
TASKING
Quality Development Tools Worldwide

MA006009–00 / 0105

80C196 v6.1

UTILITIES
USER’S GUIDE

A publication of

TASKING

Documentation Department

Copyright 1999 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel, MCS and ICE are trademarks of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com

WWW: http://www.tasking.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes no
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TASKING
Quality Development Tools Worldwide

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

OVERVIEW 1-1

1.1 80C196 Utilities and the Development Process 1-3.

1.1.1 Relocation and Linkage 1-4.

1.1.2 Use of Libraries 1-4.

1.1.3 FPAL96 Functions 1-5.

1.1.4 Audience Description 1-6.

1.1.5 ROM and PROM Versions 1-7.

1.1.6 Keeping Track of Files 1-7.

1.2 Conventions 1-8.

1.3 Customer Support 1-8.

1.3.1 If You Have a Problem Using the Software 1-9.

RL196 LINKER 2-1

2.1 Overview 2-3.

2.2 Resolving External References 2-5.

2.2.1 Type Checking 2-5.

2.2.1.1 Segment Type Matching 2-6.

2.2.1.2 Symbol Type Matching 2-6.

2.2.1.3 Mismatched Types 2-8.

2.2.2 Performing Fix-ups 2-9.

2.3 Variable Initialization 2-9.

2.4 Combining Different OMF96 Formats 2-10.

2.4.1 Global Initialization 2-10.

2.4.2 OMF96 Version 3.0 Limitations 2-11.

2.5 Memory Allocation 2-11.

2.5.1 Stack Segment 2-12.

2.5.2 Stack Overflow 2-13.

2.5.3 Register Overlaying 2-14.

2.5.4 Providing Means for Dynamic Memory Allocation 2-15. . . .

2.5.5 Overlapping ROM and RAM Memory Using the

INST Pin 2-16.

2.5.5.1 INST Pin Behavior 2-17.

2.5.5.2 Overlapping Memory Scheme Example 2-17.

2.5.5.3 Guidelines for Hardware Development 2-18.

Table of ContentsVI
C
O
N
T
E
N
T
S

2.5.5.4 Linker/Locator Example Invocation Line 2-19.

2.5.5.5 Summary of RL196 INST Usage 2-20.

2.5.6 Support for Vertical Windows 2-20.

2.6 Invoking RL196 2-22.

2.6.1 Options 2-23.

2.6.2 Input List 2-26.

2.6.2.1 Ordinary Object File 2-27.

2.6.2.2 Object Library File 2-28.

2.6.2.3 Publicsonly Object File 2-29.

2.6.3 Output Files 2-30.

2.6.3.1 Print File 2-30.

2.6.3.2 Output Object File 2-37.

2.7 Automatically Invoking Multiple Commands 2-38.

2.7.1 Using Make Utility mk196 2-38.

2.7.2 Using Batch Files 2-39.

2.7.3 Using Command Files 2-41.

2.8 RL196 Controls 2-43.

OH196 CONVERTER 3-1

3.1 Invocation Syntax 3-3.

3.2 Examples 3-4.

3.3 Output File 3-4.

LIB196 LIBRARIAN 4-1

4.1 Invoking LIB196 4-3.

4.1.1 Options 4-3.

4.1.2 Character Set 4-4.

4.2 LIB196 Commands 4-4.

4.3 Command Descriptions 4-5.

Table of Contents VII

• • • • • • • •

USING THE FPAL96 LIBRARY 5-1

5.1 Data Formats Supported 5-3.

5.1.1 Floating Point Numbers 5-3.

5.1.1.1 Special Floating Point Numbers 5-5.

5.1.2 Integers 5-11.

5.1.3 Decimals 5-11.

5.2 Conventions 5-12.

5.2.1 Naming Conventions 5-12.

5.2.2 Parameter Passing 5-12.

5.3 FPAL96 Control Variables 5-13.

5.3.1 Floating-point Accumulator 5-13.

5.3.2 Built-in Variables 5-13.

5.3.2.1 Control Word 5-14.

5.3.2.2 Status Word 5-16.

5.4 Declaration and Linkage 5-18.

5.4.1 Declaring Floating-point Functions 5-18.

5.4.1.1 In an ASM196 Program 5-18.

5.4.1.2 In an C196 Program 5-19.

5.4.2 Selecting the Correct Library 5-19.

5.4.3 Initializing the Floating-point Library 5-20.

5.4.4 Linking the Floating-point Library 5-20.

5.5 Examples Using FPAL96 Routines 5-21.

FPAL96 FUNCTIONS REFERENCE 6-1

6.1 Introduction 6-3.

6.2 Administrative Operations 6-3.

6.3 Load Operations 6-3.

6.4 Store Operations 6-4.

6.5 Unary Operations 6-4.

6.6 Binary Operations 6-5.

6.7 Functions List 6-6.

Table of ContentsVIII
C
O
N
T
E
N
T
S

EXCEPTIONS AND EXCEPTION HANDLING 7-1

7.1 Introduction 7-3.

7.2 Invalid-operation Exception 7-5.

7.3 Zero-divide Exception 7-6.

7.4 Overflow Exception 7-6.

7.5 Underflow Exception 7-7.

7.6 Precision Exception 7-7.

7.7 Denormalized-number Exception 7-8.

7.8 Creating Your Own Exception Handler 7-8.

MK196 MAKE UTILITY 8-1

8.1 Invocation Syntax 8-3.

8.2 Description 8-3.

8.3 Usage 8-5.

8.4 Example 8-14.

8.5 Files 8-15.

8.6 Diagnostics 8-15.

MESSAGES AND ERROR RECOVERY 9-1

9.1 RL196 Messages 9-3.

9.1.1 Console Messages 9-3.

9.1.2 Fatal Errors 9-4.

9.1.2.1 RL196 Error Messages 9-4.

9.1.2.2 Argument Error Messages 9-11.

9.1.2.3 Memory Error Messages 9-12.

9.1.2.4 I/O Error Messages 9-13.

9.1.3 Error Messages 9-14.

9.1.4 Warnings 9-18.

9.2 OH196 Error Messages 9-22.

9.3 LIB196 Error Messages 9-23.

GLOSSARY A-1

Table of Contents IX

• • • • • • • •

INDEX

Table of ContentsX
C
O
N
T
E
N
T
S

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual describes how to use the TASKING utilities RL196, OH196,

LIB196 and MK196 and the FPAL96, a floating-point object module library

for 80C196 microcontrollers. To effectively use the 80C196 utilities, you

must be familiar with the 80C196 architecture, programming in assembly

language or a high-level language, and the software development process.

INSTALLING THE UTILITIES

To install the 80C196 utilities, see the Software Installation chapter in the

80C196 Assembler User's Guide or the 80C196 C Compiler User's Guide.
That chapter also explains the environment variable settings, and directory

structure to set up your system for the translator and utilities.

MAKING EFFICIENT USE OF RL196

To understand how RL196 operates on your modules, read Chapter 2. This

chapter explains the default settings of the linker, and it can help you use

the correct linking and locating controls in the linker invocation line.

USING FLOATING-POINT FUNCTIONS

To learn about the major functions of FPAL96, see Chapter 1. To learn

how to control the behavior of the FPAL96 library, read Chapter 5. To see

examples on how to use each function in ASM196, and C196, see Chapter

6.

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

1. Overview

Summarizes the 80C196 utilities and introduces you to the 80C196

floating-point library (FPAL96).

2. RL196 Linker

Deals with linker invocation, output files and contains a detailed

description of the linking and locating controls.

3. OH196 Converter

Third-party vendors' PROM programmers do not always accept the

80C196 Absolute Module Format. In this case, you can run the

absolute object file created by rl196 through the oh196 utility which

produces a file in hexadecimal format.

4. LIB196 Librarian

Describes how to create and maintain libraries.

5. Using the FPAL96 Library

Describes the 80C196 floating-point library (FPAL96).

6. FPAL96 Functions Reference

Explains how to use the floating-point functions in ASM196 and C196.

7. Exceptions and Exception Handling

Describes how to create your own exception handler and explains the

different types of exceptions FPAL96 can generate while running.

8. MK196 Make Utility

Describes how to maintain, update, and reconstruct your application

software.

9. Messages and Error Recovery

Describes the error/warning messages of the linker and utilities.

APPENDICES

A. Glossary

Contains an explanation of terms.

INDEX

Manual Purpose and Structure XIII

• • • • • • • •

RELATED PUBLICATIONS

• IEEE Standard for Floating-point Arithmetic 754-1985

TASKING publications

• 80C196 C Compiler User's Guide [TASKING, MA006022]

• 80C196 Assembler User's Guide [TASKING, MA006020]

• 80C196 Utilities User's Guide [TASKING, MA006009]

Intel publications

• Embedded Microcontrollers and Processors Handbook [270645]

• 8XC196xx User's Manuals

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{} Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

[,...] You can repeat the preceding item, but you must separate

each repetition by a comma.

screen font Represents input examples, keywords, filenames, controls

and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

Manual Purpose and Structure XV

• • • • • • • •

This is a warning. Read the information carefully.

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

TASKING
Quality Development Tools Worldwide

1

OVERVIEW
C

H
A

P
T

E
R

Chapter 11–2
O
V
E
R
V
IE
W

1

C
H

A
P

T
E

R

Overview 1–3

• • • • • • • •

This chapter introduces you to the 80C196 utilities, the 80C196

floating-point library (FPAL96) and to this manual. Intended for the new

user, this overview helps you understand the general functions of the

utilities and the general functions of the floating-point library.

1.1 80C196 UTILITIES AND THE DEVELOPMENT

PROCESS

The 80C196 utilities combine all of your object modules and libraries to

complete your application program. These utilities include the RL196

linker/locator, LIB196 library manager program, and the OH196

object-to-hexadecimal converter. These utilities perform different roles in

the software development process. Figure 1-1 shows where each tool is

used in the development process. The following sections give a brief

overview of the utilities' role in the development process.

Debug Using an ICE In-circuit Emulator

Link Modules
Together
and Assign
Absolute
Address with

Create and
Maintain
Libraries with

OSD238

Convert to
Hexadecimal with

PROM-loadable Code

Write
Source File

Compile
with

Text Editor

C196

OH196

Source
Code

Object
Code

Linked
Object
Code

LIB196

RL196ASM196

TM

Figure 1-1: The 80C196 application development process

Chapter 11–4
O
V
E
R
V
IE
W

1.1.1 RELOCATION AND LINKAGE

After all of the modules are translated, the RL196 linker/locator processes

the object module files. RL196 treats each relocatable segment as an

independent unit. The linker allocates all of the relocatable code

segments to ROM, the relocatable data and stack segments to RAM, and

the relocatable register segments (both overlayable and non-overlayable)

to a register area. RL196 also resolves all references between modules,

possibly using library files and publicsonly files. Publicsonly files

are discussed in Chapter 2. The linker produces both an absolute object

module file of the complete program and a print file showing the results of

the link/locate process, including a segment map, a symbol table, and an

inter-module cross-reference listing.

1.1.2 USE OF LIBRARIES

Libraries help build programs. LIB196, the library manager program,

creates and maintains files containing object modules by adding, replacing,

deleting, and extracting members. LIB196 works both in an interactive

and a non-interactive mode.

The RL196 linker treats library files in a special manner. If you specify a

library file as input to RL196, the linker searches the library for modules

that satisfy unresolved external references in the input modules that the

linker has already read. Therefore, you must specify libraries after the

input modules that contain external references. If a module included from

the library has an external reference, RL196 searches the library again to

try to satisfy this reference. This process continues until all external

references are satisfied or until no new public symbols that match an

unsatisfied external reference are found in the library.

When the linker searches a library, the linker generates an output module

that only includes the library modules that satisfy external references.

However, RL196 provides the means to unconditionally include a library

module even if the library module does not satisfy any external reference.

Figure 1-2 shows RL196 handling a library file in the conditional manner.

See Section 2.6.2 for more information on how to select input modules.

Overview 1–5

• • • • • • • •

Inputs

MOD1

EXT.REF.C

EXT.REF.X

MOD2

MOD3

Library

MOD K

MOD J

MOD I

MOD H

MOD G

MOD F

MOD E

MOD D

MOD C

MOD B

MOD A

Public D

Public C

Public E

Public F

Public B

Public A

Public G

Public H

Public I

Public J

Public K

RL196

EXT.REF.C
EXT.REF.G

EXT.REF.C
EXT.REF.G

EXT.REF.C

EXT.REF.X
(Unresolved)

Public C

Public G

MOD C

MOD G

Output
Module

OSD986

Figure 1-2: Library Linkage by rl196

1.1.3 FPAL96 FUNCTIONS

The 80C196 floating-point library (FPAL96) supports the basic

floating-point operations for ASM196 and C196 applications. This library

allows your application to execute floating point number math using

single-precision format, according to the IEEE Standard for Floating-point

Arithmetic 754-1985. FPAL96 is an application library. Therefore, you

must use the RL196 linker to link the library to your application.

See Chapter 5 for an example of the RL196 invocation.

Chapter 11–6
O
V
E
R
V
IE
W

FPAL96 provides the following functions:

Load and store These functions perform format conversion between

floating point and integer or decimal.

Binary These functions perform comparisons and arithmetic

operations.

Unary These functions perform sign conversions and square

root.

Administrative These functions allow you to control the behavior of the

FPAL96 library.

FPAL96 has one local data structure called the floating-point accumulator

(FPACC) and two built-in variables, called the control word and the status

word. The FPACC accumulator serves as an implicit operand to all

non-administrative functions. The control word contains the exception

mask bits and the rounding-mode bits. The status word contains the

status of the FPACC and indicates any pending exceptions. You can use

these two built-in variables with your exception handler to continue a

flagged operation or to analyze results when debugging.

See Chapter 5 for more details.

FPAL96 recognizes standard exception conditions and enables you to

respond to the exceptions with your own exception handler or with the

default exception handler of the library. Chapter 7 explains how to

include your own exception handler.

1.1.4 AUDIENCE DESCRIPTION

To effectively use the FPAL96 library, you must be familiar with the

ASM196 assembler or translator and utilities, and you must have an

understanding of floating-point numbers.

