2.9 for information on assembler-generated symbols and the

local directive discussed in this chapter.

Macro Processing 7–7

• • • • • • • •

Occasionally you may wish to duplicate a block of code several times

either within a macro or in line with other source code. This duplication

can be accomplished using the repeat block (rept), indefinite repeat

(irp), and the indefinite repeat character (irpc) directives. Use the endm
directive to terminate these directives. You can also use the exitm
directive as an alternate exit from a macro. When encountered, exitm
terminates the current macro just as if endm had been encountered.

However, endm must still appear at the end to terminate the macro.

When using macros, note that you cannot redefine macros and you cannot

prefix macro directives by a label. However, you can prefix a label to a

macro call statement. Macro symbols cannot be forward referenced. The

definition of the macro must appear before any reference is made to it.

Also that the literalization character (!) loses its function unconditionally

after its application. The literalization character does not preserve its

function when the corresponding formal parameter is used in building

another (nested) macro argument.

7.5 MACRO DIRECTIVES

The following section explains all valid macro directives. The directives

are listed in alphabetical order.

Chapter 77–8
M
A
C
R
O
S

endm

Function

Terminate a macro definition.

Syntax

endm

Description

Use this directive to terminate a macro definition. Each macro definition

must end with an endm directive. This directive follows the last prototype

instruction. You must also use endm to terminate code repetition blocks

defined by the rept , irp , and irpc directives. If any characters are

placed as a label or operand to the endm directive, the assembler reports

an error. Because nested macro calls are not expanded during macro

definition, the endm directive closing an outer macro cannot be contained

in the expansion of an inner, nested macro call.

See Section 7.10 for further information on nesting macro calls.

Example

The following example illustrates an empty macro body.

do_nothing macro
endm

Macro Processing 7–9

• • • • • • • •

exitm

Function

Terminates a macro expansion.

Syntax

exitm

Description

Use this directive as an alternate method of terminating a macro expansion

or terminating the repetition of a rept , irp , or irpc code sequence. As

soon as the assembler recognizes exitm , it skips all macro prototype

instructions located between the exitm and the endm directive for this

macro. You can use exitm in addition to but not in place of endm.

When used in nested macros, exitm causes an exit to the previous level

of macro expansion. An exitm within a rept , irp , or irpc terminates

not only the current expansion, but all subsequent iterations as well.

Any characters appearing as an operand to the exitm directive causes an

error.

Example

In the following example, the macro expansion process is terminated as

soon as the x equals 0. So long as x is not equal to 0 the assembler

skips the line beneath that statement so the exitm is not executed. When

x equals 0, the assembler executes the exitm directive.

route3 macro x,y
 ld reg2,#y
 addb reg2,#10
 ld reg1,#x
 if x eq 0
 exitm
 cmpb x,#10
 be target_label
endm

Chapter 77–10
M
A
C
R
O
S

irp

Function

Executes the macro body indefinite times.

Syntax

irp formal_parameter , < actual_arguments >

where:

formal_parameter is a single formal parameter.

actual_arguments is a list of one or more actual arguments, separated

by commas. The list of actual arguments must be

enclosed within angle brackets (<>).

Description

Use this directive to perform an indefinite repeat. The assembler executes

the macro body one time for each actual argument. Each time the macro

body is executed, the successive actual argument are substituted for the

formal parameter. If you do not specify an actual argument, the macro

body is executed once, with a null (blank) used for the parameter. If two

commas are next to each other with no actual parameter between them, a

null (blank) is substituted for the actual argument.

Example

Consider the following macro:

ld reg1, #storit
irp x,<fld1,#3E20H,fld3>
 ld reg2, x
 st reg2, [reg1]+
endm

Macro Processing 7–11

• • • • • • • •

When assembled, this macro generates the following code:

ld reg1, #storit
ld reg2, #fld1
st reg2, [reg1]+
ld reg2, #3E20H
st reg2, [reg1]+
ld reg2, fld3
st reg2, [reg1]+

Thus, the command sets ld and st are executed successively for each of

the actual parameters, fld1 , #3E20H, and fld3 .

Chapter 77–12
M
A
C
R
O
S

irpc

Function

Executes the macro body one time per character.

Syntax

irpc formal_parameter , actual_argument

where:

formal_parameter is a single formal parameter.

actual_argument is sequence of characters.

Description

Use this directive to cause the macro body to be executed one time for

each character of the character list. On each successive execution, the

assembler substitute a successive character of the list for the formal

parameter. If the character list is null (empty), the assembler executes the

macro body one time with a null (blank) substituted for the formal

parameter. If a delimiter is to substitute a formal parameter, include it in

the list and enclose the list in angle brackets (<>).

Example

Consider the following macro code:

clr reg1
irpc x, 1982
 mul reg1, #10
 add reg1, #x
endm

Macro Processing 7–13

• • • • • • • •

When assembled, this macro generates the following code:

clr reg1
mul reg1, #10
add reg1, #1
mul reg1, #10
add reg1, #9
mul reg1, #10
add reg1, #8
mul reg1, #10
add reg1, #2

Thus, reg1 repeatedly accumulates the result of the conversion of 1982 to

internal form.

Chapter 77–14
M
A
C
R
O
S

local

Function

Defines a symbol local to the macro body.

Syntax

local local_symbol_name [, ...]

where:

local_symbol_name is the name of a label to be defined only within the

current macro expansion.

Description

Use this directive to define one or more symbols valid only within the

macro body. This directive must appear only within a macro definition

and must precede all other statements within the macro body.

The local symbol names are meaningful only within the current macro

expansion. Each time the macro is called or expanded, the assembler

assigns each local symbol a unique global symbol in the form ??nnnn ,

where nnnn is 0001 for the first local symbol in the program, 0002 for the

second, and so on. The most recent symbol name generated always

indicates the total number of symbols created for all macro expansions.

The assembler never duplicates these symbols. To avoid conflict, do not

define symbols that begin with ?? .

Formal parameters included in a macro call cannot be operands of a

local directive. A formal parameter is always restricted to its own macro

definition. Local symbols can be defined only within a macro definition.

A maximum of 16 local symbols can appear in a macro definition. They

must all appear between the macro directive and the first line of prototype

code.

Example

In the following example, loop is declared as a local symbol so you

eliminate the possibility of errors arising from route2 being called twice,

making loop multiply defined, or from the symbol loop being defined

elsewhere in the code.

Macro Processing 7–15

• • • • • • • •

route2 macro g1,g2,g3
 local loop
 ld reg1, g1
 ld reg2, #g2
 ld reg3, #g3
loop: ld reg4, [reg2]+
 st reg4, [reg3]+
 dbnz reg1, loop
 endm

Chapter 77–16
M
A
C
R
O
S

macro

Function

Defines the macro.

Syntax

name macro [formal_parameters]

where:

name specifies the name of the macro body being

defined. Any valid user-defined symbol name can

be used as a macro name.

formal_parameters are user-defined symbol names. You can have up

to 16 formal parameters, separated by commas.

Description

Use this directive to define a macro body. You can have up to 16 formal

parameters in the macro definition. When you specify multiple

parameters, separate each parameter with a comma. The scope of a

formal parameter is limited to its specific macro definition.

You cannot use reserved words as formal parameter names. The

assembler does not recognize formal parameters embedded in a comment.

You can, however, place these parameters in a character string. In this

case, you must use the ampersand (&) as explained in Section 7.6.

The macro body can contain any statement including nested macro

definitions. If you want to add comment lines, precede each line with a

double semicolon (;;). You can include any machine instruction or

applicable assembler directive in the macro body. The distinguishing

feature of macro prototype text is that you can make parts of the text

variable by placing substitutable formal parameters in instruction fields.

These formal parameters are the same as the symbols in the operand field

of the macro directive. The assembler then replaces these parameters

with the actual argument values, arguments passed to the macro, when

you call the macro.

Macro Processing 7–17

• • • • • • • •

The macro body can also contain expressions that test the existence of

actual arguments. To do this, place the nul operator before the formal

parameter. The nul operator is a unary operator which returns true if the

argument is omitted, and zero otherwise.

Examples

1. The following code defines a macro called route1 that contains the

formal parameters g1 , g2 , and g3 . Note that g1 , g2 , and g3 cannot be

operands of a local directive. Macro names cannot be redefined.

route1 macro g1,g2,g3 ;; macro directive
 ld reg1, g1 ;; start of macro body
 ld reg2, #g2
 ld reg3, g3
loop: ld reg4, [reg2]+
 st reg4, [reg3]+
 dbnz reg1, loop ;; end of macro body
 endm ;; endm directive

2. For the following examples, assume a and b are formal parameters

defined in the macro definition, and x and y are actual arguments passed

when the macro is called.

check_mac macro nul a ;; is evaluated as TRUE only
 ;; if x is omitted.
check_mac macro nul a&b ;; is evaluated as TRUE only
 ;; if both x and y are
 ;; omitted.
check_mac macro nul SP ;; is evaluated to FALSE.
 ;; Only macro arguments can
 ;; be nulls.

Chapter 77–18
M
A
C
R
O
S

rept

Function

Repeats a sequence of source code lines.

Syntax

rept expression

where:

expression is a valid absolute expression of null segment type

containing no forward references.

Description

Use this directive to cause a sequence of source-code lines to be repeated

expression times. All lines appearing between the rept directive and

subsequent endm directive constitute the block to be repeated.

The assembler inserts the repeat blocks in-line as it encounters the rept
directive. No explicit call is required to cause the code insertion as the

definition is an implied call for expansion.

Example

This macro moves the six words pointed at by src_reg to the memory

area pointed at by dst_reg .

rept 6
ld reg1, [src_reg]+
st reg1, [dst_reg]+
endm

Macro Processing 7–19

• • • • • • • •

.strlen.

Function

Determine the length of a string.

Syntax

.strlen. string

where:

string is a valid string enclosed by single quotes.

Description

Use this directive to determine the length of a string. This string must be

enclosed by single quotes. It can be used both inside and outside of a

macro definition.

Example

The following example illustrates the use of .strlen. inside a macro

definition:

DefStr MACRO label, string
label: DCB .STRLEN. string
 DCB string
 ENDM

After the following macro call

DefStr MyLab, ’Hello’

this will expand to:

MyLab: DCB .STRLEN. ’Hello’ ;result is 5
 DCB ’Hello’

Chapter 77–20
M
A
C
R
O
S

Macro Call

Function

Call a macro.

Syntax

[label :] macro_name [actual_arguments]

where:

label is a user-defined label.

macro_name is a user-defined name for the macro.

actual_arguments is a list of up to 16 actual arguments.

Description

The assembler must encounter the macro definition before the first call for

that macro. Otherwise, an error occurs. The assembler inserts the macro

body identified by macro_name each time it encounters a call to a

previously defined macro in the program.