Overview 1–7

• • • • • • • •

1.1.5 ROM AND PROM VERSIONS

You can load the absolute object module produced by RL196 into

members of the 80C196 family of microcontrollers. For ROM versions of

the microcontroller, the program is masked into ROM during

manufacturing. For PROM versions and versions with no on-chip code

memory, use a PROM programmer to load the absolute module into

program memory that is accessible to the microcomputer for execution.

Some PROM programmers require the absolute module to be in

hexadecimal format. Use the OH196 utility, discussed in Chapter 3, to

perform this function. See the Embedded Microcontrollers and Processors
Handbook, listed in Related Publications, for details on the available

microcontroller versions.

1.1.6 KEEPING TRACK OF FILES

The RL196 linker appends the .m96 extension to the default map file, to

avoid destroying the .lst file generated by the assembler or compiler.

Executable files, by default, have the .abs extension.

We suggest to use the following filename extensions. This naming

convention is not required, but it allows utilities (like mk196) to execute

so-called 'suffix rules'. Note that all names and extensions are in lower

case, because on UNIX systems it is case sensitive.

Extension Description

.c

.c96
C file (.c is preferred, no extension is forced or assumed by
the compiler).

.h

.h96
Include files for C (.h is preferred, the compiler does not look
for .h96 by itself).

.a96

.asm

.src

Assembly source files (mk196 uses .a96).

.inc Include file for assembly.

.cmd Command file for asm196 or c196.

.obj OMF96 object file produced by c196 or asm196 .

.lst LIST files from c196 or asm196 .

.lnk Linker command control file.

.out File containing linked object with unresolved externals.

Chapter 11–8
O
V
E
R
V
IE
W

DescriptionExtension

.abs File containing absolute object of application, no remaining
unresolved externals (default output file of rl196).

.m96 Linker MAP file.

.mak For Makefiles other than ’Makefile’ or ’makefile’.

.hex Hexadecimal output file by oh196 .

Table 1-1: Filename extensions

Programmers who at present work on MS-DOS but are thinking of future

migration to other platforms (UNIX, Windows-NT, etc.) are advised to use

lower case characters and forward slashes where possible. This will

smoothen the future transition and it will not hurt right now. All the tools

are able to find files if forward slashes are used. (Note however that

MS-DOS still does not like you to say: c:/c196/bin/rl196)

1.2 CONVENTIONS

The colon-arrow (:⇒) characters denote a further breakdown of a

placeholder.

This manual also uses the conventions listed in the Conventions Used In
This Manual at the beginning of this manual.

1.3 CUSTOMER SUPPORT

The 80C196 software is under warranty. During the warranty period you

are entitled to the following:

• Free replacement of any defective media upon notification in

writing of the defect and product information.

• Telephone consultation and bug reporting.

• Our best efforts to replace or repair any software that does not meet

the specification described in the 80C196 documentation.

Overview 1–9

• • • • • • • •

TASKING offers various support contracts that provide benefits as free

product updates, reduced rate upgrades, and telephone support. Contact

your local TASKING sales representative, for information about support

contracts and standard warranties. You will find the addresses and

telephone numbers in the "Read This First" Envelop included with this

package.

1.3.1 IF YOU HAVE A PROBLEM USING THE

SOFTWARE

To help expedite your calls, please have the following information

available when you contact us for help.

• The serial number of your software distribution. This number is

printed on the label of the tape, cassette, or first floppy of your

software distribution. In addition, you may be able to obtain the

serial number by running one of the utilities with option -V, you

may wish to record the serial number here:

Product:

Serial:

• The product name, including host, target processor, and release

number.

• The exact command line that you used to invoke our tools when

you encountered the problem. Please include all switches.

• The exact error message that was printed. A screen dump will often

make this easy to record, and can provide very useful information.

• Any additional information that may be useful in helping to define

the problem. Examples include:

- your directive-file for RL196, and invocation line

- print file of RL196.

- relevant information about your compilation environment

- the emulator you are using

Chapter 11–10
O
V
E
R
V
IE
W

TASKING
Quality Development Tools Worldwide

2

RL196 LINKER
C

H
A

P
T

E
R

Chapter 22–2
L
IN
K
E
R

2

C
H

A
P

T
E

R

RL196 Linker 2–3

• • • • • • • •

2.1 OVERVIEW

This chapter describes the operation of the RL196 program. Most of the

process is transparent to the user; however, an understanding of the

operation at the level presented here can help you link and locate with

RL196 more effectively. Details on some of the subjects presented here

are given with the control descriptions in Section 2.8.

The RL196 linker/locator combines all of your translated modules to

produce one absolute object file. This utility performs the following major

functions:

• Selects modules to be included in the output object file.

• Combines input object modules into a single object file, optionally

filtering translator-generated debug information.

• Resolves symbolic intermodule references for the input modules.

• Allocates memory to input segments and binds relocatable

addresses to absolute addresses.

• Produces a print file that consists of a link summary, a symbol table

listing, and an intermodule cross-reference listing.

• Detects and lists errors found in the invocation command, in the

input modules, or during the link-locate process.

To link your modules, RL196 makes two passes. During the first pass,

RL196 extracts all of the intermodule reference information and segment

definitions from the input modules. By the end of the first pass, the linker

allocates memory to both the relocatable and the absolute segments and

sets the base addresses of the relocatable segments. RL196 then determines

the absolute addresses of the public symbols.

During the second pass, the linker generates the output object module

from the input object modules and from the information gathered in the

first pass. RL196 then assigns absolute addresses to relocatable symbols

and modifies the content records according to fix-ups (i.e., instructions

placed in the object file that allow RL196 to fix addresses that are left

incomplete by the translator or the linker). The print file is generated

during both the first and the second pass.

Chapter 22–4
L
IN
K
E
R

After normal translation, the translator marks an object module either as a

main or non-main module. An application can only have one main

module. This object module contains zero or more segments which the

translator tagged either as absolute or relocatable. The RL196 linker first

locates the absolute segments in the appropriate section of memory

starting at the base address specified. Then, the linker locates the

relocatable segments in the appropriate section of memory based on their

segment type and in accordance with their alignment. RL196 allocates

these segments according to the memory allocation process described in

Section 2.5. Because the placement procedure takes alignment into

account while placing relocatable segments, one, two, or three bytes can

be wasted to ensure that segments begin on the proper boundaries.

The linker treats the stack segment in a special manner. An application

can have at most one stack. RL196 places the stack, a combination of all

of the stack segments from each input module, contiguously in one

section of RAM. Since a segment can be located only once, you must

defer making the stack segment absolute until all of the information about

the stack is present. Use the noabsstack (see Section 2.8) control to

suppress the stack segment to absolute form. When you specify

noabsstack , the output of RL196 is termed quasi-absolute, which means

all segments are absolutely located except for the stack segment.

Quasi-absolute files, like relocatable files, can contain unresolved external

references that can be resolved upon subsequent execution of RL196.

Quasi-absolute files must be further used as input to an incremental link

process.

Use the stacksize control to specify a stack size other than the default

as long as the input stack segments are still relocatable. The linker issues

a warning message if the size of the resultant stack segment is greater than

the size you specified in the control.

When you finally specify absstack , the linker produces an object module

that contains no relocatable content, including its stack segment. This

absolute object file can serve as input to loaders, such as in-circuit

emulators and PROM programmers.

RL196 Linker 2–5

• • • • • • • •

2.2 RESOLVING EXTERNAL REFERENCES

One module can contain public definition records if public symbols are

declared within the module. These records consist of the names and

attributes of the symbols declared as public. RL196 determines the

absolute address of each public symbol after all of the segments are

allocated and their base addresses are established. The linker generates a

warning message when two or more of these public symbols have the

same name.

One module can also contain external definition records if external

symbols are accessed within the module. These records consist of the

names and the attributes of externally defined symbols.

The linker resolves external symbol references by finding a public symbol

with the same name. The definitions of the public and external symbols

with the same name must match. See Section 2.2.1 for details on symbol

type matching.

When resolving an external reference, the linker uses the absolute address

of the corresponding public symbol to set an absolute address in the

output object module, replacing the external reference.

If unresolved external symbols exist in the output object module, RL196

issues the appropriate warning messages, and the names of the symbols

appear in the UNRESOLVED EXTERNAL SYMBOLS list. However, you can

resolve these external references by subsequent execution of RL196 with

some new input modules.

2.2.1 TYPE CHECKING

During the processing of global symbols, public and external, the linker

performs type checking. Two symbols with the same name match if they

have:

• matching segment types (code , register , data , etc.), and

• matching symbol types (byte , word , long , etc.)

To indicate whether or not to perform type checking by using the control

typecheck/notypecheck . The default typecheck reflects the normal

case.

Chapter 22–6
L
IN
K
E
R

2.2.1.1 SEGMENT TYPE MATCHING

Table 2-1 shows the different combination of segment types that can form

a match. An M in the column indicates a match. The segment type

dynamic is not allowed as the segment type of a global symbol.

Segment
Type Code

High
Code

Far
Code Const

Far
Const Data

Far
Data Reg

Over
lay Stack Null

CODE M M M

HIGH
CODE

M M M

FAR CODE M M

CONST M M M

FAR
CONST

M M

DATA M M M M

FAR DATA M M

REGISTER M M M M M M

OVERLAY M M M M M M

STACK M M M M

NULL M M M M M M M M M M M

Table 2-1: Segment type matching

2.2.1.2 SYMBOL TYPE MATCHING

Two ASM196 global variables with the same name match if they have

exactly the same symbol type or one of the global variables has a symbol

type of null .

Two C196 global variables with the same name match if they have the

same symbol type.

For scalars, the symbol type means the scalars must be identical.

For arrays, the symbol type matches when:

• The same type of elements appear in both arrays.

• Each array has the same number of elements, unless you specify

one or more of them with an implicit dimension. For example, to

declare a constant array called xsub with an implicit dimension

specifier, do the following:

RL196 Linker 2–7

• • • • • • • •

const int xsub[] = { 402, 345, 126 };

This declaration defines xsub to be an constant array of three, with values

of 402 , 345 , and 126 respectively. See the 80C196 C Compiler User's
Guide, listed in Related Publications, for a more detailed explanation on

arrays.

For structures, the symbol type matches when:

• The list of members contains the same names and in the same

order.

• Respective structure members have the same type.

• Procedures or functions have the same symbol type when:

• The procedures are of the same type (typed/untyped).

• The procedures return the same type values if they are typed

procedures.

• The procedures have the same number of parameters, and the

respective parameters have the same type.

Table 2-2 describes the symbol type matching between ASM196 global

variables and C196 global variables. An M in the column indicates a

match.

ASM196 BYTE WORD LONG REAL ENTRY NULL

C196 UNSIGNED
CHAR

M M

UNSIGNED
INT

M M

UNSIGNED
LONG

M M

CHAR M

INT M

LONG M

FLOAT M

ARRAY M

STRUCT M

FUNCTION M

Table 2-2: ASM196 - C196 symbol type matching

Chapter 22–8
L
IN
K
E
R

ASM196 has no symbol type that matches the symbol types array and

structure of C196 except for null . Therefore, to avoid a mismatch

warning, you must explicitly or implicitly attach the symbol type null to

the symbol in the ASM196 module. For example, your C196 module

compiled with registers(200) contains the following structure

declaration:

extern struct c_struc { char a[10]; };

The compiler places the structure in the data segment. You can then

declare the structure with a null type in ASM196:

dseg
c_struc equ $:null
 dsb 10

2.2.1.3 MISMATCHED TYPES

The RL196 linker issues a TYPE MISMATCH warning for a symbol type

mismatch or a segment type mismatch, or both.

Although a type mismatch is only a warning and the execution of the

link-locate process continues smoothly, you must be aware of the precise

action taken by RL196 in such a situation. The action affects both the

output object file and the way in which the other occurrences of the same

global symbol are regarded, as explained below.

The following rules determine the output in case of a mismatch:

• When the mismatch occurs between two globals of the same nature,

either both public or both external , the dominant one is the

one processed first.

• When the mismatch occurs between two globals with a different

nature, that is, one public and one external , the dominant one

is the public .

This rule applies to the segment type attribute and to the symbol type

attributes in case of type mismatch. Both actions are independent.

RL196 Linker 2–9

• • • • • • • •

2.2.2 PERFORMING FIX-UPS

The object modules that serve as input to RL196 can contain portions of

object code left undefined by the language translator or by RL196. The

portions left undefined can contain a reference to a relocatable symbol

that must be bound, or a reference to an external symbol that must be

resolved.

The linker performs all binding and resolving operations that are possible

at link-locate time. References to unresolved external symbols and, under

noabsstack , to a relocatable stack segment causes an output of fix-up

records to the output object file. Errors in the evaluation of a fix-up

expression cause error messages numbered 111, 112, and 113 to be

generated.

See Chapter 9 for complete list of RL196 error messages.

Consider the following example of a simple fix-up: at location n in an

object module, a reference is made to symbol x , defined in another

module. To get RL196 to store the correct value at location n, the

translator must include a fix-up that instructs RL196 to determine the

absolute address of x by computing the sum of the base of the segment

that contains x and the offset of x from that base. This value is then

stored at location n.

If you are using the vertical windowing feature of the 80C196KC or

80C196KR processors, the linker calculates the fix-up of a variable in an

overlay segment located in a window above 0FFH as the sum of the offset

of that variable, with respect to the window base, and the base of the

mapped window at the top of the register file from 00H - 0FFH. See the

80C196 C Compiler User's Guide, listed in Related Publications, and

Section 2.5.6 for more information on vertical windowing.

2.3 VARIABLE INITIALIZATION

When you use global variable initialization in your source code, the linker

has to locate both the variable space (which is in RAM) and the initial

values for these variables (which are in ROM). The library routine

_imain() , called during startup, then copies the initial values to their

corresponding variables. In order to tell the _imain() routine which parts

of ROM must be copied to RAM, the linker generates an initialization table

in ROM. A global symbol _INIT_TABLE_START_ is generated to point at

this initialization table.

Chapter 22–10
L
IN
K
E
R

The initialization table will not be generated if their is no initialization

data. The public symbol _INIT_TABLE_START_ is needed by the function

_imain() and is, therefore, always generated. If you do not need global

_imain() , you can suppress _INIT_TABLE_START_ from being

generated by using the noinittable or noit control.

2.4 COMBINING DIFFERENT OMF96 FORMATS

As of version 5.0, you can specify three different OMF96 formats for the

196 tools. See the omf control on how to specify a specific OMF96 format.

By default our tools use the OMF96 version 3.2 format. This format

contains extra debugging info and support for using initialized global

variables. We recommend that you use this default OMF96 format. You can

specify the different OMF96 formats with the omf control:

omf(2) OMF96 version 3.2

omf(1) OMF96 version 3.0

omf(0) OMF96 version 2.0

2.4.1 GLOBAL INITIALIZATION

It is necessary to use OMF96 version 3.2 if you want to use global

initialization. However, it is possible to create an .abs file which is OMF

3.0 compatible, but still contains global initialization. This might be

necessary for certain third party tools which do not (yet) recognize the

new OMF96 format. To do so, you have to use the (default) omf(2) for

both the compiler and the assembler, and use omf(1) for the linker. The

resulting .abs file has the OMF96 version 3.0 format, but contains all

necessary code for global initialization. The same is true for using the

libraries. The libraries provided with our tools are compiled with the

default omf(2) control. If you want to get an OMF96 version 3.0

compatible .abs file, just specify omf(1) in the linker controls and you

can use our default libraries.

RL196 Linker 2–11

• • • • • • • •

A word of caution: if you specify omf(1) in your linker controls and if

you have any unresolved externals in your application, it is possible that

the linker will give a fatal OMF96 error. This is caused by the fact that you

have specified OMF96 version 3.0, but the linker needs to write

information about the unresolved externals in OMF96 version 3.2 format.

You will see a warning about the unresolved externals before you get the

fatal omf error. So, do not have any unresolved externals when you

convert from OMF96 3.2 format to OMF96 3.0 format.

2.4.2 OMF96 VERSION 3.0 LIMITATIONS

OMF96 version 3.0 has the following limitations compared to OMF96

version 3.2:

- Limited support for functions.

- Limited support for structures.

- Limited support for unions.

- Limited support for bit fields.

- No support for vertical windowing.

- Restricted line number information.

2.5 MEMORY ALLOCATION

RL196 enables you to specify the actual memory available for location so

that different applications can use different address spaces. To specify

memory locations, use the rom control for code segments and constant

segments or use the romcode control for code segments and the romdata
control for constant segments, and use the ram control for data and stack

segments. The linker locates register segments (overlayable and

non-overlayable) in the internal register memory (1AH–0FFH by default)

specified by the registers control. Section 2.8 describes the rom ,

romcode , romdata , ram and registers controls.

RL196 follows this order of allocation:

1. All absolute segments.

2. If the regfirst control is specified relocatable register segments are

allocated first, followed by relocatable overlay segments of modules

specified by the regoverlay control and relocatable overlay segments

not yet allocated.

Chapter 22–12
L
IN
K
E
R

3. If the regfirst control is not specified relocatable overlay segments of

modules specified by the regoverlay control are allocated first, followed

by relocatable overlay segments not yet allocated and relocatable register

segments.

4. Relocatable code and constant segments of modules specified by the

romcode , romdata and/or rom control, and relocatable data segments

specified by the ram control. Then, the linker allocates the stack if you

specify stack or st with the ram control and the input stack segment is

relocatable and the absstack control is in effect.

5. Relocatable segments not yet allocated.

6. Reserve the remaining free RAM as HEAP space (if specified).

The linker allocates memory to absolute segments at their set base

addresses. This process can cause additional fragmentation of the memory

available for allocation. The linker reports an error if an absolute segment

is placed in an incompatible memory section or if two absolute segments

overlap.

RL196 allocates memory to relocatable segments in the appropriate

sections that do not overlap absolute segments. Relocatable segment

allocation takes into account both the segment size and the segment

alignment according to a first fit/decreasing size (FFDS) algorithm.

Memory allocation determines the absolute base address for all relocatable

segments including the stack segment if absstack is in effect. If no room

is available for a relocatable segment, that segment appears in the list of

UNALLOCATED SEGMENTS and the linker issues an appropriate error

message.

2.5.1 STACK SEGMENT

The stack segment is a special segment in which the linker will locate the

stack. This stack is used by the compiler, for instance to store temporary

variables or to pass parameters to the functions. There are three ways in

which the linker can determine the size of the stack:

1. By default the linker calculates the stack size by adding the sizes of all

stack segments of all input modules. This method is accurate only if there

are no recursive function calls. If there are any recursive function calls,

you will have to increase the stack size with either one on the following

two methods.

RL196 Linker 2–13

• • • • • • • •

2. It is possible for the user to specify a stack segment in an assembly file by

using the user defined stack segment SSEG. You can only have one user

defined stack in an application. This user defined stack will overrule the

stack size as calculated by the linker. The linker will issue no warnings if

the size of the user defined stack is smaller then the stack size as

calculated by the linker.

The following example in assembly declares a user defined stack with a

size of 256 bytes:

SSEG
DSB 0100H
.
.
END

3. The final way to specify the stack size is by using the STACKSIZE control.

This control overrules both the default calculated stack and the user

defined stack. If the specified stack size is smaller than the calculated stack

size, the linker will issue an warning, unless a user defined stack was

defined. In that case the linker will use the specified stack size without

issuing a warning.

Make sure that the stack size as defined in a user defined stack segment or

with the STACKSIZE control is large enough. Specifying a stack size which

is to small will most likely result in a crash of your application.

2.5.2 STACK OVERFLOW

Some 80C196 models have support to detect stack overflow. This

StackOverflow Module (SOM) has 2 SFRs that store the upper and lower

SP boundaries. The linker generates two symbols, _TOP_OF_STACK_ and

_BOTTOM_OF_STACK_, that represent the upper and lower stack

boundaries. It is up to you to load the SFRs with the linker generated

symbols in your program. For example:

Chapter 22–14
L
IN
K
E
R

EXTRN _TOP_OF_STACK_
EXTRN _BOTTOM_OF_STACK_
 .
 .
LD TMPREG0, #_TOP_OF_STACK_
ST stack_top, TMPREG0
LD TMPREG0, #_BOTTOM_OF_STACK_
ST stack_bottom, TMPREG0
 .
 .

The two symbols _TOP_OF_STACK_ and _BOTTOM_OF_STACK_ will be

set to the boundaries on the stack. If the stack is located at 0300H with a

size of 0100H the stack pointer SP will be initialized with 0400H and

_TOP_OF_STACK_ and _BOTTOM_OF_STACK_ will have the values

0402H and 02FEH respectively. This is conform the specification of the

SOM. The upper limit comparator compares for a SP >= stack_top
condition while the lower limit comparator compares for a SP <=
bottom_stack condition. If at a later date the behavior of SOM changes,

you can easily load other values, for example:

LD TMPREG0, #_TOP_OF_STACK_ – 2
ST stack_top, TMPREG0
LD TMPREG0, #_BOTTOM_OF_STACK_ + 2
ST stack_bottom, TMPREG0

2.5.3 REGISTER OVERLAYING

Register overlaying is part of the memory allocation process performed by

RL196 (see step 2 of the order of allocation in Section 2.5). Each input

module has, at most, one relocatable overlay register segment. RL196, by

default, regards them as register segments. However, you can specify the

control regoverlay with an appropriate parameter and request

overlaying the overlay segments of the specified modules. For details on

how to use this control, see regoverlay in Section 2.8.

The memory allocation algorithm for relocatable overlay segments is a

combination of the principle of FFDS algorithm and an algorithm dealing

with overlaying. As is usual in memory allocation algorithms, the

algorithm is not necessarily optimal.

RL196 Linker 2–15

• • • • • • • •

2.5.4 PROVIDING MEANS FOR DYNAMIC MEMORY

ALLOCATION

Following the memory allocation process and providing that you specified

the absstack control, RL196 will generate symbols that are used for

dynamic memory allocation. If you specify the heap or he control, RL196

supplies four public symbols, _HEAP_START_, _HEAP_END_, MEMORY and

?MEMORY_SIZE. If you omit the heap or he control, RL196 only supplies

MEMORY and ?MEMORY_SIZE. When you use the dynamic memory

location routines in the libraries, the symbols _HEAP_START_ and

_HEAP_END_ are needed. The symbols MEMORY and ?MEMORY_SIZE are

provided for backward compatibility.

If the heap or he control is specified, RL196 finds the largest free RAM

section, and assigns its base address to _HEAP_START_ and its end

address to _HEAP_END_. This section is referred to as the HEAP space. It

is also possible to specify HEAP as a module name in the ram control. In

that case, RL196 finds the largest free RAM section in the specified RAM

range and assigns its base address to _HEAP_START_ and its end address

to _HEAP_END_.

After locating the HEAP space, or when the heap or he control is omitted,

RL196 finds the largest free RAM section, and assigns it base address to

MEMORY and its size, in bytes, to ?MEMORY_SIZE.

When using dynamic memory, be aware of these requirements:

• If no free RAM section is found, all symbols (_HEAP_START_,
_HEAP_END_, MEMORY and ?MEMORY_SIZE) are assigned the value

zero.

• Only free sections within those sections defined by the ram control

or its default are searched for the largest section. If HEAP is used as

a module with the ram control, only this section is searched for the

largest section for HEAP space. This limit implies if the ram control

of the last linkage, during an incremental link, does not include all

the sections included in the previous stages, it is possible that the

selected free RAM section is not the largest one.

• The public symbols _HEAP_START_ and _HEAP_END_ appear in

module _HEAP_ and file <Dummy>. The public symbols MEMORY and

?MEMORY_SIZE appear in module <Dummy> and file <Dummy>.
These four symbols are printed in the symbol table listing, in the

intermodule cross-reference listing, and in the error messages, like

any other public symbol.

Chapter 22–16
L
IN
K
E
R

• If you specify a public symbol with the name _HEAP_START_,
_HEAP_END_, MEMORY or ?MEMORY_SIZE and absstack is in

effect, the linker issues the warning MULTIPLE PUBLIC
DEFINITION . The symbol definition supplied by your module is

the dominant one.

The absstack control must be in effect during the final linkage. RL196

automatically supplies the _HEAP_START_, _HEAP_END_, MEMORY and

?MEMORY_SIZE symbols during this time. However, the section indicated

by these four symbols are not allocated. If you perform another link after

absstack is already in effect, the linker issues an error and the output is

unusable. You must ensure that absstack is in effect only at the last

linkage.

2.5.5 OVERLAPPING ROM AND RAM MEMORY USING

THE INST PIN

The addressable memory space on the 80C196 family of components

consists of 64 kilobytes, mostly available for code or data memory. The

instruction (INST) pin present in most 80C196 components, except for the

48-pin 8096 component, was originally reserved for the use of

development tools, but can now be used to expand the 64-kilobyte

memory limitation.

The INST pin is active high during processor bus cycles that read

instructions from memory. Fetching an instruction from memory is also

referred to as performing an opcode fetch. The processor then drives the

INST pin low during cycles that read or write data to memory locations.

The following discussion presents additional information on the behavior

of the INST pin and on how the logical level of the INST signal relates to

program activities, such as fetching opcodes and accessing vector tables.

This discussion includes an example memory expansion scheme that

overlaps code and data. The example provides guidelines for hardware

and software development and includes a sample RL196 invocation line.

RL196 Linker 2–17

• • • • • • • •

2.5.5.1 INST PIN BEHAVIOR

Consider the following when developing an 80C196 application that uses

the INST pin for overlapping code and data:

• Fetching Opcodes from Memory. The INST pin is high during

processor cycles that fetch instructions from memory. The first time

the INST pin goes high after reset is during the opcode fetch at

2080H.

• Accessing the Chip Configuration Byte (CCB). When the

80C196 component is reset, the chip configuration register (CCR) is

loaded with the contents of memory location 2018H, the CCB. The

CCB is read as data; therefore, the INST pin is low when address

2018H is valid.

• Accessing the Interrupt Vector Table. If the component

hardware detects an interrupt, the corresponding bit in the interrupt

pending register is set. If you enabled the interrupt enable bit (EI)

in the PSW and you loaded the interrupt mask with a value that

allows execution of that particular interrupt, the processor reads the

interrupt vector as data from the interrupt vector table. The

interrupt vector table occupies locations 2000H to 2013H for the

8096; and additionally, 2030H to 203FH for the 80C196. The INST

pin is low when these addresses are valid.

• Accessing Program Constants and Variables. Constants are read

as data and therefore, the INST pin is low. The constants should be

located in CONST segments. CONST is a new segment type in

OMF96. The C196 compiler supports this by putting constants in a

CONST segment. The INST pin is also low during write operations

to variables.

• Program Access to Vector Tables. This only applies if C196 'old

object' is used. The C196 switch statements sometimes creates, so

called, vector tables, to transfer program control. The processor

reads the vector value as data thus forcing the INST pin low. These

vector tables of data are stored in the ROM memory space, therefore

burned into the PROM.

2.5.5.2 OVERLAPPING MEMORY SCHEME EXAMPLE

This example demonstrates how to create an overlapping code and data

memory scheme. The accompanying discussion includes software and

hardware considerations needed to create a system with 112 kilobytes of

memory (56 kilobytes of ROM, 56 kilobytes of RAM).

Chapter 22–18
L
IN
K
E
R

The memory map of the 112 kilobyte system (shown in Figure 2-1)

decodes the INST pin for only part of the memory scheme. The system

does not overlap the total memory space using the INST pin for the

following reasons:

• The INST pin is not decoded between addresses 2000H and 2080H
for two reasons. First, special locations, some of which are read as

data and some of which are fetched as opcodes, can reside in

adjacent memory without the necessary hardware overhead if the

INST pin were decoded. Second, reserved locations reside in this

address range.

2.5.5.3 GUIDELINES FOR HARDWARE DEVELOPMENT

Figure 2-1 depicts the example system. This system provides 16 kilobytes

of memory (00H to 3FFFH) not decoded by the INST pin (INST is don't

care) and 48 kilobytes of overlapping code and data memory (4000H to

0FFFFH). The Boolean expressions describing the memory scheme are

shown in the following notations. The overbar indicates active low.