The positioning of actual arguments in a macro call is critical since the

substitution of parameters is based solely on position. The first listed

actual parameter replaces each occurrence of the first listed formal

parameter; the second actual argument replaces the second formal

parameter, and so on. When coding a macro call, always list actual

arguments in the appropriate sequence for that macro.

Blanks are usually treated as delimiters. Therefore, when an actual

argument contains blanks (passing the instruction ld reg1 , [reg2] for

example), the parameter must be enclosed in angle brackets (<>), as in

<ld reg1, [reg2]> . You must also enclose in angle brackets any other

delimiter that is to be passed as part of an actual parameter. Carriage

returns cannot be passed as actual arguments.

If a macro call specifies more actual arguments than are listed in the macro

definition, an error occurs. If fewer parameters appear in the call than in

the definition, a null (blank) replaces each missing parameter.

Macro Processing 7–21

• • • • • • • •

Example

The following example shows two calls for the macro block , defined as

follows:

block macro g1,g2,g3,g4
 local loop, eom
 ld reg1, g1
 ld reg2, #g2
loop: g3 reg3, [reg2]+
 g4 eom
 dbnz reg1, loop
eom:
 endm

The block macro operates on the g1 words starting at g2 by the opcode

g3 . Then, it conditionally performs the branch specified by g4 . The first

time you call the block macro, it gets the average of the list of words

making up the block. The second time you call block , it finds the first

word greater than or equal to that average. The following code shows the

expanded macro lines preceded by plus sign (+).

test module main

rseg at 30h
reg1: dsw 1
reg2: dsw 1
reg3: dsw 1
size: dsw 1
tab: dsw 1

block macro g1,g2,g3,g4
local loop, eom
ld reg1,g1
ld reg2, #g2

loop: g3 reg3,[reg2]+
g4 eom
dbnz reg1,loop

eom: endm

Chapter 77–22
M
A
C
R
O
S

cseg
ld size, #3
ld tab, #4
clr r3
block size, tab, add, !;

+1 ld reg1,size ;macro expansion starts
+1 ld reg2, #tab
+1 ??0001: add reg3,[reg2]+
+1 ; ??0002
+1 dbnz reg1,??0001
+1 ??0002: ; macro expansion ends

div reg3, #size
block size, tab, cmp, bge

+1 ld reg1,size ; macro expansion starts
+1 ld reg2, #tab
+1 ??0003: cmp reg3,[reg2]+
+1 bge ??0004
+1 dbnz reg1,??0003
+1 ??0004: ; macro expansion ends

end

Macro Processing 7–23

• • • • • • • •

7.6 EMPTY MACRO ARGUMENTS

To be able to pass empty macro arguments that are not at the end of the

actual parameter list, you can just omit the argument. The following

example illustrates this:

MyAddMACROsrc1, src2, res
IFB <src2>

add res, src1
ELSE

add res, src1, src2
ENDIF
ENDM

A call to the macro MyAdd:

MyAdd#a, , R0

will expand to:

add R0, #a

7.7 NARG SYMBOL

The symbol narg is defined only within the expanded macro body and is

equal to the actual number of parameters when the macro was called. If

empty macro arguments are used between non-empty macro arguments,

they are counted as a given argument. If less than the number of formal

parameters is given, you can use narg to check how many arguments

were given. An example:

MyAddMACROres, src1, src2
IF NARG = 2

add res, src1
ELSE

add res, src1, src2
ENDIF
ENDM

Chapter 77–24
M
A
C
R
O
S

7.8 SPECIAL MACRO OPERATORS

The special macro operators help prevent ambiguity in specifying

parameters to the assembler. For example, if you want to specify three

actual arguments, of which the second is a comma, entering the following

line appears to the assembler as a list of four parameters with the second

and third parameters missing:

macro_name param_1,,,param_3

To avoid this ambiguity, prefix the comma by an exclamation mark (!), as

follows:

macro_name param_1,!,,param_3.

Placing the comma or any other character after the exclamation mark

causes the assembler to treat the character as a literal, possessing no

special significance.

When a macro is expanded, the assembler removes any ampersand (&)

preceding or following a formal parameter in macro definition and

substitutes the actual argument at that point. When the ampersand is not

adjacent to a formal parameter, it is not removed and is passed as part of

the macro expansion text. Note that the ampersand must be right next to

the text being concatenated; intervening blanks are not allowed.

If nested macro definitions contain ampersands, the only ampersands

removed are those adjacent to formal parameters belonging to the macro

definition currently being expanded. All ampersands must be removed by

the time the expansion macro body is performed. Exceptions force illegal

character errors. Ampersands are not recognized as operators in

comments. See the examples in Section 7.13.

Table 7-1 lists and defines the special macro operators, in addition to the

exclamation mark and ampersand.

Macro Processing 7–25

• • • • • • • •

Operator Definition

& The ampersand specifies concatenation (linking) of text and
formal parameters.

<> Angle brackets undefine delimiters that are treated as literal
characters instead. Since blanks are delimiters, literal blanks
must be enclosed in angle brackets. To pass text to nested
macro calls, use one set of angle brackets for each level of
nesting.

;; Double semicolons placed before a comment in a macro
definition prevent the inclusion of the comment in expansions
of the macro and thereby reduce storage requirements. The
comment still appear in the listing of the macro definition.

! The exclamation mark is placed before a character (usually a
delimiter) that is to be passed as literal text in an actual
argument. To pass a literal exclamation point, enter two
exclamation points (!!). The exclamation point is not
preserved while building an actual argument (e.g., when
substitution is used to build another actual argument).
Carriage returns cannot be passed as actual argument.

nul Use the nul to indicate the omission of a parameter. The
omitted (or null) parameter can be represented by two
consecutive delimiters (e.g., param_1,,param_3). A null
parameter can also be represented by two consecutive single
quotes (e.g., ”,param_2,param_3). Notice that a null is not
a blank. The blank is the ASCII character represented by 20
hexadecimal. The nul operator has no character
representation. A typical use of the nul operator is in if
directives; for example,

if nul x&y
 exitm
endif

The example causes macro expansion to terminate if both the
actual arguments of x and y are null.

Table 7-1: Macro operators

Chapter 77–26
M
A
C
R
O
S

7.9 NESTING MACRO DEFINITIONS

A macro definition can be contained completely (nested) within the body

of another macro definition. The body of a macro consists of all text

(including any nested macros) bounded by matching macro and endm
directives. The assembler allows any number of macro definitions to be

nested.

When a higher-level macro is called for expansion, the next lower-level

macro cannot be called unless the assembler have called and expanded all

higher-level macro definitions.

Since macro names cannot be redefined, the nested macro definition must

have the macro name specified as a local symbol unless the enclosing

macro is called only once.

Since irp , irpc , and rept blocks constitute macro definitions, they can

also be nested within another definition created by irp , irpc , rept , or

macro directives. In addition, an element in an irp or irpc actual

argument list (enclosed in angle brackets) can itself be a list of bracketed

parameters; that is, lists of parameters can contain elements that are also

lists. For example,

lists macro param1,param2
 ld reg1, param1
 ld reg2, param2
 endm

 lists a,<b,c ; macro invocation

In this example, when the lists macro is invoked, a is passed to

param1 , and the b,c string is literally passed to param2 .

7.10 MACRO CALLS

Once a macro is defined, you can call the macro any number of times in

your program. The call consists of the macro name and any actual

arguments that are to replace formal parameters during macro expansion.

During assembly, the assembler replaces each macro call by the macro

definition code; actual arguments replace formal parameters.

See the Macro Call reference page in this chapter for syntax and examples.

Macro Processing 7–27

• • • • • • • •

7.10.1 NESTED MACRO CALLS

You can nest macro calls, including any combination of nested irp , irpc ,

and rept constructs, within macro definitions up to nine levels. The

macro being called need not be defined when the enclosing macro is

defined or called. However, the macro must be defined before it is called.

A macro definition can also contain nested calls to itself (recursive macro

calls) up to nine levels, as long as the recursive macro expansions are

terminated eventually. You can control this operation by using the

conditional-assembly directives described in Chapter 6.

For example, the macro below, called recall , calls itself five times after

you call it from elsewhere in your program.

param1 set 5

recall macro
 if param1 ne 0
 param1 set param1 –1
 recall ; recursive call
 endif
endm

7.11 MACRO EXPANSION

When you call a macro, the actual arguments to be substituted into the

prototype code can be passed in one of two modes. Normally, the

substitution of actual arguments for formal parameters is simply a text

substitution. The parameters are not evaluated until the macro is

expanded.

If a percent sign (%) precedes the actual argument in the macro call, the

assembler evaluates the argument immediately before any expansion

occurs. The assembler then passes this argument as a decimal number

representing the value of the parameter. You cannot use the percent sign

with the irpc macro directive.

The normal method for passing actual parameters works for most

applications. Using the percent sign to pre-evaluate parameters is

necessary only when the value of the parameter is different within the

local context of the macro definition as compared to its global value

outside the macro definition.

Chapter 77–28
M
A
C
R
O
S

The following macro generates a number of multi-byte arithmetic

instructions. The parameters passed in the macro call determine the

number of bytes in an operand, and whether an addition or subtraction

operation is to be performed. The addresses of the source and destination

operand are assumed to be in reg1 and reg2 , respectively. Some typical

calls for this macro is as follows:

mbyte ’a’,5
mbyte ’s’,%count–1

The second call shows an expression used as an argument. The assembler

evaluates this expression immediately rather than passing it simply as text.

The definition of the mbyte macro follows. This macro uses the

conditional if directive to test the validity of the first parameter. Also, the

rept macro directive is nested within the mbyte macro.

mbyte macro x,y
 if (x ne ‘a’) and (x ne ‘s’)
 exitm
 endif
 clrc
 rept y
 ldb reg3,[reg1]
 if x eq ‘a’
 addcb reg3,[reg2]+
 else
 subcb reg3,[reg2]+
 endif
 stb reg3,[reg1]+
 endm
endm

The indentation shown in the definition of the mbyte macro illustrates the

relationship of the if , else , endif directives and the rept and endm
directives. Such indentation is not required in the program.

The mbyte macro generates nothing if the first parameter is neither a nor

s . Therefore, the following calls produce no code.

mbyte 5
mbyte ’b’,5

The result in the object program is as though the mbyte macro does not

appear in the source program.

Macro Processing 7–29

• • • • • • • •

The following is another form of the mbyte macro. Note that in this

definition uses concatenation to form the addcb or subcb instruction

code. If a call to the mbyte macro specifies a string other than add or

sub , the assembler reports an error. The assembler flags all operation

codes as undefined symbols.

mbyte macro x,y
 clrc
 rept y
 ldb reg3,[reg1]
 x&cb reg3,[reg2]+
 stb reg3,[reg1]+
 endm
endm

7.12 NULL MACROS

A macro can legally begin and end only with the macro and endm
directives, respectively. Thus, the following is a legal macro definition:

nada macro p1,p2,p3,p4
 endm

A call to this macro produces no source code and therefore has no effect

on the program.

The null (or empty) macro body has a practical application. For example,

all the macro prototype instruction might be enclosed with if/endif

conditional directives. When none of the specified conditions is satisfied,

all that remains of the macro is the macro directive and the endm

directive.

Chapter 77–30
M
A
C
R
O
S

7.13 SAMPLE MACROS

The following examples further demonstrate the use of macro directives

and operators.

Example 1: Nesting of irpc within a macro

The following macro definition contains a nested irpc directive. Note

that the third operand of the outer macro becomes the character string for

the irpc .

move macro x,y,z
 irpc param,z
 ld reg1,x¶m
 st reg1,y¶m
 endm
endm

Assume that the program contains the call move src,dst,123 . The

assembler passes the third parameter (123) of this call to the irpc , the

same effect as coding irpc param ,123 . When expanded, the move
macro generates the following source code:

 ld reg1,src1
 st reg1,dst1
 ld reg1,src2
 st reg1,dst2
 ld reg1,src3
 st reg1,dst3

Note that concatenation forms the labels in this example.

Example 2: Nested macros used to generate dcb directives

This example generates a number of dcb directives, each with its own

label. Two macros are used for this purpose: genlab and block . The

genlab macro is defined as follows:

 genlab macro f1,f2
$save gen
 f1&f2: dcb 0 ; generate labels & dcbs
$restore
 endm

Macro Processing 7–31

• • • • • • • •

The block macro, which accepts the number of dcb s to be generated

(numb) and a label prefix (prefix), is defined as follows:

 block macro numb,prefix
$save nogen
 count set 0
 rept numb
 count set count+1
 genlab prefix,%count ;nested macro call
 endm
$restore
 endm

The macro call block 3,lab generates the following source code:

 block 3,lab
lab1: dcb 0
lab2: dcb 0
lab3: dcb 0

The assembler controls specified in these two macros (the lines beginning

with $) clean up the assembly listing for easier reading. The source code

shown for the call block 3,lab is what appears in the listing file when

the controls are used. Without the controls, the assembly listing appears

as follows:

block 3,lab
+1 count set 0
+1 rept 3
+1 count set count+1
+1 genlab lab,%count
+1 endm
+2 count set count+1
+2 genlab lab,%count
+3 lab1: dcb 0
+2 count set count+1
+2 genlab lab,%count
+3 lab2: dcb 0
+2 count set count+1
+2 genlab lab,%count
+3 lab3: dcb 0

Chapter 77–32
M
A
C
R
O
S

Example 3: A Macro that Converts Itself into Routine

In some cases, the in-line coding substituted for each macro call imposes

an unacceptable memory requirement. The next two examples show two

different methods for converting a macro call into a routine call. The first

time you call the sbmac macro, it generates a full line substitution that

defines the subr routine. Each subsequent call to sbmac generates only a

call instruction to the subr routine.

Within the following examples, the label subr must be global so that it

can be called from outside the first expansion. Such calls are possible

only when that part of the macro definition containing the global label is

called only once in the entire program.

Example 3, Method 1: Conditional Assembly.

This method of altering the expansion of the sample macro, sbmac, uses

conditional assembly. Use the variable first as a switch based upon

whether the value of first when tested is true or false . The variable

first is set true just before the first call for sbmac. The macro sbmac is

defined as follows:

rseg
reg1: dsw 1
reg2: dsw 1

true equ 0ffh
false equ 0
first set true

sbmac macro
 call subr
 if first
 first set false
 br dun
subr: ld reg1, #01
 ld reg2, #02
 ret
dun:
 endif
 endm

Macro Processing 7–33

• • • • • • • •

The first call to sbmac expands the full definition (assembled with gen
control), including the call to and definition of subr :

sbmac
+1 call subr
+1 if first
+1 first set false
+1 br dun
+1 subr:
+1 ld reg1, #01
+1 ld reg2, #01
+1 ret
+1 dun:
+1 endif

Because first is true when encountered during the first expansion of

sbmac, ASM196 assembles all the statements between if and endif into

the program. In subsequent calls, since first is set to false , the

assembler skips the conditionally-assembled code, meaning no opcode is

produced even though they appear in the list file. The assembler only

generates opcode for the following statements :

submac
+1 call subr

Example 3, Method 2: Conditional assembly with exitm.

The other method of altering the expansion of sbmac also uses

conditional assembly, but uses the exitm directive to suppress unwanted

macro expansion after the first call. The exitm directive is effective when

first is false , the case after the first call to sbmac.

true equ 0ffh
false equ 0
first set true

rseg
reg1: dsw 1
reg2: dsw 1

sbmac macro
 call subr
 if first
 first set false
 br dun
 else

Chapter 77–34
M
A
C
R
O
S

 exitm
 endif
subr: ld reg1, #01
 ld reg2, #02
 ret
dun:
 endm

In subsequent calls, only the following lines appear in the list file:

sbmac
+1 call subr
+1 if first
+1 first set false
+1 br dun
+1 else
+1 exitm

The assembler only generates opcode for the call to subr .

Example 4: Computed goto macro

This sample macro presents an implementation of a computed goto for

the 80C196. The computed goto , a common feature of many high-level

languages, allows the program to jump to one of a number of different

locations depending on the value of a variable. For example, if the

variable has the value 0, the program jumps to the first item in the list; if

the variable has the value 3, the program jumps to the fourth item, and so

on. In this example, the first parameter is the address of the branch table

(specified via a sequence of dcw s), and the second is the table index.

tjump macro i,t ; Jump to i–th addr in
table t
 ld reg1,i ; Compute offset of entry
 add reg1, reg1 ; ”
 ld reg1, t[reg1] ; Get address of entry
 br [reg1] ; Indirect branch
endm

Macro Processing 7–35

• • • • • • • •

Example 5: Using irp to define the jump table

The tjump macro becomes even more useful when a second macro

(goto) defines the jump table, loads the address of the table, and then

calls tjump . The goto macro is defined as follows:

goto macro index,list
 local jtab
 tjump index,jtab ; ld accum with index
jtab:
 irp formal,<list>
 dcw formal ; set up table
 endm
endm

A typical call to the goto macro appears in this example:

goto case,<count,timer,date,ptr>

This call to the goto macro builds a table of dcw directives for the labels

count , timer , date , and ptr . The macro goto then calls the tjump
macro. If the value of the variable case is 2 when the goto macro is

called, the goto and the tjump macros together cause a jump to the

address of the date routine.

You can specify any number of addresses in the list for the goto routine

as long as they all fit on a single source line.

Chapter 77–36
M
A
C
R
O
S

TASKING
Quality Development Tools Worldwide

8

MESSAGES AND
ERROR
RECOVERY

C
H

A
P

T
E

R

Chapter 88–2
M
E
S
S
A
G
E
S

8

C
H

A
P

T
E

R

Messages and Error Recovery 8–3

• • • • • • • •

This chapter lists all messages produced by the assembler. Where possible,

it explains the cause of the error and possible remedies.

8.1 CONSOLE OUTPUT

During assembly, ASM196 produces the following output to the screen: the

sign-on message, fatal error messages, and the sign-off message.

8.1.1 SIGN-ON MESSAGE

The sign-on message appears in the following format:

80C196 macro assembler v x.y r z SN00000–005 (c) year TASKING, Inc.

where:

vx.y identifies the version of the assembler.

r z identifies the revision of the assembler.

year identifies the copyright year.

8.1.2 ERROR MESSAGES

Error messages are discussed in the next section.

8.1.3 SIGN-OFF MESSAGE

The sign-off message is displayed on the screen and in the listing file

when the assembly is terminated. The format of the sign-off messages is:

ASSEMBLY COMPLETED, nnnn ERROR(S) FOUND

where:

nnnn is the number of errors found. NO appears if no errors are

found.

Chapter 88–4
M
E
S
S
A
G
E
S

8.2 ERROR MESSAGES AND RECOVERY

The ASM196 assembler issues three types of error messages: fatal error

messages, warnings and source file error messages. Fatal errors terminate

the assembly process. The messages are displayed on the screen.

Example of fatal error messages are invocation line errors, internal errors,

and I/O errors. Warnings and source file errors do not terminate the

assembly process. The object file produced, however, might not be

executable. Correct the errors by looking at the error messages in the

listing or errorprint file and then reassemble the program.

8.2.1 FATAL ERROR MESSAGES

Upon detecting a fatal error within the system hardware or on the

invocation line, ASM196 prints a message on the screen, terminates the

assembly processing, and returns control to the host system.

Fatal error messages can be caused by the following:

• invocation-line errors

• I/O errors

• insufficient-host-memory errors

• internal-synchronization errors

8.2.1.1 ASM196 ERROR MESSAGES

The assembler displays fatal ASM196 errors in the following form:

FATAL ASM196 ERROR num: message

ASM196 TERMINATED

where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

Messages and Error Recovery 8–5

• • • • • • • •

1 Synchronization error

This error should not occur. If it does, report it to your local TASKING

representative.

2 Insufficient memory

Remove some processes from memory or break down you program into

smaller pieces or add more memory.

3 File not found

The assembler cannot open the file. Check the filename or directory.

4 File write

5 File not created

7 NEAR/FARCONST obsolete, same as NEAR/FARDATA

Use the NEARDATA and FARDATA instead of NEARCONST and FARCONST

respectively.

8 MODEL(EX) obsolete, use MODEL(NT)

Specify a 24-bit model, NT or NP.

9 Invalid model name: name

Replace name by a valid model name. See the description of the model
control for details.

11 Unrecognized control or misplaced primary

This message indicates that an invalid control was used or a primary

control is specified after one or more source lines. A primary control must

be specified before any source line, and cannot be specified more than

once. Recheck each control and its position in your source file.

13 Missing parameter for control

A parameter was omitted for a control that requires a parameter. Include a

parameter with the control.

69 Pathname too long

Reduce the pathname.

Chapter 88–6
M
E
S
S
A
G
E
S

8.2.1.2 ARGUMENT ERROR MESSAGES

The assembler displays fatal argument errors in the following form:

FATAL ARGUMENT ERROR num: message

where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

0 Unexpected end of argument: arg

Check and correct the syntax.

1 Control or option cannot be negated: name

The control name cannot have a no prefix, or the option name cannot

have a minus sign appended. Remove the negation.

2 Syntax error in control: control

Check and correct the syntax.

3 Argument expected for control or option: name

Specify an argument to name.

4 Syntax error in option: option

Check and correct the syntax.

5 Unknown option specified: name

Replace name with the correct option.

6 Maximum depth in buffer stack reached

The control or option has too many argument levels. Reduce the number

of argument levels.

7 Buffer stack is empty

This error should not occur. If it does, report it to your local TASKING

representative.

Messages and Error Recovery 8–7

• • • • • • • •

8 Argument too long

Reduce the length of the argument.

9 Unexpected argument for control: name

Control name cannot have an argument. Remove the argument.

10 Unexpected internal error: message

This error should not occur. If it does, report it to your local TASKING

representative.