 ___ ___ ___
RAM1 = A15 * A14 * A13
 ___ ___
ROM1 = A15 * A14 * A13

RAM3 = (A15 + A14) * INST

ROM3 = (A15 + A14) * INST

ROM2 = (A15 + A14) * INST

RL196 Linker 2–19

• • • • • • • •

ROM1

2000H

RAM1

4000H

ROM3

RAM3

FFFFH

ROM2

INST pin: low high

0H

6000H

Figure 2-1: 112-Kilobyte overlapping code and data memory map

2.5.5.4 LINKER/LOCATOR EXAMPLE INVOCATION LINE

The following RL196 invocation line can best be put in a Makefile to avoid

having to retype it each time RL196 is invoked. See Section 2.7 for more

information on how to use the mk196 utility.

You can use the romcode and romdata controls instead of the rom
control. These controls can be very useful when using the 80C196KR or

24-bit processor.

The RL196 invocation line is as follows:

rl196 cstart.obj, main.obj, mod1.obj, mod2.obj, mod3.obj,
 c96.lib, fpal96.lib
 to applix.out
 ram(100H–1FFFH, 6000H–0FFFFH)
 rom(2000H–3FFFH(mod2,mod3(const))),
 romcode(4000H–0FFFFH(main,mod1,mod3))
 romdata(4000H–5FFFH(mod1)),
 inst

Chapter 22–20
L
IN
K
E
R

In this example we have decided to put the constants from mod3 and both

the code and constants of mod2 in ROM1 memory; the code from mod1
and mod3 are put in ROM2 memory and the constants from mod1 are put

in ROM1 memory.

Place the RL196 invocation line in a batch file to avoid having to retype it

each time RL196 is invoked. See Section 2.7 for more information on how

to create DOS batch files.

2.5.5.5 SUMMARY OF RL196 INST USAGE

Key things to remember during development of overlapping code and

data applications are:

• Constants in C196 programs are put in a separate segment of type

CONST.

• ASM196 modules can also make use of the CONST segment.

2.5.6 SUPPORT FOR VERTICAL WINDOWS

The 80C196KC and the 80C196KR processors have 256 additional registers

from 100H through 1FFH (other processors can have more). Register

windowing was implemented so that the additional registers can be

accessed using the 8-bit direct addressing mode instead of the 16-bit

addressing mode, resulting in faster and tighter code generation. The two

types of windows are Horizontal Windows (HWindows) and Vertical

Windows (VWindows). This section focuses on Vertical Windows. See the

Embedded Microcontrollers and Processors Handbook, listed in Related
Publications, for more information on register windowing.

The 80C196KC, 80C196KR and the 24-bit processors provide vertical

windowing so that the additional bytes of RAM can be used as general

purpose registers. You can access these registers using the 8-bit direct

addressing mode. VWindows differ from HWindows in that you can still

access these registers through 16-bit addressing using the indexed or

indirect addressing mode since VWindows reside in the address space.

You can use VWindows to map sections of the 512 bytes of registers from

00H - 1FFH into 32-, 64-, or 128-byte windows onto the top 32-, 64-,

128-byte block (the upper portion) of the register file. Use the Window

Select Register (WSR) to switch between windows.

RL196 Linker 2–21

• • • • • • • •

The C196 compiler uses the additional registers for the block-scope

register variables allocated in overlay segments. Block-scope variables are

variables declared within non-reentrant functions. For ASM196 modules,

RL196 assists in locating the overlay segments in the vertical window,

provided you add the WSR management code in all public functions

which intend to use the VWindow registers as block-scope variables.

Figure 2-2 shows the register allocation scheme that the linker uses to

locate register and overlay segments on the 80C196KC processor.

Mapped Window

1FFH

0FFH

1AH

Register
Segments

Overlay
Segments

80H/C0H/E0H
Window Base

SFRs

OSD1053

Figure 2-2: 80C196KC register allocation scheme

RL196 first locates the global variables allocated in register segments in the

available register space below the window base selected, in the lower 256

registers, during link-time. This scheme allows access to a global variable

without needing to swap the WSR. Then, the linker locates the overlay

segments after all of the register segments are located. If gaps are

between register segments, the linker attempts to fill the gaps with overlay

segments of the right size. The linker selects the window size based on

the last (highest) address occupied by the last register segment. The last

occupied address must fall below 80H (128-byte window), 0C0H (64-byte

window), or 0E0H (32-byte window); otherwise, the linker sets WSR to

zero, takes no action on the additional registers, and generates a warning

stating that there are too many registers. The order of the memory

allocation scheme changes when you are performing incremental links.

Chapter 22–22
L
IN
K
E
R

For incremental links, when noabsstack is in effect, RL196 selects the

smallest window size (32 bytes) to make sure that the linker has enough

memory for all of your application's register segments, unless you have

specified a window size with the windowsize control in your link

invocation. The linker takes the specified size into account and locates the

register segment of the module. If the register segment fits, the linker

locates the overlay segment starting from window base address of your

requested window size. If the register segment does not fit under the

window base, the linker issues a warning stating that the window size you

specified is too large for your application, uses the smallest window size

possible (32 bytes), then locates your overlay segment at 0E0H.

When linking modules together, use the RL196's registers control to

specify the range of the available registers on the target component and

the windowsize control to specify the desired window size. See Section

2.8 for more information on these controls.

2.6 INVOKING RL196

The general syntax for the invocation line is:

[pathname] rl196 [options] input_list [to output_file] [controls]

Where:

pathname is the device and/or directory where RL196 resides.

options is an optional list of one or more options. See Section 2.6.1

for a detailed description of each option.

input_list is a list of one or more elements separated by commas. An

element can be an ordinary object file, an object library file,

or a publicsonly list. See Section 2.6.2 for more details.

output_file is the (optional) file that receives the output object module.

See Section 2.6.3 for more details.

controls is an optional list of one or more controls. See Section 2.8

for explanation of each control.

When you are using EDE, you can specify linker/locator options and

controls in a graphical way in the EDE | Linker Options... menu

item.

RL196 Linker 2–23

• • • • • • • •

The next several sections give details of the elements of the RL196

invocation command.

2.6.1 OPTIONS

The format for a single option is:

-option_name [[{= | : | space}] argument]

Where:

– (minus sign) must be prefixed to every option name.

option_name is the name of the option. This name is case sensitive.

= , : or space are used to separate the option name from the argument.

argument the argument for an option. This is optional.

Some options can toggle conditions on or off. To turn a condition off, you

have to append a minus sign to the option name, as in -case versus

-case- or -M versus -M-.

Most of the options can also be set using controls. However, some options

have no equivalent control. Also some controls have no equivalent option.

When equivalent controls and options exist, they default to the same

value.

The following table is a list of all options and their equivalent control (if

present). For a detailed description of each option that has an equivalent

control, refer to the description of the control in Section 2.8. Options that

have no equivalent control are described below.

Option Control Description

–? Display invocation syntax

–L searchlib Specify alternative search path for input files

–M[–] [no]print Specify name of map file

–QW[–] [no]quietwarns Prevent warnings from appearing on the screen

–S[–] [no]sfr Specify to include model specific SFR file

–V Display version header only

Chapter 22–24
L
IN
K
E
R

DescriptionControlOption

–W[–] [no]warning Specify to exit the linker with a non–zero value
when there are one or more warnings

–as[–] [no]absstack Specify to locate the stack absolute

–bu[–] [no]bottomup Allocate addresses from low to high

–case[–] [no]case Linker works case sensitive

–ch[–] [no]code2high Convert CODE segments to HIGHCODE

[no]dataoverlay Specify data segment to overlay

farcode Specify code space configuration for 24–bit
models

farconst Specify constant space configuration for 24–bit
models

fardata Specify data space configuration for 24–bit
models

–he[–] [no]heap Generate HEAP space

–f file Read options and/or controls from file

–ia[–] [no]ignoreabs Ignore warnings about absolute segments

[no]inittable Generate initialization table

–in[–] [no]inst Allow ROM and RAM addresses to be
overlapped

–ix[–] [no]ixref Generate symbol cross–reference table in map
file

–lb[–] [no]limit_bitno Do not allow bit number greater than 7

[no]list Specify elements to be included in map file

–md model Specify processor model

name Specify module name (does not affect the
output filename)

nearcode Specify code space configuration for 24–bit
models

nearconst Specify constant space configuration for 24–bit
models

neardata Specify data space configuration for 24–bit
models

[no]np_rsvup6 Reserve upper six bytes of every page
(model(np) and model(nu) only)

–o to Specify name of output file

RL196 Linker 2–25

• • • • • • • •

DescriptionControlOption

–omf omf Specify OMF96 verstion to generate

[no]pageprint Print all code addresses in compatibility mode
as 24 bits

–pw pagewidth Set map file page width

[no]purge Specify elements to be excluded from object file

ram Specify designated RAM sections

registers Specify register range available to application

–rf[–] [no]regfirst Specify to locate register segments first

[no]regoverlay Specify register to overlay

rom Specify designated ROM (CODE and CONST)
sections

romcode Specify designated CODE sections

romdata Specify designated CONST sections

–ss stacksize Specify size of stack segment

–tc[–] [no]typecheck Perform type checking

–um[–] [no]uniquemods Allow more than one module with the same
name

–ws windowsize Specify window size for vertical windowing

Table 2-3: RL196 linker options

Below are the detailed descriptions of the options.

-? Display an explanation of options on stdout .

-V Display version information on stdout and stop.

-f file Use file for command line processing. In this way you can

extend the command line. This option can be used more

than once, even between the controls.

The control file can contain all of the object module

filenames and controls to be processed by the linker. Use

this option when your command line becomes too long or as

an alternative for using a command file. See Section 2.7.3 for

more information on command files.

Chapter 22–26
L
IN
K
E
R

You can specify other invocation elements, such as filenames and controls,

before or after the -f option. If you do, make sure that the contents of the

control file, when appended to the command line, validly completes the

invocation line. See example 2 below for an example of an invalid

command line.

The control file has a character limit of 6 kilobytes. The file can contain

multiple lines separated by newlines, as shown in the following example:

prog1.obj, prog2.obj,
lib1, lib2(mod1,mod2)
to exe_file
stacksize(+100h)

Examples

1. The following example appends a control file called link.lst .

rl196 –f link.lst

The file link.lst contains the following:

mod1.obj, mod2.obj noas

2. For the following example, the control file, link.lst , contains the

following:

, prog2.obj, c96.lib

When invoked with the following command line, the linker generates an

error:

rl196 prog1.obj, cstart.obj, ss(+2h) –f link.lst

This is because the resulting invocation string is as follows:

rl196 prog1.obj, cstart.obj, ss(+2h), prog2.obj, c96.lib

2.6.2 INPUT LIST

The input list tells RL196 the names of the files to be processed. The

name of each input file must be unique but it can have the same name as

the output object module. However, neither the input nor output module

can be called stack or st .

RL196 Linker 2–27

• • • • • • • •

An element in the input list can be an ordinary object file, a library file, or

a publicsonly object file.

RL196 searches for the file in several places until it is found. The linker

tests the path prefixes in the following order:

1. The current directory (no prefix).

For each directory under 2., 3., and 4., RL196 first searches in a model

specific subdirectory before the directory itself is searched.

2. The directories specified by the searchlib control.

3. The directories in the C196LIB environment variable, if defined.

4. The lib directory, one directory higher than the directory containing the

rl196 binary. For example, if rl196 is installed in

/usr/local/c196/bin , then the directory searched for the object files

and library files is /usr/local/c196/lib .

You can specify a library file with or without an explicit module list. The

following sections describe each of these possibilities.

2.6.2.1 ORDINARY OBJECT FILE

The syntax is:

[pathname]filename.ext

Where:

pathname is the complete name of the device and/or directory where

your object file resides.

filename.ext combined with the pathname, can be no more than 64

characters long. The extension depends on the output name

you assigned during translation. The default is .obj .

An ordinary object file is usually either the result of a translation of a

source program or is an earlier output of RL196. The file consists of a

sequence of object modules included in the output object file, although

the file usually contains only one module. LIB196 can also produce an

ordinary object file (see Chapter 4), containing one or more modules,

which is processed unconditionally, module by module.

Chapter 22–28
L
IN
K
E
R

The following example specifies an ordinary object file:

rl196 main.obj, sort.obj, debug.obj to sort.out

Here the output file, sort.out , includes the modules contained in

main.obj , sort.obj , and debug.obj .

2.6.2.2 OBJECT LIBRARY FILE

The syntax is:

lib_filename [(module_name [,...])]

Where:

lib_filename is the name of the library where module_name resides.

module_name is the name of the module to be included in the link

process unconditionally.

The LIB196 librarian creates and maintains an object library file, as

explained in Chapter 4. The file consists of a set of object modules. RL196

selects and includes these object modules into the output file if they

contain public definitions that resolve at least one external reference.

If you attach a parenthesized list of modules to the library filename, RL196

includes the selection unconditionally, as in the following example:

rl196 main.obj, sort.obj, debug.obj,
 intrpt.lib(int0, int3, int4)

Here the output file includes the modules contained in main.obj ,

sort.obj , debug.obj , and the modules int0 , int3 , and int4 from the

library file intrpt.lib .

If a module list is not attached to the library file, RL196 includes only those

modules containing public definitions that resolve previous external

references into the output file. This process is iterative; that is, a selected

module can contain unresolved external references, requiring another

library file scanning cycle to find other modules that resolve these

references, and so on. A library is distinguished from an ordinary object

file not by its extension (.lib) but by its internal structure.

RL196 Linker 2–29

• • • • • • • •

The following example specifies an object library file:

rl196 main.obj, sort.obj, debug.obj,
 intrpt.lib(int0, int3, int4), c96fp.lib,
 c96.lib, fpal96.lib

In addition to the modules selected in the previous example, the output

file includes modules selected from the libraries c96fp.lib , c96.lib
and fpal96.lib .

You must consider the order in which you link the library object files. The

linker only makes one pass through each library file to resolve any

external reference. To ensure all references can be resolved, link all

library files last in your input list. See the chapter on library files in the

80C196 C Compiler User's Guide, listed in Related Publications,, for more

information on linking libraries and object files.

2.6.2.3 PUBLICSONLY OBJECT FILE

The syntax is:

publicsonly(filename [,...])

Where:

filename is the object file that contains the absolute public symbols.

Abbreviation: po

A publicsonly object file is an ordinary object file that is used solely to

resolve external references. Thus, RL196 extracts only the absolute public

symbol definitions from these files. This file is processed sequentially,

module by module.

For example, assume that a piece of code is already located at a certain

address space, such as some routines on external ROM, and that a new

module refers to that existing code. When you link the new module,

specify the object file of the existing code as a publicsonly file in the

input list of the invocation line. The publicsonly file resolves the

references made to that code. If you did not specify the existing object

file as a publicsonly file, an additional copy of that code is included in

the new object module.

Chapter 22–30
L
IN
K
E
R

The following example specifies a publicsonly object file:

rl196 main.obj, sort.obj, debug.obj,
 intrpt.lib(int0, int3, int4),
 c96fp.lib, c96.lib, fpal96.lib,
 publicsonly(monitor.abs)

The output object file includes the same set of modules as in the previous

example. The file, monitor.abs , supplies the absolute addresses of its

absolute public symbols that are referenced by the other modules.

If the first input file does not contain an extension, a fatal error occurs

unless you assign an output filename by using the to keyword. For

example, the following command is illegal because the output filename

defaults to main :

rl196 main

But the same example is legal if you append the to keyword with the

desired output filename after the input filename:

rl196 main to main.96

2.6.3 OUTPUT FILES

RL196 produces three outputs: screen messages, a print file, and an object

file. Screen messages are discussed in Chapter 9. Use the listing controls

to choose the information that appears in the print file.

2.6.3.1 PRINT FILE

The filename .m96 (default extension) print file produced by RL196

consists of:

• a sign-on message (as displayed on the screen)

• a link summary

• an optional symbol table

• an optional intermodule cross-reference listing

• a list of error messages

• a sign-off message (as displayed on the screen)

RL196 Linker 2–31

• • • • • • • •

Link Summary

Figure 2-3 shows a sample link summary. The link summary includes the

following information:

• An invocation command summary.

• A list of input modules included in the output object file.

• The segment (or link) map that lists all allocated segments, giving

their type, base address, length, alignment, and the module within

which the segment was defined. The segment map also shows the

segment overlaps and the gaps in the memory space. When an

absolute stack segment is created, the linker specifies no module

name. If the stack is still relocatable, the corresponding line starts

with a ***REL*** indication, and no base is given.

• A list of all unallocated segments. In such a case, RL196 reports the

reason for the unallocated segments by generating a specific error

message for each case.

• A list of unresolved externals, when any symbol is left unresolved.

RL196 reports each occurrence of an unresolved external symbol in

a module with a specific error message.

To suppress the segment map, omit the segments option from the list
control, for example, list(symbols,lines) .

80C196 relocater/linker vx.y rz SN000000–006 (c) year TASKING, Inc.
(C)1983,1990,1993 Intel Corporation
INPUT FILES: mn.obj, mn1.obj, mn2.obj, cstart.obj, c96.lib
CONTROLS SPECIFIED IN INVOCATION COMMAND:
 li ix ov(mn1,mn2) noas pu(ln,sb,pl) ro(2080H–3fffH) pw(80)
OUTPUT FILE: mn.abs

INPUT MODULES INCLUDED:
 mn.obj(mn) 15–Feb–96 16:20:15, C196 v99.9 md(bh)
 mn1.obj(mn1) 15–Feb–96 16:21:14, C196 v99.9 md(bh)
 mn2.obj(mn2) 15–Feb–96 16:20:18, C196 v99.9 md(bh)
 ../lib/kb/cstart.obj(STARTUP) 14–Feb–96 14:14:57
 ../lib/kb/c96.lib(_strlen) 14–Feb–96 14:12:27
 ../lib/kb/c96.lib(_tmpreg0) 14–Feb–96 14:14:38
 ../lib/kb/c96.lib(_fram01) 14–Feb–96 14:14:40
 ../lib/kb/c96.lib(_main) 15–Feb–96 15:17:38, C196 v99.9 md(kb)
 ../lib/kb/c96.lib(__exit) 14–Feb–96 14:12:55
 ../lib/kb/c96.lib(_imain) 14–Feb–96 14:14:29, C196 v99.9 md(kb)

Chapter 22–32
L
IN
K
E
R

SEGMENT MAP FOR mn.abs(mn):
 TYPE BASE LENGTH ALIGNMENT MODULE NAME
 –––– –––– –––––– ––––––––– –––––––––––
**RESERVED* 0000H 001AH
 REG 001AH 0002H WORD _fram01
 REG 001CH 0008H ABSOLUTE _tmpreg0
 OVRLY 0024H 0008H DOUBLE WORD mn2
OVERLAP OVRLY 0024H 0010H WORD mn1
*** GAP *** 0034H 001CH
 REG 0050H 0002H ABSOLUTE mn1
*** GAP *** 0052H 001EH
 REG 0070H 0002H ABSOLUTE mn1
 DATA 0072H 0190H WORD mn2
*** GAP *** 0202H 1E7EH
 CODE 2080H 0009H ABSOLUTE STARTUP
 CONST 2089H 0012H BYTE mn2
 CODE 209BH 00EEH BYTE _imain
 CODE 2189H 005DH BYTE mn1
 CODE 21E6H 003EH BYTE mn2
 CODE 2224H 0010H BYTE _strlen
 CODE 2234H 0010H BYTE _main
 CODE 2244H 000EH BYTE mn
 CODE 2252H 0007H BYTE __exit
*** GAP *** 2259H 0001H
 CONST 225AH 0010H WORD _STARTUP_DATA_
*** GAP *** 226AH DD96H
*** REL *** STACK 0042H WORD

UNRESOLVED EXTERNAL SYMBOLS:
 fil_initialize
 fil_get_name

Figure 2-3: Sample link summary

Symbol Table

The optional symbol table displays information on public symbols, local

symbols, and source lines, as specified by the publics , symbols , and

lines options of the list control. In addition, if symbols , lines , or

both are specified with the list control, information on source modules

and blocks are included.

The symbol table always begins on a new page. Figure 2-4 shows a

sample symbol table.

RL196 Linker 2–33

• • • • • • • •

SYMBOL TABLE FOR EXAMPL(MN):

ATTRIBUTES VALUE NAME
–––––––––– ––––– ––––

 PUBLICS:
CODE VPL_PROC 2244H main
REG INTEGER 0050H reg1
REG INTEGER 0070H reg2
CODE VPL_PROC 2189H mn1_1
CODE VPL_PROC 2197H mn1
CONST ARRAY 2089H copyright
DATA ARRAY 0072H ptr
CODE VPL_PROC 21E6H mn2
CODE ENTRY 2080H cstart
CODE ENTRY 2087H _exit
CODE VPL_PROC 2224H strlen
REG LONG 001CH PLMREG
REG NULL 001CH TMPREG0
REG WORD 001AH _FRAME01_
REG WORD 001AH ?FRAME01
CODE VPL_PROC 2234H _main
CODE VPL_PROC 2252H __exit
CODE VPL_PROC 209BH _imain
CONST BYTE 0000H _INIT_TABLE_START_

 MODULE: mn
 MODULE: mn1
 MODULE: mn2
 LINE#:
 FILE: mn2.c
 21E6H 6
 21F7H 11
 2204H 13
 2215H 14
CONST ARRAY 2089H copyright
DATA ARRAY 0072H ptr
 21E6H PROC: mn2
OVRLY INTEGER 0028H a
OVRLY INTEGER 002AH b
OVRLY LONGINT 0024H c
DYNAMIC ARRAY 0002H d

 MODULE: STARTUP
 MODULE: _strlen
 MODULE: _tmpreg0
 MODULE: _fram01
 MODULE: _main
 MODULE: __exit
 MODULE: _imain

Figure 2-4: Sample symbol table

Chapter 22–34
L
IN
K
E
R

Each entry in the symbol table consists of the following three parts:

ATTRIBUTESConsists of the following three fields:

• The segment type. Indicates the kind of segment to

which the symbol belongs. Possible segment types are

NULL, CODE, FARCODE, DATA, FARDATA, CONST,
FARCONST, STACK, REG, OVERLAY and DYNAMIC.

• The symbol type. For compound data types it gives only

an indication of the data type. The symbol types are

BYTE, WORD, LONG, ENTRY, REAL, NULL, BIT , ENUM,
UNION, SCALAR, SHORTINT, INTEGER, LONGINT,
UNSGN_INT, SGN_INT, POINTER, PTR, FARPTR,
WSR_PTR, ARRAY, STRUCTURE, LIST , LABEL, WHOLE,
PROCEDURE, FPL_PROC, and VPL_PROC.

The type ENTRY stands for both labels and

procedures/functions in PL/M-96 and C196 as well as the

ENTRY of ASM196.

If the linker does not recognize the symbol type, the

linker prints the type index of that symbol in the print file

and encloses the index in quotation marks: for example,

"73". The type index points to a type representation.

• The symbol base. If the symbol is pointed to by another

symbol, also called the base, the token BASED appears in

this field. In addition, the segment type and the value

fields must match the base.

VALUE This field contains the absolute address of the symbol unless

the field is one of the following special cases. If the segment

type is NULL, this field contains the value of the associated

symbol. If the segment type is DYNAMIC, the field contains

the symbol offset from the contents of the frame pointer of

the procedure where the symbol was defined. If the symbol

is still relocatable, the token REL appears in this field.

NAME The name of the module, procedure, do block, public

symbol, local symbol, or a line number in decimal. In this

field, an indention indicates scope. Public symbols are

preceded by the key word PUBLICS on a separate line; line

numbers are preceded by the keyword LINE# : and the

keyword FILE: on a separate line; a module name, a

procedure name, and a block name follow the keywords

MODULE:, PROC:, and BLOCK:, respectively.

RL196 Linker 2–35

• • • • • • • •

Not all symbols contain values in all fields. For example, only the name of

a module symbol is shown.

A block can be an unnamed block. In this case, the name field remains

empty.

The scope rules do not relate to line numbers. RL196 prints line numbers

to the symbol table on the fly using the current indention level. The line

numbers that appear in the print file depend on how the translator counts

each line in the source file. For example, PL/M-96 counts and assigns line

numbers to only non-blank executable lines while C196 counts every line

in the source file.

Intermodule Cross-reference Listing

The optional intermodule cross-reference listing includes an entry for each

global symbol. RL196 produces the intermodule cross-reference listing if

you specified the ixref control during linkage. This section of the listing

always begins on a new page. The symbols in the listing are listed

alphabetically. Each entry contains the following three fields:

NAME The name of the symbol.

ATTRIBUTESConsist of the following two fields:

• The segment type, which indicates the segment type to

which the symbol belongs. Possible segment types

(NULL, CODE, FARCODE, DATA, FARDATA, CONST,
FARCONST, STACK, REG, OVERLAY) appear exactly the

same as the segment type field in the symbol table,

except that DYNAMIC is not allowed.

• The symbol type. This field is handled exactly the same

as the symbol type field in the symbol table.

MODULES The name of all modules in which the symbol is declared

either as public or external. The module name in which the

symbol was defined as public appears as the first entry. If

the symbol was declared as public in multiple modules, the

linker then lists all of the module names. The remaining

entries are the alphabetically sorted module names in which

the symbol was referenced as external. The linker lists only

those module names that actually used the symbol. No

module name appears when the symbol is unresolved. The

linker prints the string **UNRESOLVED** instead.

Chapter 22–36
L
IN
K
E
R

Figure 2-5 shows a sample intermodule cross-reference listing.

INTERMODULE CROSS–REFERENCE LISTING:

NAME ATTRIBUTES MODULES
–––– –––––––––– –––––––

__exit CODE VPL_PROC ; __exit _main
FRAME01 REG WORD ; _fram01
_exit CODE ENTRY ; STARTUP __exit
_imain CODE VPL_PROC ; _imain _main
_main CODE VPL_PROC ; _main STARTUP
?FRAME01 REG WORD ; _fram01 _imain mn2
PLMREG REG LONG ; _tmpreg0
TMPREG0 REG NULL ; _tmpreg0 __exit _imain
 _main _strlen
 mn mn1 mn2
copyright CONST ARRAY ; mn2 mn1
cstart CODE ENTRY ; STARTUP
fil_get_name ... CODE VPL_PROC ; ** UNRESOLVED ** mn2
fil_initialize . CODE VPL_PROC ; ** UNRESOLVED ** mn1

main CODE VPL_PROC ; mn _main
mn1 CODE VPL_PROC ; mn1 mn
mn1_1 CODE VPL_PROC ; mn1
mn2 CODE VPL_PROC ; mn2 mn
ptr DATA ARRAY ; mn2
reg1 REG INTEGER ; mn1
reg2 REG INTEGER ; mn1
strlen CODE VPL_PROC ; _strlen mn1 mn2

WARNING 2: Unresolved external symbol: fil_initialize in
mn1.obj(mn1)
WARNING 2: Unresolved external symbol: fil_get_name in mn2.obj(mn2)
WARNING 4: Reference made to unresolved external: fil_initialize
 in mn1.obj(mn1), at CODE(0034h)
WARNING 4: Reference made to unresolved external: fil_get_name
 in mn2.obj(mn2), at CODE(0026h)

RL196 COMPLETED, 4 WARNING(S), 0 ERROR(S)

Figure 2-5: Sample intermodule cross-reference

Error Messages

Error messages appear at the end of the print file. RL196 error messages

are categorized as warnings, errors, and fatal errors. Only fatal errors

terminate the RL196 operation. An error does not terminate operation but

the resulting output module might be unusable. If so, the linker marks it

as such. A warning indicates a detected condition that might not be what

you wanted.

RL196 Linker 2–37

• • • • • • • •

See Chapter 9 for a complete list of RL196 error messages of all types and

their probable causes.

2.6.3.2 OUTPUT OBJECT FILE

RL196 generates an output absolute or quasi-absolute object file that

contains:

• The content of the program segments. This information is always

present in the RL196 output object file.