8.2.1.3 MEMORY ERROR MESSAGES

The assembler displays fatal memory errors in the following form:

FATAL MEMORY ERROR num: message

where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

0 Cannot allocate memory block of size size

1 Cannot reallocate memory block to size size

There is not enough memory left to allocate. Remove some processes from

memory or break down you program into smaller pieces or add more

memory.

8.2.1.4 I/O ERROR MESSAGES

The assembler displays fatal I/O errors in the following form:

FATAL I/O ERROR num: message

where:

num is an error number.

Chapter 88–8
M
E
S
S
A
G
E
S

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

0 Unexpected end of file detected

Check your file.

1 Cannot write to standard input

Specify a file or standard output to write to. Standard input is used for

input only.

2 Cannot read from standard output

Specify a file or standard input to read from. Standard output is used for

output only.

3 Filename too long

Give your file a shorter name.

4 Filename not conform DOS standard

Check your DOS Reference Manual for the correct filename syntax.

5 Cannot read from null device

Specify another device or filename to read from.

6 Cannot rename :WORK:

This is a temporary file. So, you cannot rename it.

8.2.2 WARNING MESSAGES

Warning messages do not terminate the assembly process. The assembler

still produces an object file and a listing file. In the listing file, an error

line appears following the source statement that caused the warning.

Correct any warning and reassemble the program before attempting to

execute it. While not fatal, warnings can cause the object code to be

unexecutable.

The assembler displays warning messages in the form:

WARNING num: message

Messages and Error Recovery 8–9

• • • • • • • •

where:

num is an error number.

message is a message describing the cause of the error.

The following list of warning messages provides their decimal codes and

their meanings.

6 Control character ignored in next line: char

The control character char is ignored.

88 Variable `name' in next line used with multiple addressing modes

Use the variable name in one addressing mode only, otherwise the object

code may be unexecutable.

8.2.3 SOURCE FILE ERROR MESSAGES

Source file error messages do not terminate the assembly process. The

assembler still produces an object file and a listing file. In the listing file,

an error line appears following the source statement that caused the error.

The error is indicated by three asterisks (***), the word ERROR, a number

sign (#) followed by the error number and error message. Correct any

source file error and reassemble the program before attempting to execute

it. While not fatal, source file errors can cause the object code to be

unexecutable. The following list of source file error messages provides

their decimal codes and their meanings.

10 Syntax error

The line contains a syntax error. Check and correct the syntax.

11 Unrecognized control or misplaced primary

12 Primary control specified more than once

This message indicates that an invalid control was used or a primary

control is specified after one or more source lines. A primary control must

be specified before any source line, and cannot be specified more than

once. Recheck each control and its position in your source file.

Chapter 88–10
M
E
S
S
A
G
E
S

13 Missing parameter for control

A parameter was omitted for a control that requires a parameter. Include a

parameter with the control.

14 No parameter allowed with control

A parameter was specified for a parameterless control. Remove the

parameter.

15 Invalid number

A number contains illegal characters for its base, or its value exceeds

429,496,725 (232–1). Make sure that the number is within its allowable

range.

16 Bad parameter to control

The parameter of the control is illegal. Recheck the type of parameter

accepted by the control.

18 Contradicting controls

One or more of the following combinations of controls have been

specified:

xref + nosymbols or noprint
noprint + symbols, pagewidth, or pagelength
noobject + debug or linedebug
oldobject + omf
nosource + omf(2) (and higher)
nearcode + farcode
nearconst + farconst
neardata + fardata

Avoid using these combinations.

19 Save-Restore stack overflow

Your program contains too many save s without corresponding restore s.

The maximum nesting is nine, meaning nine consecutive saves can be

done before a restore . Make sure that the number of save s do not

exceed nine before a restore .

20 Save-Restore stack underflow

Your program contains a restore control without a corresponding save .

Make sure that a save precedes a restore .

Messages and Error Recovery 8–11

• • • • • • • •

21 Invalid symbol name

Check the spelling of the symbol and replace it by an existing symbol

name.

22 Conflict between model and symbol name

The symbol name is not valid for the specified model. Choose the correct

model.

25 Include not rightmost control

26 Include stack overflow

The include control is not the last control on the control line or the

nesting level is too deep. The maximum nesting is nine. Place the

include control after any other control on the control line. Check that

nesting level does not exceed nine.

27 Input line too long

The maximum length of each source line is 255 characters including the

terminating line feed. Do not exceed 255 characters.

28 Invalid character

A misplaced character or a control character was embedded in the input.

The character is replaced in the listing line by a #. Delete the misplaced

character or retype the line to delete the control character.

29 Missing apostrophe

A string was not terminated. Insert the closing apostrophe.

30 Invalid character at end of line

The end of the file was encountered before a line feed. Make sure that

the file is terminated by a line feed.

31 Parse stack overflow

The statement is too complicated. Break the statement into smaller parts.

32 Text found beyond end statement - ignored

33 Premature end of file

Text was found after the assembler encountered the end statement, or no

end statement was found at the end of the source file.

Chapter 88–12
M
E
S
S
A
G
E
S

34 Statement not allowed in this context

Incorrect directives are used in certain statements so the assembler took no

action on the statement. Check the following:

end statement must be the last line in the source program.

local and exitm
macro directives

are valid only within macro definitions.

endm macro directive is valid only when terminating a macro
definitions.

else directive is valid only between if and endif directives.

endif directive is valid only when matching a preceding if
directive.

module directive can be preceded only by empty statements
and control lines.

org directive cannot appear before the first segment
selection directive.

Machine instruction
and code definition
directives

must appear in code segments.

Storage reservation
directives

can appear only within register, overlay, or
data segments.

35 Expression stack overflow

The expression nesting is too deep. Break the expression down.

36 Invalid relocatable expression

The relocatable expression contains an illegal operation or operand.

Check expression syntax.

37 Attempt to divide by zero

The expression contains a zero divider. Do not divide by zero.

38 Undefined symbol

The line contains an undefined symbol. Check the symbol name spelling.

Define if the symbol is undefined.

Messages and Error Recovery 8–13

• • • • • • • •

39 Illegal binary operation

Binary operation is executed on non-null segment type operands.

Binary operation is illegal if both operands have a non-null segment

type, except for subtraction and comparing operands that belong to the

same segment.

40 Invalid code address

Code address indicated is below 255 . Code address must have a code or

null segment type and be above 255 .

41 Invalid register address

Register address was above 256 . Register address must have a register
or null segment type and be below 256 .

42 Data type not compatible with segment type

You cannot use the entry attribute to specify the data type of a non-code

or non-null expression. Assign entry attribute only to a code segment

type or null expression over 256 .

43 Public attribute not allowed for this symbol

You cannot specify the public attribute to a macro or module definition,

or to an external symbol. Delete the public attribute.

44 External reference not allowed in this context

External references are allowed only in code generation statements

(machine instructions and the dcb and dcw directives).

45 Expression with forward reference not allowed

Forward reference is not allowed for this statement (e.g., dsb directive).

46 Absolute expression expected

The directive requires an absolute expression as an operand.

47 Symbol already defined

The symbol name was redefined. Symbol cannot be redefined unless it is

first defined by a set directive and it is redefined by another set
directive.

Chapter 88–14
M
E
S
S
A
G
E
S

48 Invalid bit number

The bit number used was less than 0 or greater than 7. A bit number

must be an expression in the range of 0 to 7.

49 Alignment error

The address or offset is not properly aligned. Be sure symbols are aligned

properly. Word symbols are on two-byte alignment. Long symbols are on

four-byte alignment.

50 Reference not to current segment

The expression used with org directive is out of the current segment. The

org directive requires that the expression refer to the current segment or

be absolute and neutral.

51 Location counter too low

The address specified is below 256 . The operand of a cseg at directive

must be at least 256 . The operand of an org directive must not point

below the base address of the segment (applicable only within an absolute

segment).

52 Location counter overflow

The location counter is incremented beyond 16777216 (224) for far ,

beyond 65535 (216) for near code and data and constant segments, or

beyond 256 for register segment. Locate the segment lower in memory or

reduce the size of the segment.

53 Decision list overflow

Too many generic jumps. Further generic jumps are expanded in their

long form. Reduce the number of generic jumps (br instructions). Use

ljmp or sjmp where possible.

54 Expression not within range

This error can be caused by the following:

• A register expression is not in the range of 0 to 255 .

• An immediate count in a shift is not in the range of 0 to 15 .

• A register count in a shift is not in the range of 16 to 255 .

• An immediate operand in byte instructions or a dcb constant is not

in the range of -256 to +255 .

Messages and Error Recovery 8–15

• • • • • • • •

• The offset in the jbs , jbc , or djnz instruction is not in the range

of -128 to +127 .

• The offset in the sjmp or scall instruction is not in the range of

-1024 to +1023 .

55 Conditional assembly stack overflow

Your program contains too many if statements without corresponding

endif s. The maximum nesting is nine. Make sure that there is at least

one endif statement after nine consecutive if s.

56 Missing endif

An if block was not terminated until the end of the macro expansion, or

until the assembler reached the end directive or the end of the file.

Terminate if blocks with an endif directive.

57 Too many formal parameters

The number of formal macro parameters (in the macro definition)

exceeded 16.

58 Too many local parameters

The number of local parameters, parameters designated by the local
directive, exceeded 16.

59 Macro stack overflow

The macro call nesting is too deep. The maximum nesting is nine.

60 Too many actual parameters

A macro is called with more actual arguments than formal parameters in its

definition. Pass the same number of arguments as the number of

parameters inside the definition.

61 Missing endm

A macro definition was not terminated until the assembler reached the end
directive, or the end of the file. Terminate the macro definition with endm.

62 Stacksize not even

The stacksize attribute given is not an even size.

63 Floating point constant underflow

The absolute value of floating-point constant is not above 1.17E–38 .

Chapter 88–16
M
E
S
S
A
G
E
S

64 Floating point constant overflow

Absolute value of floating point constant above 3.37E38.

Absolute value of floating point constants must be below 3.37E38.

65 Invalid segment attribute

All code segments in a module must be either near or far.

Assemble with the nearcode or farcode control or specify near or far
with the cseg directive.

66 Instruction invalid in model(ex) compatible mode

Extended jump and call instructions as well as instruction generating them

are not allowed in the compatible mode.

Make sure that you are using the extended 24-bit model.

67 Location counter too high

The operand of the directive is too high.

Keep the following rules in mind:

1. The operand of a cseg at directive must be at most 0FFFFH if a

24-bit model is not specified and 0FFFFFFH if a 24-bit model is

specified.

2. The operand of an rseg at or oseg at directive must be at most

0FFH.

3. The operand of dseg at , odseg at and kseg at directives must be

at most 0FFFFH if a 24-bit model is not specified or segment type is

near , and 0FFFFFFH if a 24-bit model is specified and the segment

type is far.

4. The same holds true for operands of the corresponding org directives

in absolute segments.