• Debug information, if debug is in effect during the translation time

and nopurge is in effect during the link/locate process. This

information includes symbols, line numbers, and name-scoping.

Name scope determines the context in which user-defined names

occur. Your object code must contain debug information if you

plan on debugging your code with an emulator.

• Linkage support information, if nopurge is in effect during the

link/locate process. This information includes segment definitions,

a list of (now absolute) public definitions, and a list of unresolved

external symbols.

To prevent any inappropriate error messages from the PROM programmer

during loading of an 80C196 absolute object file, specify the purge control

during the final linkage.

To assign a name to the output object file, use the to keyword. For

example, the line, rl196 main.obj to main.abs , assigns main.abs
as the output object file. If you omit the output filename, RL196 creates a

filename for the output file by removing the extension from the first

filename in the input list and using only the path and root name.

If the target drive already has a file with the name of the output file, RL196

overwrites the existing file with the new output file.

Chapter 22–38
L
IN
K
E
R

Creating a Final Absolute Object File

Use the final absolute object file for programming the 8096 ROM/EPROM

or for debugging the application. To create a final absolute object file, set

the absstack control, either explicitly or as the default. Because the

program no longer needs public and segment information at this point,

use the purge(segments , publics) control to conserve space. If no

debugging is required, you can also purge the local symbols and line

number information. Because nopurge is the default, purge must be

specified. All external references must be resolved to prevent run-time

errors.

Creating a Quasi-absolute Object File

If the output file is to be reused by RL196, that is the final absolute file is

produced after an incremental linkage, you must specify noabsstack in

the RL196 invocation. Additionally, the segments and public symbols

information cannot be purged. In this mode, the output file can still

contain unresolved external references that can be resolved by subsequent

executions of RL196.

2.7 AUTOMATICALLY INVOKING MULTIPLE

COMMANDS

TASKING offers three ways of automatically invoking a series of

commands: makefiles, batch files and command files. This section

demonstrates ways to use these features with TASKING software

development tools. Filenames and directory names appearing in this

section are examples.

2.7.1 USING MAKE UTILITY MK196

mk196 takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mk196 or written to the

standard output without executing them.

For a detailed description of this utility, see Chapter 8.

RL196 Linker 2–39

• • • • • • • •

2.7.2 USING BATCH FILES

A batch file contains one or more commands that DOS executes one at a

time. A batch file can contain commands valid at the DOS command line

prompt and commands valid only within a batch file. All batch files must

have the extension .bat .

You can pass parameters to a DOS batch file during invocation, so that the

batch file can do similar work on a different program or on a set of data

each time it executes. In the following example, the batch file 96a.bat
contains a command sequence invoking the ASM196 assembler. Any

assembler source filename with the extension .a96 can be a parameter to

96a.bat , so 96a.bat can assemble different source files. DOS replaces

the parameter %1 with the DOS filename of the assembler source file, in

this example prog1 .

1. Create a DOS batch file named 96a.bat containing the following line:

c:\c196\bin\asm196 %1.a96

2. Invoke the batch file by typing the name of the batch file, without

specifying the .bat extension, followed by the name of the source file to

be assembled, without specifying the .a96 extension.

96a prog1

When 96a.bat executes, DOS replaces the %1 with prog1 , resulting in

the command:

c:\c196\bin\asm196 prog1.a96

Other important characteristics of DOS batch files are as follows:

• In any version of DOS before Version 3.3, batch files cannot be

nested. If a batch file invokes another batch file, control passes

directly to the other batch file but does not return to the first batch

file. Therefore, place any batch file invocation last in a batch file.

• Batch files can contain control flow constructs such as if and

goto . For example, the following command allows the result of

program execution from the previously executed batch file to

determine which command in the current batch file executes next:

if errorlevel n goto label

Chapter 22–40
L
IN
K
E
R

The variable n contains the unacceptable error code. If the error

code returned by the last batch file executed is the same as or

greater than the value of n, control transfers to the line immediately

after label . The label is any alphanumeric string up to 8

characters. A longer label does not cause an error but only the first

8 characters are significant.

• To process continuation lines in DOS batch files, use redirect input

from a file containing the continuation lines. DOS does not support

continuation lines in batch files. Although a batch file can contain

multiple DOS command lines, each command must fit on a single

line.

In the following example, the batch file 96al.bat assembles an ASM196

source program, passes the resulting object module to RL196, and invokes

OH196 to convert the final object module to hexadecimal format. RL196

uses the existing object files listed in 96al.ltx .

1. Create a DOS batch file named 96al.bat , containing the following lines:

echo off
echo. asm196 assemble and link:
asm196 %1.a96
rl196 %1.obj, –f %0.ltx
if errorlevel 1 goto lfail
oh %1
goto stop
:lfail
echo. failure at link step
:stop

Since 96al.bat and 96al.ltx have identical names except for the

extension, 96al.bat can refer to 96al.ltx as %0.ltx . The DOS batch

file parameter %0 is a special parameter DOS always replaces with the

name of the batch file, without the .bat extension, containing it.

2. Create a text file named 96al.ltx containing the following lines:

prog0.obj, progxs.lib,
a096l.obj, mylib96l.lib

3. Execute the batch file 96al.bat by typing the following at the DOS

command prompt:

96al prog1

RL196 Linker 2–41

• • • • • • • •

When 96al.bat executes, DOS invokes ASM196 to assemble

prog1.a96 , then invokes RL196 to link the resulting object module,

prog1.obj , to the run-time libraries and object modules specified in

96al.ltx . The control flow constructs determine whether the failure

message appears on the screen.

2.7.3 USING COMMAND FILES

You can invoke the DOS command processor, command.com, with input

redirected from a file called a command file. A DOS command file

contains a sequence of DOS commands and must contain the DOS

command exit as its final line. See your DOS manual for explanations of

the DOS commands command and exit .

For example, create a command file named make96.cmd containing the

following:

asm196 prog0.a96
asm196 prog1.a96
rl196 –f link_obj.lst
exit

The link_obj.lst file is a control file used by the -f option. See

Section 2.6.1 for more details. This file contains the following:

progxs1.obj, prog0.obj, prog1.obj, mylib96l.lib,
progxs.lib

You can redirect the commands in make96.cmd to command.com by

typing the following at the DOS prompt:

command < make96.cmd

Command.com then invokes all commands listed in the file make96.cmd .

The following considerations apply when invoking command.com with

input redirected from a command file:

• This method of redirecting commands works only for a command

file containing a fixed sequence of commands. Parameters cannot

be passed to command.com.

• If your command line becomes too long, use the -f option to

append the contents of the control file to the command line. See

Section 2.6.1 for more information on the -f option.

Chapter 22–42
L
IN
K
E
R

• Command.com does not recognize the DOS batch file commands if
and goto . Flow of control is always sequential, from top to bottom

of the command file.

• Command files can be nested. If a command file reinvokes

command.com with a secondary command file, control returns to

the primary command file when the secondary command file exits.

Command.com can be invoked from the primary command file with

a line such as the following:

command < comfile2.cmd

The secondary command file must contain the command exit as

its final line. If it does not, control does not return to the primary

command file until exit is entered at the DOS prompt. When the

command exit executes, control returns to the point in the primary

file immediately following the point from which the secondary file

was invoked.

If you redirect the output of a command file to a file, the command line

interpreter records the following information in that file:

• All commands from the first line of the command file through the

command exit .

• All console input and output.

For example, the following command invokes the command file

make96.cmd and creates a log file named make96.log :

command < make96.cmd > make96.log

Nothing appears on the screen in response to this command except the

DOS prompt following execution of the final exit command in

make96.cmd . DOS writes all screen messages, including intermediate

DOS prompts, to the log file, make96.log .

RL196 Linker 2–43

• • • • • • • •

2.8 RL196 CONTROLS

All of the RL196 controls, modify the default operation of the linker.

These controls fit into three functional groups:

Listing controls

Listing controls specify what information is to be sent to the print file.

Linking controls

Linking controls specify the name of the output module and determine

what debug information is to be placed in the output object file.

Locating controls

Locating controls specify the ROM, RAM, register sections, and the order in

which some of the relocatable segments are to be allocated. In addition,

you can manipulate the stack segment with these controls.

You can enter more than one control on the RL196 invocation line.

Separate controls by spaces, not commas. If you enter the same control

more than once, a fatal error results and RL196 aborts.

The RL196 controls are characterized by the following:

• Most of the controls have a parameter.

• Every control name has a two-character abbreviation.

• Most of the controls have a negative form created by placing the

prefix no before the control name or its abbreviation. Do not attach

a parameter to the negative form of a control.

• Every control has a default setting.

Table 2-4 lists the RL196 controls by group.

Group Control Name Abbre–
viation

Default

Listing [no]ixref [no]ix noixref

[no]list [no]li list(all)1

[no]pageprint [no]pp pageprint

pagewidth pw pagewidth(120)

[no]print [no]pr print(file.m96)2

Linking [no]case [no]cs case

Chapter 22–44
L
IN
K
E
R

DefaultAbbre–
viation

Control NameGroup

[no]limit_bitno [no]lb nolimit_bitno

name na name(mod_name)3

[no]purge [no]pu nopurge

[no]quietwarns [no]qw noquietwarns

searchlib sl n/a

[no]sfr [no]sfr nosfr

[no]typecheck [no]tc typecheck

[no]warning wa nowarning

Locating [no]absstack [no]as absstack

[no]bottomup [no]bu nobottomup

[no]code2high [no]ch code2high (24–bit models)

[no]dataoverlay [no]do nodataoverlay

[no]ignoreabs [no]ia ignoreabs

[no]inittable [no]it inittable for omf(2)
noinittable for omf(0) and omf(1)

[no]inst [no]in noinst

model md model(kb)

nearcode/farcode nc/fc nearcode

nearconst/farconst nk/fk nearconst

neardata/fardata nd/fd neardata

[no]np_rsvup6 np_rsvup6 4

omf omf omf(2)

ram ra ram(1AH–1FFFH (stack))5

registers rg registers(1AH–0FFH)

[no]regfirst [no]rf noregfirst

[no]regoverlay [no]ov noregoverlay

rom ro rom(2000H–0FFFFH)

romcode rc romcode(2000H–0FFFFH)

romdata rd romdata(2000H–0FFFFH)

stacksize ss stacksize(total)6

[no]uniquemods um nouniquemods

RL196 Linker 2–45

• • • • • • • •

DefaultAbbre–
viation

Control NameGroup

windowsize ws windowsize(0)7

Notes :

1 The all placeholder stands for publics, symbols, lines, and segments.

2 The file.m96 placeholder indicates that the default is the first input filename followed by the
extension .m96.

3 The mod_name placeholder indicates that the default name is the name of the first input module.

4 The np_rsvup6 control can only be used with an NP model or NU model.

5 The ram control default defines the RAM section and notes that the stack must be allocated as
low as possible (i.e., in the register section as much as possible).

6 The total placeholder indicates that the default stacksize is the total size of all stack segments
from input modules. If total is less than 6, the default stacksize is 6.

7 Indicates that no vertical windowing is used.

Table 2-4: RL196 controls

The remainder of this section explains each control in detail. The controls

appear in alphabetical order. Some controls have an equivalent command

line option which is also included in the syntax.

Square brackets ([]) enclose optional arguments for controls. If you do

not specify optional arguments for a particular control, do not use an

empty pair of brackets.

Some controls use an optional list of arguments. Separate multiple

argument definitions with commas. Brackets surrounding a comma and

ellipsis ([,...]) indicate an optional list.

Curly braces ({ }) indicate that you must pick one of the options

provided. See Conventions Used in this Manual at the beginning of this

manual for special meanings of type styles used in this manual.

With controls that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

Chapter 22–46
L
IN
K
E
R

absstack

Function

Determines whether the stack segment of an output module is absolute.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Locate the stack segment as absolute check box in the

Locating tab.

absstack | noabsstack
–as | –as–

Abbreviation

as | noas

Class

Locating control

Default

absstack

Description

Use this control to specify whether you want RL196 to absolutely locate

the stack segment in the resultant RL196 output module or to leave the

stack segment relocatable. If you specify noabsstack and the input stack

segments are relocatable, the stack segment remains relocatable and can

be expanded. The entire output module is quasi-absolute: all segments

but its stack segment are absolute. The stack segment must stay

relocatable if the output file is to be relinked.

When the absstack control is in effect, the linker supplies two public

symbols that allow you to use free memory space for dynamic memory

allocation.

See Section 2.5.4 for more information on how to do dynamic memory

allocation.

RL196 Linker 2–47

• • • • • • • •

Example

The following example produces no absolute stack:

rl196 mod1.obj, mod2.obj noas

Chapter 22–48
L
IN
K
E
R

bottomup

Function

Allocate low addresses first.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Locate bottom up (24–bit models: low addresses first
check box in the Locating tab.

bottomup | nobottomup
–bu | –bu–

Abbreviation

bu | nobu

Class

Locating control

Default

nobottomup

Description

Use this control to force allocation of low addresses first. Use this control

for 24-bit models and segments FARCODE, CODE, FARDATA and

FARCONST. Normally these will be filled high-to-low. With this control

they will be filled low-to-high.

This control is especially useful when you have absolute segments in

ROM.

Example

The following example reverses the allocation:

rl196 mod1.obj, mod2.obj md(nt) bu

RL196 Linker 2–49

• • • • • • • •

case

Function

Tells linker to act case sensitive.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Link case sensitive (required for C language) check box in

the Linking tab.

case | nocase
–case | –case–

Abbreviation

cs | nocs

Class

Linking control

Default

case

Description

Use this control to tell the linker to work in a case sensitive manner.

However, some general rules regarding case sensitivity must be

considered:

1. Options supplied on the command line are always handled case sensitive.

2. Controls supplied on the command line are always handled case

insensitive.

3. Keywords are always handled case insensitive.

When you use the nocase control:

4. All module names, public and external symbols are converted to upper

case.