5. The operand of an org directive in the relocatable segment must be at

most a) 0FFFFH for nonregister and 0FFH for register segments if a

24-bit model is not specified, b) 0FFFFFFH for nonregister far ,

0FFFFH for nonregister near , and 0FFH for register segments when a

24-bit model is specified.

Messages and Error Recovery 8–17

• • • • • • • •

68 LSW and MSW not allowed in this context

Use LSW and MSW to get the lower or upper 16 bits of a 32-bit value.

69 Pathname too long

Reduce the pathname.

70 Evaluation version can only generate absolute files

71 Exceeded code size limit of evaluation version

You have a restricted version of the assembler. Contact TASKING for a

registered version.

72 Search path count overflow, ignoring path: path

You specified too many search paths. Reduce the number of paths.

73 Multiple type indices for type POINTER

The type POINTER has two different indices. Check your source code for

redeclaration of POINTER.

75 Cannot change addressing mode for variable

An addressing mode is requested with the @-character which cannot be

generated for this instruction.

76 error_message

A user specified error. See the error control.

77 Missing closing angle bracket

An identifier string was not terminated. Insert the closing '>'.

78 Invalid symbol name or string constant

An invalid string is used in an IFB , IFNB , IFIDN or IFNIDN statement.

79 Control not allowed on the command line: control

The ERROR control has been used on the command line. See the error
control.

80 Invalid floating point expression

An operand is non-integral, but the operator requires integral operands.

That is, for example, NOT, AND, OR, XOR all require integral operands.

Chapter 88–18
M
E
S
S
A
G
E
S

81 Expression evaluation stack overflow

The expression which is being evaluated is to complex. Try to simplify the

expression.

82 Expression evaluation stack underflow

This error should not occur. If it does, report it to your local TASKING

representative.

83 Cannot swap expressions on evaluation stack

This error should not occur. If it does, report it to your local TASKING

representative.

84 Character string value expected

A string is expected.

85 Expression contains unresolved references

An expression is used which could not be solved. Check for the presence

of external variables in this expression and replace them with local

variables.

86 Operator "operator" can only be used in absolute expression

The LOW or HIGH keyword is not used with an absolute expression.

87 Missing colon after label declaration: label

A colon is missing after a label declaration. Add a colon after the label.

100 Internal fatal error, please report: message

This error should not occur. If it does, report it to your local TASKING

representative.

101 This DEMO ASM196 has reached its limit.

You have a restricted demo version of the assembler. Contact TASKING for

a registered version.

TASKING
Quality Development Tools Worldwide

A

FLEXIBLE
LICENSE
MANAGER
(FLEXLM)

A
P

P
E

N
D

IX

Appendix AA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Highland Software's Flexible License Manager and

how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

Appendix AA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Software Installation.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

the directory /usr/local/flexlm will contain two subdirectories, bin
and licenses . The exact location may differ if FLEXlm has already been

installed as part of a non-TASKING product but in general there will be a

directory for executables such as bin . That directory must contain a copy

of the Tasking daemon shipped with every TASKING product. It also

contains the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a licenses directory must contain a file with all licenses. If

you did install SW000098 then the licenses directory will be empty. In

that case the license.dat file from the product should be copied to the

licenses directory after filling in the data from your license data sheet.

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

Appendix AA–6
F
L
E
X
L
M

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

If the pathname of the resulting license file differs from:

/usr/local/flexlm/licenses/license.dat

then you must set the environment variable LM_LICENSE_FILE to the

correct pathname. If you have more than one product using the FLEXlm

license manager you can specify multiple license files by separating each

pathname (lfpath) with a ':' :

setenv LM_LICENSE_FILE lfpath[:lfpath]...

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/lmgrd.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

Keywords Function

RESERVE Ensures that TASKING software will always be available to one
or more users or on one or more host computer systems.

INCLUDE Allows you to specify a list of users who are allowed exclusive
access to the TASKING software.

EXCLUDE Allows you to disallow certain people use of the TASKING
software.

GROUP Allows the specification of a group of users for use in the other
commands.

TIMEOUT Allows licenses that are idle to be returned to the free pool, for
use by someone else.

NOLOG Causes messages of the specified type to be filtered out of the
daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/license.opt , then you would modify

the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/license.opt

A daemon options file consists of lines in the following format:

RESERVE number feature{USER | HOST | DISPLAY | GROUP} name
INCLUDE feature{USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature{USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Appendix AA–8
F
L
E
X
L
M

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

2.4 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmstat

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

The usage of lmstat is as follows:

lmstat [–a] [–S [DAEMON]] [–f [feature]]
[–s [server]] [–t value] [–c license_file]
[–A] [–l [regular expression]]

–a — Display everything
–A — List all active licenses
–c license_file — Use “license_file”
–S [DAEMON] — List all users of DAEMON’s features
–f [feature_name] — List users of feature(s)
–l [regular expression] — List users of matching license(s)
–s [server_name] — Display status of server node(s)
–t value — Set lmstat timeout to “value”

lmdown

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. To use lmdown, simply type �lmdown " with the correct license file

in either /usr/local/license.dat , or the license file pathname in the

environment variable LM_LICENSE_FILE . In addition, lmdown takes the

�–c license_file_path " argument to specify the license file location.

Since shutting down the servers will cause loss of licenses, execution of

lmdown is restricted to users with root privileges.

lmremove

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove is used as follows:

lmremove [-c file] feature user host display

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Appendix AA–10
F
L
E
X
L
M

lmreread

The lmreread utility will cause the license daemon to reread the license

file and start any new vendor daemons that have been added. In addition,

all pre-existing daemons will be signaled to re-read the license file for

changes in feature licensing information. Usage is:

lmreread [-c license_file]

If the -c option is used, the license file specified will be read by

lmreread, NOT by lmgrd; lmgrd re-reads the file it read originally. Also,

lmreread cannot be used to change server node names or port numbers.

Vendor daemons will not re-read their option files as a result of

lmreread.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3 FLEXLM USER COMMANDS

lmdown(1)

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

lmdown allows the system administrator to send a message to every

license daemon asking it to shut down. The license daemons write out

their last messages to the log file, close the file, and exit. All licenses

which have been given out by those daemons will be revoked, so that the

next time a client program goes to verify his license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file /usr/local/flexlm/licenses/license.dat .

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd(1), lmstat(1), lmreread(1)

Appendix AA–12
F
L
E
X
L
M

lmgrd(1)

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

/usr/local/flexlm/licenses/license.dat .

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown(1), lmstat(1)

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

lmhostid(1)

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1990 Highland Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

Appendix AA–14
F
L
E
X
L
M

lmremove(1)

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

lmremove allows the system administrator to remove a single user's

license for a specified feature. This could be required in the case where

the licensed user was running the software on a node that subsequently

crashed. This situation will sometimes cause the license to remain

unusable. lmremove will allow the license to return to the pool of

available licenses.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file /usr/local/flexlm/licenses/license.dat .

lmstat(1)

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

lmreread(1)

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You can not use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file /usr/local/flexlm/licenses/license.dat .

lmdown(1)

Appendix AA–16
F
L
E
X
L
M

lmstat(1)

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

lmstat provides information about the status of the server nodes, vendor

daemons, vendor features, and users of each feature. Information can be

qualified optionally by specific server nodes, vendor daemons, or features.

Options

-a Display everything.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

/usr/local/flexlm/licenses/license.dat .

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd(1)

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

Appendix AA–18
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn

EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license

daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

Appendix AA–20
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting

Error closing lock file

Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

Appendix AA–22
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

Appendix AA–24
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

Appendix AA–26
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license password is incorrect. If this is the case then there must be an

error message in the log file of lmgrd. Correct the password using the

license data sheet for the product. Finally rerun lmreread. The log file of

lmgrd is usually specified to lmgrd at startup with the -l option or with

>.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On HP-UX or SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

Appendix AA–28
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

TASKING
Quality Development Tools Worldwide

B

ASSEMBLER
DIRECTIVES
OVERVIEW

A
P

P
E

N
D

IX

Appendix BB–2
D
IR
E
C
T
IV
E
S

B

A
P

P
E

N
D

IX

Assembler Directives Overview B–3

• • • • • • • •

CSEG

Category: Location Counter Control

Syntax: CSEG [REL | AT base address]

Function: Selects a code segment, either relocatable or beginning at

absolute address specified.

DCB

Category: Code Definition

Syntax: [label :] DCB { expression | string} [,...]

Function: Specifies a list of zero or more byte values to be inserted

sequentially starting at the position indicated by the location

counter.

DCL

Category: Code Definition

Syntax: [label :] DCL long–unsigned–number [,...]

Function: Specifies a list of one or more long unsigned numbers to be

inserted sequentially starting at the position indicated by the

location counter.

DCP

Category: Code Definition

Syntax: [label :] DCP expression [,...]

Function: Specifies a list of one or more 24-bit pointer value to be

inserted sequentially starting at the position indicated by the

location counter.

Appendix BB–4
D
IR
E
C
T
IV
E
S

DCR

Category: Code Definition

Syntax: [label :] DCR float_number [,...]

Function: Specifies a list of one or more floating point numbers to be

inserted sequentially starting at the position indicated by the

location counter.

DCW

Category: Code Definition

Syntax: [label :] DCW expression [,...]

Function: Specifies a list of one or more word values to be inserted

sequentially starting at the position indicated by the location

counter.

DSB

Category: Storage Reservation

Syntax: [label :] DSB expression

Function: Reserves storage for byte program variables starting at

position of location counter.

DSEG

Category: Location Counter Control

Syntax: DSEG [REL | AT base address]

Function: Selects a data segment either relocatable or beginning at

absolute address specified.

Assembler Directives Overview B–5

• • • • • • • •

DSL

Category: Storage Reservation

Syntax: [label :] DSL expression

Function: Reserves storage for long word program variables starting at

(aligned) position of location counter.

DSP

Category: Storage Reservation

Syntax: [label :] DSW expression

Function: Reserves storage for 24-bit pointer variables starting at

(aligned) position of location counter.

DSQ

Category: Storage Reservation

Syntax: [label :] DSQ expression

Function: Reserves storage for quad word program variables starting at

(aligned) position of location counter.

DSR

Category: Storage Reservation

Syntax: [label :] DSR expression

Function: Reserves storage of floating point number program variables

starting at (aligned) position of location counter.

Appendix BB–6
D
IR
E
C
T
IV
E
S

DSW

Category: Storage Reservation

Syntax: [label :] DSW expression

Function: Reserves storage for word program variables starting at

(aligned) position of location counter.

ELSE

Category: Conditional Assembly

Syntax: [ELSE]
[statements]

Function: Provides alternate in conditional assembly block.

END

Category: Module Level

Syntax: END

Function: Marks the end of program.

ENDIF

Category: Conditional Assembly

Syntax: ENDIF

Function: Ends conditional assembly block.

EQU

Category: Symbol Definition

Syntax: symbol name EQU expression [: data type]

Function: Defines symbols that may not be redefined.