5. All filenames are converted to lower case.

Chapter 22–50
L
IN
K
E
R

When you use the default case control (or -case option):

6. None of the conventions mentioned in (4) or (5) is performed.

Example

The following example turns case sensitivity off:

rl196 test.obj nocase

RL196 Linker 2–51

• • • • • • • •

code2high

Function

Convert CODE segments to HIGHCODE.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Convert 16–bit CODE segments to 24–bit HIGHCODE segments
check box in the Locating tab.

code2high | nocode2high
–ch | –ch–

Abbreviation

ch | noch

Class

Locating control

Default

code2high

Description

Use this control to convert CODE segments to HIGHCODE. You can use

this control to link old objects (for example compiled for model(kb)).

Example

The following example CODE segments to HIGHCODE:

rl196 mod1.obj, mod2.obj ch

Chapter 22–52
L
IN
K
E
R

dataoverlay

Function

Overlay data segments.

Syntax

Select the EDE | Linker Options... menu item. Add the control to

the Additional options field in the Misc tab.

dataoverlay(overlay_unit [,...]) | nodataoverlay

where:

overlay_unit :⇒ overlay_element [{ –> | –] } overlay_element]

overlay_element :⇒ module_name | (overlay_unit [,...])

module_name is a valid name of a module.

overlay_factor [–> | –] overlay_factor]

overlay_factor is defined as:

module_name | (overlay_unit [,...])

Abbreviation

do | nodo

Class

Locating control

Default

nodataoverlay

Description

Use this control to specify data overlaying for the specified modules. You

can also specify the constraints to be applied in performing data

overlaying.

RL196 Linker 2–53

• • • • • • • •

Based on the dataoverlay control, the linker builds a calling graph

internally, as follows:

• Each module specified is designated as a node.

• Each A -> B relationship is designated by an arc from A to B.

This calling graph can be cyclic. The calling graph guides RL196 during

memory allocation of overlayable data segments.

In the calls relationship, the right arrow signifies a hyphen followed by a

greater than sign (–>) or a hyphen followed by a right square bracket

(–]). For some operating systems, the greater than sign (>) has a special

meaning so it cannot be used to designate the calls relationship. The

hyphen followed by a right square bracket (–]) can be used on all

operating systems.

A right arrow (–>) designates the calls relationship. A Calls B means that

module A cannot overlay module B. The calls relationship is transitive,

that is, A -> B and B -> C implies A -> C.

In general, the default of overlaying is not to overlay segments. The

default is expressed in two ways:

• The control default is nodataoverlay .

• Any module not mentioned in the dataoverlay control is not

overlaid, that is, its relocatable overlayable data segment, if it has

one, is regarded as a normal data segment during the memory

allocation process.

Regarding modules whose names appear in the dataoverlay control,

you must specify any relevant calls relationships between two modules. If

both module X and module Y are mentioned within the dataoverlay
control parameter, but neither X -> Y or Y -> X is specified and neither of

the relationships can be deduced (by transitivity), then the linker

concludes that X and Y can overlay. By the same token, if you specify a

module without using the calls relationship, the linker overlays the module

on another specified module.

Try to avoid hidden calls. Sometimes RL196 does not detect dangerous

overlaying, such as when the address of a procedure in module A is

passed through module C to the calling module, B.

Chapter 22–54
L
IN
K
E
R

As mentioned earlier, a module name within the control parameter stands

for its relocatable overlay segment. Absolute overlay segments are treated

like any other absolute segments, so they do not participate in the

overlaying. Therefore, overlaying modules during an incremental

link-locate is usually less efficient than overlaying them during a

single-step link-locate.

If you specify a module in the dataoverlay control that does not exist,

the following error is issued:

THE SPECIFIED MODULE DOES NOT EXIST

The overlayable data segments of modules A and B are allowed to overlay

only if during program execution, procedures in module A do not call any

procedure of module B, directly or indirectly.

If the linker finds a call or a jump between two overlayed modules, that is,

their relocatable overlayable data segments are overlaid, the linker issues

the following warning:

A DIRECT CALL BETWEEN TWO OVERLAID MODULES

In some situations, you can disregard this warning. For example, you

have two modules, Y and Z. Module Y consists of functions AB and CD.

Function AB has overlayable data variables and CD does not. Module Z

consists of functions EF and GH. EF has overlayable data variables and

GH does not. As long as AB calls GH or CD calls EF, no two overlay

segments are active at the same time. You can avoid complex overlaying

by keeping one function per module or place all functions with

overlayable data in the same module.

Examples

1. In this example, Module A calls Modules B, C, and D. The calling graph of

the application is as follows:

A

B C D

You can ask for the maximum overlaying possible by using either of the

control sequences:

RL196 Linker 2–55

• • • • • • • •

dataoverlay(A –> (B, C, D))
do(B, C, D)

In the first alternative, the control parameter specifies that modules A, B, C
and D are to be overlaid under the constraint that A cannot overlay B, C, or

D. This call relationship means that A cannot overlay any other specified

module. Therefore, A can be eliminated from the control parameter,

shown in the second alternative.

2. In this example, Module A calls Modules B and C. Module D also calls

Module C. The calling graph of the application is as follows:

A D

B C

You can specify the maximum overlaying:

do(A –> (B,C), D –> C)

You can also specify the same structure:

do((A,D) –> C, A –> B)

3. In this example, Module A calls Modules B and C, and Module C calls

Module D. The calling graph of the application is as follows:

A

B C

D

You can specify the maximum overlaying:

do(A –> (B,C –> D))

However, since the call relationship is transitive, the following control line

is also sufficient:

do(A –> (B,C), C –> D)

Chapter 22–56
L
IN
K
E
R

heap

Function

Locates the HEAP space in RAM.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Use largest section of free RAM as HEAP space check box in

the Locating tab.

heap | noheap
–he | –he–

Abbreviation

he | nohe

Class

Locating control

Default

npheap

Description

Use this control to tell RL196 to locate the HEAP space. RL196 supplies the

public symbols _HEAP_START_ and _HEAP_END_ which define this HEAP

space.

Example

The following example will locate the largest section of free RAM as HEAP

space:

rl196 mod1.obj, mod2.obj heap

The following example will locate the largest section of free RAM in the

range of 3000H-3FFFH as HEAP space:

rl196 mod1.obj, mod2.obj heap rom(2000H–2FFFH)
 ram(3000H–3FFFH(mod1, heap), 4000H–7FFFH)

ram

RL196 Linker 2–57

• • • • • • • •

ignoreabs

Function

Ignores warnings about absolute segments.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Ignore warnings about absolute segments in range
0–1FFFH) check box in the Linking tab.

ignoreabs | noignoreabs
–ia | –ia–

Abbreviation

ia | noia

Class

Locating control

Default

ignoreabs

Description

Use this control to prevent warnings about absolute segments outside the

area specified with the ram or registers control. Only segments in

range 0–1FFFH are ignored. This control is mainly used for having

absolute segments for SFR areas.

Example

The following example ignores warnings about absolute segments:

rl196 mod1.obj, mod2.obj ia

Chapter 22–58
L
IN
K
E
R

inittable

Function

Generates the initialization table.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Generate ROM table for initialized RAM variables check box

in the Locating tab.

inittable | noinittable

Abbreviation

it | noit

Class

Locating control

Default

inittable

Description

Use this control to suppress the generation of the initialization table and

the public symbol _INIT_TABLE_START_ . Note that the initialization table

is not generated if it is empty, but that the _INIT_TABLE_START_ is

always generated.

Example

The following example does not generate an initialization table or the

public symbol _INIT_TABLE_START_ :

rl196 mod1.obj, mod2.obj noinittable

RL196 Linker 2–59

• • • • • • • •

inst

Function

Allows ROM and RAM addresses to be overlapped.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Overlap ROM and RAM addresses (using the INST pin) check

box in the Locating tab.

inst | noinst
–in | –in–

Abbreviation

in | noin

Class

Locating control

Default

noinst

Description

Use this control to specify ROM-type memory that is independent of

RAM-type memory so that the addresses of the two types can overlap.

The inst control supports applications that use the 80C196 INST signal in

memory addressing logic. This control provides a section of ROM-type

memory accessible only via instruction fetches.

When you specify the inst control, the linker allocates the RAM and ROM

sections independently, allowing address overlaps between, but not

within, the two sections. Allocation within each section occurs as defined

by the ram and rom controls, with the defaults, steps, and rules within

each section. The segment map shows two sections, as follows:

• The RAM-type section with register, stack, and data segments.

• The new INST segment section with all of the code segments.

Chapter 22–60
L
IN
K
E
R

The linker places all code segments in the INST section, including

constants. Take special care when designing the application memory map

and addressing logic. You must be able to locate constants and other

object modules in non-overlapping memory if necessary.

See Section 2.5.5 for hardware and software development guidelines and a

sample RL196 invocation.

RL196 Linker 2–61

• • • • • • • •

ixref

Function

Include intermodule cross-reference listing in the print file.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Include a cross–reference listing in the map file check

box in the Listing tab.

ixref | noixref
–ix | –ix–

Abbreviation

ix | noix

Class

Listing control

Default

noixref

Description

Use this control to include an intermodule cross-reference listing in the

print file. The intermodule cross-reference listing contains the symbol

names, the segment type associated with each symbol, the symbol type of

each symbol, and the names of all modules in which each symbol is

declared as public or external. Section 2.6.3 describes the intermodule

cross-reference listing in more detail and includes an example.

Example

The following example includes an intermodule cross-reference listing in

the print file:

rl196 mod1.obj, mod2.obj ixref

print

Chapter 22–62
L
IN
K
E
R

limit_bitno

Function

Do not allow bit numbers greater than 7.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Allow bit numbers larger than 7 check box in the Linking tab.

limit_bitno | nolimit_bitno
–lb | –lb–

Abbreviation

lb | nolb

Class

Linking control

Default

nolimit_bitno

Description

When you use the JBS or JBC instruction with an external bit number, the

linker will have to fill in the bit number. It is allowed to specify a bit

number which is larger than 7. If this is the case, then the bit register will

be increased by one and the bit number will be decreased by 8 until the

bit number is smaller than 8. If the limit_bitno control is used, all

external bit number with a value greater than 7 will generate an error.

Example

The following example does not allow bit numbers larger than 7 in its

object files:

rl196 mod1.obj, mod2.obj limit_bitno

RL196 Linker 2–63

• • • • • • • •

list

Function

Specifies elements to be included in the print file.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable

one or more of the Include ... in the map file check boxes in the

Listing tab.

list[(element [,...])] | nolist

where:

element is one or a combination of the following: publics ,

symbols , lines and segments .

Abbreviation

li | noli

Class

Listing control

Default

list(publics, symbols, lines, segments)

Description

Use this control to specify elements you want included in the print file.

Use the print control to assign the name of the print file. By using the

list control, you can specify the listing of any combination of the

following elements:

• public symbols (publics or pl)

• symbols (symbols or sb)

• source statement line numbers (lines or ln)

• segment map (segment or sm)

Chapter 22–64
L
IN
K
E
R

The nolist control specifies that the print file includes none of the

categories. If you do not explicitly enter either list or nolist , the

default setting is list(publics , symbols , lines , segments) . When

some elements other than the default are required, you must specify all of

the required elements. For example, to list everything except line

numbers, specify list(segments , public , symbols) . Specifying just

list without any parameter is equivalent to the default.

To select the symbol table content, specify publics , symbols , and

lines . To specify that a segment map is required, include segments in

the control.

Specify symbols and/or lines to also include information on the input

modules and input blocks.

Example

This example includes segments and publics only:

rl196 def.obj list(segments, publics)

print

RL196 Linker 2–65

• • • • • • • •

model

Function

Specifies the processor/memory model.

Syntax

Choose a cpu from the EDE | CPU Model... menu item. Optionally

select one or more of the radio buttons Near Code /Far Code , Near
Const /Far Const , Near Data /Far Data .

model(processor)
–md processor

where:

processor Selects the memory model the RL196 uses in locating code

for a specific member of the 80C196 processor family.

Abbreviation

md

Class

Locating control

Default

model(kb)

Description

This control allows you to specify which processor/memory model you are

using, thus determines the physical memory layout RL196 must follow to

locate your data, code, and constants.

Specify the processor as one of the following:

61 to select the 8096-61.

90 to select the 8096-90.

Chapter 22–66
L
IN
K
E
R

196 to select the 80C196KB. This argument to model is available

for backward compatibility and is equivalent to specifying

kb . For future compatibility, use the model(kb) control

specification instead of model(196) .

bh to select the 8096BH.

ca to select the 80C196CA. Specifying ca is equivalent to

specifying kr .

cb to select the 80C196CB. This argument can have an extra

suffix as described in the note below.

ea to select the 80C196EA. This argument can have an extra

suffix as described in the note below.

ec to select the 80C196EC. This argument can have an extra

suffix as described in the note below.

jq to select the 80C196JQ. Specifying jq is equivalent to

specifying kr .

jr to select the 80C196JR. Specifying jr is equivalent to

specifying kr .

js to select the 80C196JS. Specifying js is equivalent to

specifying kr .

jt to select the 80C196JT. Specifying jt is equivalent to

specifying kr .

jv to select the 80C196JV. Specifying jv is equivalent to

specifying kr .

kb to select the 80C196KB. Specifying kb is equivalent to

specifying 196 .

kc to select the 80C196KC.

kd to select the 80C196KD.

kl to select the 80C196KL. Specifying kl is equivalent to

specifying kr .

kq to select the 80C196KQ. Specifying kq is equivalent to

specifying kr .

RL196 Linker 2–67

• • • • • • • •

kr to select the 80C196KR.

ks to select the 80C196KS. Specifying ks is equivalent to

specifying kr .

kt to select the 80C196KT. Specifying kt is equivalent to

specifying kr .

lb to select the 80C196LB.

mc to select the 80C196MC.

md to select the 80C196MD.

mh to select the 80C196MH.

np to select the 80C196NP. This argument can have an extra

suffix as described in the note below.

nt to select the 80C196NT. This argument can have an extra

suffix as described in the note below.

nu to select the 80C196NU. This argument can have an extra

suffix as described in the note below.