Assembler Directives Overview B–7

• • • • • • • •

EXTRN

Category: Module Level

Syntax: EXTRN { symbol name [: data type] } [,...]

Function: Declares one or more symbols as external.

IF

Category: Conditional Assembly

Syntax: IF expression
[statements]

Function: Starts conditional assembly block.

IFEQ, IFNE, IFLT, IFLE, IFGT, IFGE

Category: Conditional Assembly

Syntax: IF xx expression
[statements]

Function: Starts conditional assembly block. Comparisons with zero

(equal, not equal, less than, less than or equal, greater than,

greater than or equal).

IFDEF, IFNDEF

Category: Conditional Assembly

Syntax: IF[N]DEF symbol
[statements]

Function: Starts conditional assembly block. Test if symbol is defined

or not.

Appendix BB–8
D
IR
E
C
T
IV
E
S

IFB, IFNB

Category: Conditional Assembly

Syntax: IF[N]B string
[statements]

Function: Starts conditional assembly block. Test if string is empty or

not.

IFIDN, IFNIDN

Category: Conditional Assembly

Syntax: IF[N]IDN < str1 >, < str2 >
[statements]

Function: Starts conditional assembly block. Test if str1 is equal to

str2 or not.

KSEG

Category: Location Counter Control

Syntax: KSEG [REL | AT base address]

Function: Selects a constant segment either relocatable or beginning at

absolute address specified.

MODULE

Category: Module Level

Syntax: module name MODULE [attr [, attr]]

where attr can be either MAIN or STACKSIZE(n)

Function: Defines a module and its attributes.

Assembler Directives Overview B–9

• • • • • • • •

ODSEG

Category: Location Counter Control

Syntax: ODSEG [REL | AT base address]

Function: Selects an overlayable data segment either relocatable or

beginning at absolute address specified.

ORG

Category: Location Counter Control

Syntax: ORG expression

Function: Sets value of location counter.

OSEG

Category: Location Counter Control

Syntax: OSEG [REL | AT base address]

Function: Selects an overlayable register segment either relocatable or

beginning at absolute address specified.

PUBLIC

Category: Module Level

Syntax: PUBLIC symbol name [,...]

Function: Declares one or more symbols public.

Appendix BB–10
D
IR
E
C
T
IV
E
S

RSEG

Category: Location Counter Control

Syntax: RSEG [REL | AT base address]

Function: Selects a non-overlayable register segment either relocatable

or beginning at absolute address specified.

SET

Category: Symbol Definition

Syntax: symbol name SET expression [: data type]

Function: Defines symbols that may be redefined.

SSEG

Category: Location Counter Control

Syntax: SSEG [REL | AT base address]

Function: Selects a stack segment either relocatable or beginning at

absolute address specified.

TASKING
Quality Development Tools Worldwide

C

ASSEMBLER
CONTROLS
TABLE

A
P
P
E
N
D
IX

Appendix CC–2
C
O
N
T
R
O
L
S

C

A
P
P
E
N
D
IX

Assembler Controls Table C–3

• • • • • • • •

Table C-1 provides the following four types of information about each

assembler control:

• The Control Name column gives the full name of each control. You

can suppress many of the control functions by prefacing the control

or its abbreviation with NO.

• The Abbreviation column shows the two-letter abbreviation for

each control. If the control can be prefaced with NO, the two-letter

abbreviation can also be prefaced with NO.

• The Default column gives the default setting the assembler assigns

for each control.

• The Type column indicates the type of each control (primary or

general).

Control Name Abbreviation Default Type

case cs cs Primary

cmain cm nocm Primary

cond co co General

copyattr ca noca Primary

debug db nodb Primary

directaddr da noda Primary

eject ej n/a General

error(’string’) er n/a General

errorprint ep noep Primary

extra_mnem em noem Primary

gen ge noge General

include(pathname) ic n/a General

limit_bitno lb nolb Primary

linedebug ld nold Primary

list li li General

model(processor) md md(kb) Primary

optimize ot noot Primary

nearcode/farcode nc/fc nc Primary

nearconst/farconst nk/fk nk Primary

neardata/fardata nd/fd nd Primary

object oj oj(src.obj) Primary

Appendix CC–4
C
O
N
T
R
O
L
S

TypeDefaultAbbreviationControl Name

omf(number) omf omf(2) Primary

optionalcolon oc nooc Primary

pagelength(number) pl pl(60) Primary

pagewidth(number) pw pw(120) Primary

print pr pr(src.lst) Primary

relaxedif ri nori Primary

save/restore sa/rs n/a General

searchinclude(pathname) si nosi General

set/reset se/re n/a General

signedoper so noso Primary

source sc nosc General

subtitle(’string’) st nost General

symbols sb sb Primary

title(’string’) tt tt(modname) General

xref xr noxr Primary

Table C-1: Assembler controls

TASKING
Quality Development Tools Worldwide

D

ASM196
RESERVED
WORDS

A
P
P
E
N
D
IX

Appendix DD–2
R

E
S

E
R

V
E

D
 W

O
R

D
S

D

A
P
P
E
N
D
IX

ASM196 Reserved Words D–3

• • • • • • • •

* This reserved word is specific to 24-bit models.

** This reserved word is specific to 80C196.

Assembler / Macro Directives

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

.STRLEN. ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EQU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MACRO
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

AT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EXITM ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MAIN
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BYTE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EXTRN ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MODULE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CSEG ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FAR* ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NEAR*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DCB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IF ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NULL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DCL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ODSEG
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DCP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFDEF ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ORG
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DCR ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFEQ ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

OSEG
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DCW ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFGE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

POINTER
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFGT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PUBLIC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSEG ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFIDN ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

QUAD
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFLE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

REAL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFLT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

REL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSQ ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFNB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

REPT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSR ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFNDEF ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

RSEG
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DSW ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFNE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SET
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DWORD ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IFNIDN ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SSEG
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ELSE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IRP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

STACK
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

END ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IRPC ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

STACKSIZE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ENDIF ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

KSEG ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

WORD
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ENDM ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LOCAL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ENTRY ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
LONG ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

Appendix DD–4
R

E
S

E
R

V
E

D
 W

O
R

D
S

Generic Instructions

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BBC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNVT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBLE*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BBS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BST
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBLT*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BV
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNC*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BVT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNE*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BGE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CALL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNH*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BGT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DBNZ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNST*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BH
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DBNZW
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNV*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BLE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBBC*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNVT*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BLT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBBS*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBST*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBC*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBV*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBE*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBVT*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNH
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBGE*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EDBNZ*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNST
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBGT*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EDBNZW*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNV
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBH*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Other Reserved Words

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ADD
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMPB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBR*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ADDB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMPL**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ECALL*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ADDC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DEC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EI
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ADDCB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DECB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EJMP*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

AND
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DI
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ELD*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ANDB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DIV
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ELDB*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BMOV**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DIVB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EPTS**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BMOVI**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DIVU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EQ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BR
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DIVUB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EST*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CLR
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DJNZ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ESTB*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CLRB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DJNZW**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EXT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CLRC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DPTS**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EXTB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CLRVT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBMOV*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

GE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMP
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBMOVI*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

GT

ASM196 Reserved Words D–5

• • • • • • • •

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

HIGH ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LOW ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IDLPD** ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LSW ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHLB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INC ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHLL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INCB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MOD ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHR
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JBC ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MSW ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHRA
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JBS ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MUL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHRAB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JC ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MULB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHRAL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MULU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHRB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JGE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MULUB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SHRL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JGT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SJMP
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JH ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NEG ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SKIP
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JLE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NEGB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ST
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JLT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

STB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNC ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NORML ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SUB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SUBB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNH ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOTB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SUBC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNST ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SUBCB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNV ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

OR ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

TIJMP**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNVT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ORB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

TRAP
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JST ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

POP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

UGE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JV ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

POPA** ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

UGT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JVT ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

POPF ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ULE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LCALL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PUSH ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ULT
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LD ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PUSHA** ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

XCH**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LDB ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PUSHF ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

XCHB**
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LDBSE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

RET ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

XOR
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LDBZE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

RST ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

XORB
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

LE ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SCALL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
LJMP ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
SETC ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

Appendix DD–6
R

E
S

E
R

V
E

D
 W

O
R

D
S

Additional Mnemonics

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BGES
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBGES*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JGES
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BGEU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBGEU*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JGEU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BGTS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBGTS*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JGTS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BGTU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBGTU*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JGTU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BLES
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBLES*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JLES
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BLEU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBLEU*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JLEU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BLTS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBLTS*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JLTS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BLTU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBLTU*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JLTU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BNZ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBNZ*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JNZ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BZ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

EBZ*
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

JZ

TASKING
Quality Development Tools Worldwide

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
.strlen. directive, 7-19

; (semicolon), 3-7

: (colon), 3-4

" (double quotation marks), 4-47, 4-49

' (Apostrophe), 5-15

' (single quotation marks), 4-47, 4-49

& (ampersand), 7-24

$ (dollar sign), 3-7, 5-15, 5-17

% (percent sign), 7-27

- (minus sign), 3-4

* (asterisk), 3-18

^ (caret), 3-18

= (equal sign), 3-4

\ (backslash), 3-4

_ (underscore), 3-18

_16_BITS_, 5-8

_24_BITS_, 5-9

_BOTTOM_OF_STACK_, 5-33

_FAR_CODE_, 5-8

_FAR_CONST_, 5-8

_FAR_DATA_, 5-8

_MODEL_xx_, 5-8

_OMF96_VERSION_, 5-9

_SFR_INC_, 5-8

_TOP_OF_STACK_, 5-33

A
Absolute expression, 5-17, 5-22, 6-24

Absolute object file, 2-3, 3-11

Absolute segment, 6-24

Absolute segments, 5-32

Absolute values, 5-5

Addressing modes

direct, 4-11
extended-indexed, 5-14
long/short-indexed, 5-14
mixed, 5-14
register direct, 5-14

Alignment

Expressions, 6-12
Floating point number, 6-11
Label, 6-14
Program variables, 6-14
Unsigned number, 6-9

Alignment attribute , 5-32

ASM196 assembler, 2-3

Assembler

Controls, 3-7
controls, 4-1
in software development process, 2-3
Invocation, 3-1
Listing file, 2-3
Options, 3-4

Assembler controls, overview, C-1

Assembler directives, 6-1

overview, B-1
Assembly language components, 5-3

Character set, 5-3
Delimiters, 5-7
Numbers, 5-3
Reserved words, 5-8
Strings, 5-15
Symbols, 5-9

Assembly language elements, 5-1

Assigning a listing filename, 4-36

Assigning a page header, in listing file,

4-47, 4-49

Assigning an object filename, 4-30

Attributes, 5-18

Assigning to module, 5-28
Defining symbols, 6-17
Location, 5-23
Relocatability, 5-21
Type, 5-18
Value, 5-21

Automating the assembly process, 3-22

IndexIndex–4
IN
D
E
X

B
Batch file commands

goto, 3-24
if, 3-24

Batch files, 3-22

Argument passing, 3-23, 3-24
call command, 3-23
Invocation, 3-23
Parameters, 3-24

Binary operations, Type attribute, 5-20

Bit numbers, 5-25

Byte constants, Defining, 6-7

C
C196INC environment variable, 4-41

Calling a macro, 7-20

Carriage return, 5-27

case control, 4-4

Case sensitivity, 4-4

Reserved words, 5-8
Symbols, 5-9

Case significance, 5-16

cmain control, 4-6

Code segment, 5-32, 6-5

Command files, 3-22

Comment lines, 5-27

Statement structure, 5-27
Complex expression, 3-17

cond control, 4-7

Conditional-assembly directives, 6-3,

6-20

Constant segment, 5-32

Constant-definition directives, 6-3,

6-7, 6-10

Constants

Defining, 6-7, 6-10
Expressions, 5-24

Continuation lines, 3-4, 5-27

Control line, 3-7, 5-27

Control Z, 5-28

Controls

Abbreviations, 3-8
case, 4-4
Case sensitivity, 3-8
cmain, 4-6
cond, 4-7
copyattr, 4-8
debug, 4-10
Defaults, 3-8
directaddr, 4-11
eject, 4-12
error, 4-13
errorprint, 4-14
extra_mnem, 4-15
farcode, 4-27
farconst, 4-28
fardata, 4-29
gen, 4-17
General, 3-8
include, 4-19
limit_bitno, 4-20
linedebug, 4-21
list, 4-22
model, 4-23
nearcode, 4-27
nearconst, 4-28
neardata, 4-29
Negating, 3-8
object, 4-30
omf, 4-31
optimize, 4-32
optionalcolon, 4-33
pagelength, 4-34
pagewidth, 4-35
Parameters, 3-8
Primary, 3-8
print, 4-36
Processing, 3-10
relaxedif, 4-38
save/restore, 4-39, 4-43
searchinclude, 4-40

Index Index–5

• • • • • • • •

signedoper, 4-44
source, 4-45
Specifying, 3-7
subtitle, 4-47
symbols, 4-46
Table, 3-9
title, 4-49
xref, 4-50

Conventions, 2-6

copyattr control, 4-8

Segment type, 5-18
cseg directive, 6-4

Customer comments, 2-7

Customer service hotline, 2-7

D
Data representation

Alignment, 6-9, 6-11
Floating point number, 6-11
Numbers, 5-3

Pages, 5-5
Operands, 5-17
Strings, 5-15
Unsigned number, 6-9
Word values, 6-12

Data segment, 5-30, 6-5

Data structures

Macros, 7-5
Routines, 7-5

Data types, 6-17, 6-19

byte, 3-21, 6-17, 6-19
dword, 6-17, 6-19
entry, 3-21, 6-17, 6-19
long, 3-21, 6-17, 6-19
null, 3-21, 6-17, 6-19
pointer, 3-21, 6-17, 6-19
real, 3-21, 6-17, 6-19
word, 3-21, 6-17, 6-19

dcb directive, 6-7

dcl directive, 6-9

dcp directive, 6-10

dcr directive, 6-11

dcw directive, 6-12

debug control, 4-10

Debugging with emulators, 4-10

Declaring external symbols, 6-19

Declaring public symbols, 6-25

Declaring segments, 6-4

Defining byte constants, 6-7

Defining floating point number

constants, 6-11

Defining long constants, 6-9

Defining macros, 7-6

Defining pointer constants, 6-10

Defining program symbols, 6-13

Defining word constants, 6-12

Delimiters, 5-7, 7-20

Table, 5-7
Diagnostic messages, 8-1

directaddr control, 4-11

Directives

Conditional assembly, 6-3, 6-20
Constant definition, 6-3, 6-7, 6-10
Location counter control, 6-3
Module level, 6-3, 6-23
Segment selection, 6-3
Storage definition, 6-3
Storage reservation, 6-13
Symbol definition, 6-3

Displaying lines, in listing file, 4-22

Dollar sign ($), 5-17

dsb directive, 6-13

dseg directive, 6-4

dsl directive, 6-13

dsp directive, 6-13

dsq directive, 6-13

dsr directive, 6-13

dsw directive, 6-13

E
Efficiency

Macros, 7-3, 7-5

IndexIndex–6
IN
D
E
X

Routines, 7-5
eject control, 4-12

end directive, 5-27, 6-16

End-of-file directive, 6-16

End-of-file marker, 5-28

End-of-macro, 7-8

endm directive, 7-8

environment variable, 1-4, 1-8

LM_LICENSE_FILE, 1-7, A-6
PATH, 1-4, 1-8
TMPDIR, 1-4, 1-8

equ directive, 6-17

Segment type, 5-18
error control, 4-13

Error Lines, 3-4, 3-18

Error messages, 8-4

Argument, 8-6
Console output, 8-3
Fatal error messages, 8-4
I/O, 8-7
Memory, 8-7
Redirecting, 4-14
Source file error messages, 8-9
User-defined, 4-13
Warning messages, 8-8

Error recovery, 8-4

errorprint control, 4-14

Errorprint file, 3-22

errors, FLEXlm license, A-25

exitm directive, 7-9

Expressions, 5-16

Absolute, 5-22
Complex, 5-21
External, 5-21
External bit numbers, 5-25
Relocatable, 5-21, 5-24
Type of, 5-21

Extensions, 2-5

External bit numbers, 5-25

External reference, 3-17

External symbols, Declaring, 6-19

extra_mnem control, 4-15

extrn directive, 6-19

F
FAR segments, 5-33

farcode control, 4-27

farconst control, 4-28

fardata control, 4-29

Fatal error messages, 8-4

Filename extensions, 2-5

.bat, 3-23

.tmp, 2-5
Files

Identified, 3-15
Include, 4-19
Listing, 4-36
Object, 4-30
Source, 4-19

Fixup indicator, in listing file, 3-17

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-17
daemon options file, A-6
license administration tools, A-8
license errors, A-25
user commands, A-11

Floating point number constants,

Defining, 6-11

Floating point numbers, 5-4

Format, Source program, 5-27

G
gen control, 4-17

Generic instructions

call, 5-12
in asm196, 5-11
in listing file, 3-17

Index Index–7

• • • • • • • •

H
HIGH Code segments, 5-33

I
if/else/endif directive, 6-20

ifeq/ifne/iflt/ifle/ifgt/ifge, 6-20

include control, 4-19

Include files, 4-40

Examples, 4-41
Search path, 4-40, 4-41

Include indicator, in listing file, 3-17

Including a cross-reference listing, in

listing file, 4-50

Including expansion lines, in listing

file, 4-17

Including external files, in assembly

process, 4-19

Including symbol table listing, in

listing file, 4-46

Inline code, 7-5

Installation

UNIX, 1-5
Windows 95, 1-3
Windows 98, 1-3
Windows NT, 1-3

Installation procedure, 1-1

Instructions

Additional mnemonics, 5-13
Generic, 5-11

Invocation syntax, 3-3

irp directive, 7-10

irpc directive, 7-12

L
Label

Definition, 5-26, 7-14
Definition of, 6-14

Macros, 7-14
Statement structure, 5-26

Labels, 5-27

Macros, 7-6
Scope, 7-6

limit_bitno control, 4-20

Line feed, 5-27

Line numbers

in listing file, 3-17
in object file, 4-21

linedebug control, 4-21

Linking multiple files, 3-24

list control, 4-22

Listing file, 3-3

Body, 3-16
Fixup indicator, 3-17
Generic instruction indicator, 3-17
Include indicator, 3-17
Line numbers, 3-17
LOC field, 3-16
Macro expansion indicator, 3-17
Object code field, 3-17
Set/Equ field, 3-17
Source line, 3-18

Header, 3-15
Including expansion lines, 4-17
Printing all source lines, 4-7
printing on a new page, 4-12

LM_LICENSE_FILE, 1-7, A-6

lmdown, A-11

lmgrd, A-12

lmhostid, A-13

lmremove, A-14

lmreread, A-15

lmstat, A-16

Loading memory, 2-3, 3-11

LOC field, in listing file, 3-16

local directive, 7-14

Location attribute, 5-23

Location counter, 3-16, 5-15, 6-14

Location-counter control directives,

6-3

Log file, 3-24

IndexIndex–8
IN
D
E
X

Logging the assembly process, 3-24

Long constants, 5-4

Defining, 6-9
LSW operator, 5-23

M
Machine language instructions, 2-3

Macro calls, 7-20

Nested, 7-27
macro directive, 7-16

Macro directives, 7-6, 7-7

.strlen., 7-19
endm, 7-6, 7-8
exitm, 7-6, 7-9
irp, 7-6, 7-10
irpc, 7-6, 7-12
local, 7-6, 7-14
macro, 7-6, 7-16
macro call, 7-6
rept, 7-6, 7-18

Macro expansion, 7-27

in listing file, 3-17
Macro processing, 7-1

Advantages, 7-3
Macro processing language, 2-6

Macros

_16_BITS_, 5-8
_24_BITS_, 5-9
_FAR_CODE_, 5-8
_FAR_CONST_, 5-8
_FAR_DATA_, 5-8
_MODEL_xx_, 5-8
_OMF96_VERSION_, 5-9
_SFR_INC_, 5-8
Arguments, 5-22
Calling, 7-26
Definition, 5-22, 7-6
Empty arguments, 7-23
Expansion, 7-27
Label, 7-14
narg symbol, 7-23

Nesting, 7-26
Null, 7-29
Number of arguments, 7-23
Operators, 5-22
Predefined, 5-8
Special operators, 7-24

Make Utility MK196, 3-22

Messages, 8-1

Diagnostics, 8-1
Mnemonics, Additional, 4-15, 5-13

model control, 4-23

module directive, 5-27, 6-23

Module-level directives, 6-3, 6-23

MSW operator, 5-23

N
Name

Attributes, 5-26
Statement structure, 5-26

Names

Assembler-generated, 5-10
Character set, 5-9
Macros, 5-10
Reserved words, 5-8
Symbols, 5-10

Names case sensitivity, 5-8, 5-9

Naming the listing file, 4-36

narg symbol, 7-23

NEAR segments, 5-33

nearcode control, 4-27

nearcode/farcode, 4-27

nearconst control, 4-28

nearconst/farconst, 4-28

neardata control, 4-29

neardata/fardata, 4-29

Negating controls, 3-8

Nested macro calls, 7-27

Nesting macros, 7-26

nocase control, 4-4

nocmain control, 4-6

nocond control, 4-7

Index Index–9

• • • • • • • •

nocopyattr control, 4-8

nodebug control, 4-10

nodirectaddr control, 4-11

noerrorprint control, 4-14

noextra_mnem control, 4-15

nogen control, 4-17

nolimit_bitno control, 4-20

nolinedebug control, 4-21

nolist control, 4-22

Non-overlayable segment, 5-30

noobject control, 4-30

nooptimize control, 4-32

nooptionalcolon control, 4-33

noprint control, 4-36

norelaxedif control, 4-38

nosearchinclude control, 4-40

nosignedoper control, 4-44

nosource control, 4-45

nosubtitle control, 4-47

nosymbols control, 4-46

noxref control, 4-50

Null macros, 7-29

O
Object code field, in listing file, 3-17

object control, 3-3, 4-30

Object file, 2-3, 3-3, 3-11

Absolute, 2-3, 3-11
Including line numbers, 4-45
Including the symbol table

information, 4-10
Relocatable, 2-3, 3-11

odseg directive, 6-4

omf, _OMF96_VERSION_ macro, 5-9

omf control, 4-31

Opcode listing, 3-17

Operand

Relocatability, 5-21
Type attribute, 5-18
Value, 5-21

Operands, 5-16, 5-17

Absolute, 5-23
Definition, 5-17
Expression structure, 5-17

Operation, Statement structure, 5-26

Operators

Delimiters, 5-23
Expression structure, 5-17
Macro, 5-22
Macros, 7-24
MSW/LSW, 5-23
Order of precedence, 5-22
Prefix unary, 5-17
Relational, 5-22, 5-23
Unary, 5-22

Operators Infix, 5-17

optimize control, 4-32

optionalcolon control, 4-33

Options

Specifying, 3-4
Table, 3-5
Turning off/on, 3-5

org directive, 6-24

oseg directive, 6-4

Output files, 3-3

Absolute object module, 2-4
Hex file, 2-4
Listing file, 2-3, 3-3
Map file, 2-4
Object file, 2-3, 3-3, 3-11
Quasi-absolute object module, 2-4

Overlay segment, 5-30

Overview, 2-1

P
pagelength control, 4-34

pagewidth control, 4-35

Parameters

Macros, 7-4, 7-6, 7-16, 7-24
Re-evaluation, 7-27

IndexIndex–10
IN
D
E
X

Scope, 7-6
Special characters, 7-24

PATH, 1-4, 1-8

Path prefixes, 4-40

Percent sign (%), 7-27

Pointer constants, Defining, 6-10

Pointer data type, 3-21, 6-17, 6-19

Predefined macros, 5-8

print control, 3-3, 4-36

Printing all source lines, in listing file,

4-7

Printing on a new page, 4-12

Processing controls, 3-10

Processor models, 4-23

8096-90, 4-23
8096-BH, 4-24
80C196CA, 4-24
80C196CB, 4-24
80C196EA, 4-24
80C196EC, 4-24
80C196JQ, 4-24
80C196JR, 4-24
80C196JS, 4-24
80C196JT, 4-24
80C196JV, 4-24
80C196KB, 4-24
80C196KC, 4-24
80C196KD, 4-24
80C196KL, 4-24
80C196KQ, 4-24
80C196KR, 4-25
80C196KS, 4-25
80C196KT, 4-25
80C196LB, 4-25
80C196MC, 4-25
80C196MD, 4-25
80C196MH, 4-25
80C196NP, 4-25
80C196NT, 4-25
80C196NU, 4-25

Program format, 5-27

public directive, 6-25

Public symbols, Declaring, 6-25

R
Redirecting error messages, 4-14

Register segment, 5-30

Register segment , 6-5

relaxedif control, 4-38

Relocatability attribute, 5-21

Relocatable expression, 5-17, 6-24

Relocatable object file, 2-3, 3-11

Relocatable reference, 3-17

Relocatable segment, 6-24

Relocatable segments, 5-32

Repeating macros, 7-18

Repeating macros indefinitely, 7-10

Repeating macros per character, 7-12

rept directive, 7-18

Reserved words, 5-8, D-1

restore/save control, 4-39, 4-43

Restoring save control condition, 4-39

RL196 linker, 2-3, 3-11

rseg directive, 6-4

S
save/restore control, 4-39, 4-43

Saving current control condition, 4-39

Scope

Labels, 7-6
Macros, 7-6
Parameters, 7-6

Search path, 4-40

searchinclude control, 4-40

Segment, Type attribute, 4-8, 5-18

Segment selection directives, 6-3

Segment type

equ/set, 5-18
extrn, 5-18

Segment-selection directives, 6-4

cseg, 6-4
dseg, 6-4
odseg, 6-4

Index Index–11

• • • • • • • •

oseg, 6-4
rseg, 6-4
sseg, 6-4

Segments, 5-30

Code, 5-30
Data, 5-30
Declaring, 6-4
Non-overlayable register, 5-30
Register, 5-30
Stack, 5-30

set directive, 6-17

Segment type, 5-18
Set/Equ field, in listing file, 3-17

Setting the environment

UNIX, 1-8
Windows, 1-4

Sign-off message, 8-3

Sign-on message, 8-3

signedoper control, 4-44

source control, 4-45

Source file, 3-3

Source file error messages, 8-9

Source listing, 3-18

Spaces, 5-27

Special characters, Macro parameters,

7-24

sseg directive, 6-4

Stack

_BOTTOM_OF_STACK_, 5-33
_TOP_OF_STACK_, 5-33
Symbol, 5-17

Stack overflow, 5-33

Stack segment, 5-31

user defined, 5-31
Statement format, 5-26

Statement structure, 5-26

Delimiters, 5-7, 5-15
Expressions, 5-16
Operands, 5-16, 5-17
Operators, 5-16
Strings, 5-15
Symbols, 5-9

Storage-reservation directives, 6-3,

6-13

dsb directive, 6-13
dsl directive, 6-13
dsp directive, 6-13
dsq directive, 6-13
dsr directive, 6-13
dsw directive, 6-13

String, Defining, 6-7

String length, 7-19

Strings, Expressions, 5-17

subtitle control, 4-47

Suffix rules, 2-5

Summary of controls, 3-9

Summary of options, 3-5

Symbol definition directives

equ, 6-17
set, 6-17

Symbol table, 3-18

Attributes field, 3-21
Cross-references, 3-18, 3-22
Header, 3-20
Information in object file, 4-10
Name field, 3-21
Value field, 3-21

Symbol-definition directives, 6-3

Symbols

Assembler-generated, 5-10
Expressions, 5-24
External, 5-24
External bit numbers, 5-25
Macros, 7-3, 7-6
Relocatable, 5-24
Scope, 7-6

symbols control, 4-46

symbols control , 3-18

T
Temporary files, 1-4, 1-8

IndexIndex–12
IN
D
E
X

Terminating macros, 7-9

title control, 4-49

TMPDIR, 1-4, 1-8

Toggling controls, 4-39

Type attribute, 5-18

U
Using a log file, 3-24

Using batch files, 3-22

Utilities

OH196 converter, 2-4
RL196, 2-3, 3-11

V
Value attribute, 5-21

W
Warning messages, 8-8

Word constants, Defining, 6-12

Work files, 1-4, 1-8

X
xref control, 4-50

TASKING
Quality Development Tools Worldwide

RELEASE NOTE

INDICATOR : Customer Information Software

INDICATOR NR. : CIS9926

CONCERNS : TK006020-00

80C196 Assembler

Release 6.1

ISSUE DATE : May '99

SUPERSEDES : CIS9827

TO BE FILED IN : 80C196 Assembler User's Guide

SUMMARY

A new release of the 80C196 Assembler has been made: Release 6.1.

The main reasons for this update are:

• Solving of reported problems

• New style manuals

• PDF and HTML versions of on-line manuals

ON-LINE MANUALS

For Windows 95/98 and Windows NT the complete set of manuals is

available as Windows on-line help files (in the etc directory). The

manuals are also available as HTML files for Web browsers (in the html
directory) and in PDF format (in the subdirectory pdf) for viewing with

Adobe's Acrobat Reader.

Release NoteRel–2
R

E
L

E
A

S
E

 N
O

T
E

SOLVED / KNOWN PROBLEMS

The distribution contains the file readme_a.txt with information about

solved problems, known problems and additional notes. For Windows

95/98 and Windows NT the readme is available as on-line help

(readme_a.hlp). The information is also available as HTML

(readme_a.html). And there are other read*.* files with information

about previous releases. They could be of interest to you if you have been

using iC-96 before.

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION
	Introduction
	Installation for Windows
	Setting the Environment

	Installation for UNIX Hosts
	Setting the Environment

	OVERVIEW
	ASM196 and Software Development
	Keeping Track of Files
	Macro Processing Language

	About This Manual
	Conventions
	Customer Support
	If You Have a Problem Using the Software

	ASSEMBLER INVOCATION
	Invocation Line
	Assembler Options
	Assembler Controls
	Primary and General Controls
	Control Processing

	Output Object File
	Listing File
	Header and Introductory Lines
	Source Lines
	Error Lines
	Symbol Table

	Errorprint File
	Automatic Assembler Invocation
	Using Make Utility MK196
	Batch Files
	Log File

	ASSEMBLER CONTROLS
	ASSEMBLY LANGUAGE
	Introduction
	Assembly Language Components
	Character Set
	Numbers
	Long Constants
	Floating Point Numbers
	Delimiters
	Reserved Words
	Predefined Macros
	Symbols
	Assembler-generated Symbols
	Generic Instructions
	Additional Mnemonics
	Mixed Addressing Modes
	Location Counter
	Strings

	Expressions and Basic Operands
	Basic Operands
	Attributes of Expression Operands
	Absolute Expressions
	Relocatable Expressions
	External Bit Numbers

	Statement Format
	Additional Statement Rules

	Program Format
	Segments
	Register Segment (Overlayable and Non-overlayable)
	Data Segment (Overlayable and Non-overlayable)
	Stack Segment
	User Defined Stack Segment
	Code Segment
	Constant Segment

	Absolute and Relocatable Segments
	Stack Overflow

	ASSEMBLER DIRECTIVES
	MACRO PROCESSING
	Introduction
	The Advantages of Using Macros
	An Example of Macro Use

	Macros and Routines
	Macro Directives and Macro Calls
	Macro Definition

	Macro Directives
	Empty Macro Arguments
	NARG Symbol
	Special Macro Operators
	Nesting Macro Definitions
	Macro Calls
	Nested Macro Calls

	Macro Expansion
	Null Macros
	Sample Macros

	MESSAGES AND ERROR RECOVERY
	Console Output
	Sign-on Message
	Error Messages
	Sign-off Message

	Error Messages and Recovery
	Fatal Error Messages
	ASM196 Error Messages
	Argument Error Messages
	Memory Error Messages
	I/O Error Messages

	Warning Messages
	Source File Error Messages

	FLEXIBLE LICENSE MANAGER (FLEXLM)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File
	License Administration Tools

	FLEXlm User Commands
	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors

	ASSEMBLER DIRECTIVES OVERVIEW
	ASSEMBLER CONTROLS TABLE
	ASM196 RESERVED WORDS
	INDEX
	RELEASE NOTE