The cb , ea , np , nt and nu arguments of the model control can have an

additional suffix. Without a suffix, specifying xx is the same as specifying

xx –c , where xx is one of cb , ea , ec , np , nt or nu . The following six

suffixes are possible:

xx –c to select the compatible mode and to use near code

addressing and near data/near const addressing.

xx –cnf to select the compatible mode and to use near code

addressing and near data/far const addressing.

xx –cf to select the compatible mode and to use near code

addressing and far data/far const addressing.

xx –e to select the extended mode and to use far code addressing

and near data/near const addressing.

xx –enf to select the extended mode and to use far code addressing

and near data/far const addressing.

xx –ef to select the extended mode and to use far code addressing

and far data/far const addressing.

Chapter 22–68
L
IN
K
E
R

If you specify one of the compatible controls, RL196 assumes the

following:

• address space is from 0 to 0FFFFFFH

• default rom control is rom(2000H–0FFFFH,
0FF2000H–0FFFFFFH)

• Intel reserved area is from 0FF2000H to 0FF207FH

• only type of code segment allowed in input modules is high code

• input modules can contain far data and far constant segments.

If you specify one of the extended controls, RL196 assumes the following:

• address space is from 0 to 0FFFFFFH

• default rom control is rom(2000H–0FFFFH,
0FF2000H–0FFFFFFH)

• Intel reserved area is from 0FF20000H to 0FF207FH

• only type of code segment allowed in input modules is far code

• input modules can contain far data and far constant segments.

If you specify a control for one of the 16-bit models, RL196 assumes the

following:

• you are using the 8096/80196 family of microcontrollers. Therefore,

the address space is from 0 to 0FFFFH

• default rom control is rom(2000H–0FFFFH)

• Intel reserved area is from 2000H to 207FH

• only type of code segment allowed in input modules is near code

• far data and far constant segments are not allowed.

The model control cannot be specified with the inst control.

RL196 Linker 2–69

• • • • • • • •

name

Function

Assigns a module name to the output file.

Syntax

Select the EDE | Linker Options... menu item. Add the control to

the Additional options field in the Misc tab.

name(module_name)

where:

module_name is a string of characters.

Abbreviation

na

Class

Linking control

Default

name(first_input_module_name)

Description

Use this control to assign a module name, specified by module_name , to

the output module produced by RL196. If you do not use the name
control, the linker uses the name of the first input module as the default

output module name without any extension.

The module_name can be 40 characters long. You can use the following

characters in any order:

? (question mark)
@ (commercial at)
: (colon)
. (period)
_ (underscore)
A, B, C, ..., Z or
0, 1, 2, ...,9

Chapter 22–70
L
IN
K
E
R

The name control does not affect the output filename. Only the module

name in the output module's header record is changed.

Example

In this example, monitor is assigned as the output module name

produced by RL196. The output absolute filename is program1 . The

print file produced is program1.m96 .

rl196 program1.obj name(monitor)

RL196 Linker 2–71

• • • • • • • •

nearcode/farcode

Function

Specify code space configuration for 24-bit models.

Syntax

Select the EDE | CPU Model... menu item. Select the Near Code or

Far Code radio button.

nearcode | farcode

Abbreviation

nc | fc

Class

Locating control

Default

nearcode

Description

nearcode and farcode specify code space configuration for a member

of the 24-bit 80C196 family. nearcode specifies that the microcontroller

is configured in compatible mode. farcode specifies that the

microcontroller is configured in extended mode. These controls must be

preceded by a 24-bit model control.

Example

This example specifies the NT model with far code addressing and near

data/near const addressing, both invocations are the same:

rl196 mod1.obj, mod2.obj md(nt–e)

rl196 mod1.obj, mod2.obj md(nt) fc

model control

Chapter 22–72
L
IN
K
E
R

nearconst/farconst

Function

Specify constant space configuration for 24-bit models.

Syntax

Select the EDE | CPU Model... menu item. Select the Near Const or

Far Const radio button.

nearconst | farconst

Abbreviation

nk | fk

Class

Locating control

Default

nearconst

Description

nearconst and farconst specify the constant space configuration for

the 24-bit 80C196 family of microcontrollers. nearconst specifies that all

data, unless otherwise indicated, reside in the first 64 kilobytes of the

address space. farconst , on the other hand, means that all data, unless

otherwise specified, are located in the 16-megabytes address space. These

controls must be preceded by a 24-bit model control.

Example

This example specifies the NT model with near code addressing and near

data/far const addressing, both invocations are the same:

rl196 mod1.obj, mod2.obj md(nt–cnf)

rl196 mod1.obj, mod2.obj md(nt) fk

model control

RL196 Linker 2–73

• • • • • • • •

neardata/fardata

Function

Specify data space configuration for 24-bit models.

Syntax

Select the EDE | CPU Model... menu item. Select the Near Data or

Far Data radio button.

neardata | fardata

Abbreviation

nd | fd

Class

Locating control

Default

neardata

Description

neardata and fardata specify the data space configuration for the

24-bit 80C196 family of microcontrollers. neardata specifies that all data,

unless otherwise indicated, reside in the first 64 kilobytes of the address

space. fardata , on the other hand, means that all data, unless otherwise

specified, are located in the 16-megabytes address space. These controls

must be preceded by a 24-bit model control.

Example

This example specifies the NT model with near code addressing and far

data/far const addressing, both invocations are the same:

rl196 mod1.obj, mod2.obj md(nt–cf)

rl196 mod1.obj, mod2.obj md(nt) fd

model control

Chapter 22–74
L
IN
K
E
R

np_rsvup6

Function

Reserve upper six bytes of every page (model(np) and model(nu) only).

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Reserve upper 6 bytes of every page (NP and NU onbly)
check box in the Locating tab.

np_rsvup6 | nonp_rsvup6

Class

Locating control

Default

nonp_rsvup6

Description

Use this control to prevent the linker from putting code in the last 6 bytes

of any page. This control is only valid for an NP or NU model.

Example

This example reserves the upper six bytes of any page:

rl196 mod1.obj, mod2.obj md(np) np_rsvup6

RL196 Linker 2–75

• • • • • • • •

omf

Function

Specifies OMF96 version.

Syntax

Select the EDE | Linker Options... menu item. Select an OMF96
Version radio button in the Format tab.

omf(n)
–omf: n

where:

n is the number representing the OMF96 version:

0 - OMF96 V2.0

1 - OMF96 V3.0

2 - OMF96 V3.2 (default)

Abbreviation

omf

Class

Locating control

Default

omf(2)

Description

Use this control is used to specify the OMF96 verstion to generate. In a

previous version of the linker you could use the control oldobject to

specify OMF96 V2.0. Also some users were advised to use the internal

control oo1 . The two controls are now combined in one control, omf .

Example

This invocation line tells the linker to use the old OMF96 version V2.0.

rl196 mod1.obj, mod2.obj omf(0)

Section 2.4

Chapter 22–76
L
IN
K
E
R

pageprint

Function

Prints all code addresses in compatibility mode as 24 bits.

Syntax

pageprint | nopageprint

Abbreviation

pp | nopp

Class

Listing control

Default

pageprint

Description

By default all code addresses in the symbol table are listed as 24 bit

addresses. When you specify a model in compatibility mode (xx –c ,

xx –cnf or xx –cf), the upper 8 bits of the code addresses are always

0xFF (all code in compatibility mode ends up in page 0xFF).

If you specify the nopageprint control, the page (i.e. the upper 8 bits of

the code address) is not printed. This control only influences the printing

of the code addresses in the symbol table and only if you have selected a

compatibility mode. Addresses in the segment map are always printed as

24 bit, when using an 24 bit model.

RL196 Linker 2–77

• • • • • • • •

pagewidth

Function

Specifies the maximum number of characters per line.

Syntax

Select the EDE | Linker Options... menu item. Enter the number of

characters in the Page width (characters per line) field in the

Listing tab.

pagewidth(number)
–pw number

where:

number is a valid number from 72 to 255 . This number can also be

specified in hexadecimal format.

Abbreviation

pw

Class

Listing control

Default

pagewidth(120)

Description

Use this control to specify the maximum number of characters to be

printed on a single line. If the number specified is less than 72 or greater

than 255 , the linker generates an error. Carriage returns and linefeeds are

not counted.

Example

This example specifies that the maximum number of characters to be

printed on a single line is 90.

rl196 remote.obj ix pw(90)

Chapter 22–78
L
IN
K
E
R

print

Function

Directs the listing produced to the specified file.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Generate a linker map file (.m96) check box in the Listing
tab.

print(output_file) | noprint
–M output_file | –M–

where:

output_file is a string of characters.

Abbreviation

pr | nopr

Class

Listing control

Default

print(first_input_file .m96)

Description

Use this control to direct the listing produced by RL196 to the specified

file. The specified file cannot have the same name as any input files or

the output object file. If you enter the print control without naming an

output file, the default output file is the first input filename with a .m96
extension.

If you specify the noprint control, no listing is produced. The noprint
control overrides the list and the ixref controls if they have been

specified.

RL196 Linker 2–79

• • • • • • • •

Example

This example produces a print file named 96_appl.m96 .

rl196 mod1.obj, mod2.obj print(96_appl.m96)

list
ixref

Chapter 22–80
L
IN
K
E
R

purge

Function

Specifies which elements are removed from the output file.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Include debug information check box in the Linking tab.

purge[(element [,...])] | nopurge

where:

element can be one or a combination of the following: public ,

symbol , lines or segments .

Abbreviation

pu | nopu

Class

Linking control

Default

nopurge

Description

Use this control to specify elements to be removed from the output object

file. You can select a combination of the following elements for removal

by entering the keyword (or its abbreviation):

publics (pl) public symbol definition records

symbols (sb) local symbol debug records

lines (ln) source statement line numbers

segments (sm) segment definition records

Entering the purge control and no element list causes RL196 to purge all

of the elements equivalent to purge(publics , symbols , lines ,

segments) .

RL196 Linker 2–81

• • • • • • • •

Information regarding modules and blocks is purged only if you specify

both symbols and lines with this control.

Enter nopurge to remove none of the elements from the object module.

If you want to debug the output of the link-locate process, do not purge

symbols and lines.

When performing incremental links, do not purge segments and publics

before the last link-locate. Purging these elements destroys the segment

and public information needed by the subsequent links.

Example

The following example produces an absolute object file without any

public symbol information:

rl196 mod1.obj, mod2.obj purge(publics)

absstack

Chapter 22–82
L
IN
K
E
R

quietwarns

Function

Prevents warnings from displaying.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Display warning in the output window check box in the

Linking tab.

quietwarns | noquietwarns
–QW | –QW–

Abbreviation

qw | noqw

Class

Linking control

Default

noquietwarns

Description

Use this control to prevent the linker from displaying warnings on your

screen. Warnings are still put in the map file.

Example

This example prevents warnings from displaying:

rl196 mod1.obj, mod2.obj qw

RL196 Linker 2–83

• • • • • • • •

ram

Function

Specifies the designated RAM section.

Syntax

Select the EDE | Linker Options... menu item. Enter a RAM address

range in the RAM field in the Memory tab.

ram(ram_section [(module_list [(ram_seg_list)])] [,...])

where:

ram_section is an address range specifying the starting address and the

ending address of available RAM separated by a hyphen.

module_list is a list of valid module names.

ram_seg_list is a list of data segments found in the module. Possible

segments are data , fardata and stack .

Abbreviation

ra for ram

dt for data

fd for fardata

st for stack

Class

Locating control

Default

ram (1AH–1FFFH(stack))

Description

Use this control to designate the RAM address range. You must specify the

RAM sections in ascending order. Follow these rules for each

start_address – end_address pair:

• The start_address must be greater than the previous

end_address . The minimum start_address is 1AH.

Chapter 22–84
L
IN
K
E
R

• The end_address must be greater than or equal to its

start_address . The maximum end_address is 0FFFFH or

0FFFFFFH for far data segments.

When you include a module_list with this control, the linker allocates

the relocatable data segments of the specified modules within the address

range specified. If a module name is followed by an explicit

ram_seg_list , then only the data segment specified in that list for this

module is allocated in the specified range. The memory allocation for

these segments is performed from left to right as the modules are

encountered in the list. Because of the fragmentation that results from the

scattering of absolute segments in the memory section, the segments in

physical memory are not necessarily ordered as they are encountered.

The keyword stack , abbreviated as st , can appear as a pseudo-module

name in a module list of this control which implies that RL196 must

allocate the relocatable stack segment within the associated RAM section.

The linker allocates relocatable segments after all of the absolute segments

are allocated. This process has two steps:

1. The data segments for the modules specified in the ram control are

allocated so that each segment is within its specified RAM section.

2. The rest of the data segments are allocated in the remaining free RAM.

The second step allocates data segments not specified for allocation by the

first step.

If you specify stack with a RAM section, either explicitly or by default,

and a relocatable stack segment is present, the stack segment is allocated

in the first step mentioned above. If you do not specify stack with the

ram control, the linker allocates the relocatable stack segment (if any) in

the second step.

ROM and RAM sections must not overlap unless you specify the inst
control; also, they need not exhaust the entire memory range. Unspecified

memory locations are treated as gaps.

RL196 Linker 2–85

• • • • • • • •

The default register section of memory consists of the internal register area

(i.e., memory addresses 1AH to 0FFH). If you perform incremental links,

do not use the register section of memory for RAM sections to allow

register segments of subsequent links to be allocated. Do not specify the

register space address range in the ram control. The linker uses any

unused memory in the register section which overlaps a RAM section,

specified by ram , as RAM after all register segments have been allocated.

The ordinary default condition produces an overlapping between the RAM

and the register sections from address 1AH to 0FFH.

The address range 2000H–207FH or 0FF2000H–0FF207F for the 24-bit

components is reserved for special use by Intel. RL196 does not locate

any relocatable segments in this range. The only way to place data in this

range is by using absolute segments.

Example

The RAM sections in this example are 100H to 220H and 1018H to 1FFFH.

The relocatable data segment of module allocmod must be allocated in

the range 100H to 200H. The space from 201H to 220H contains the

relocatable data segment of module main .

rl196 main.obj, allocate.obj, srt.obj to main.lnk noas
 ram(100H–200H(allocmod), 201H–220H(main),
 1018H–1FFFH)

After the register segments and overlay segments of the input modules are

allocated in the register space, the unused register memory is not used for

the data segment of main.lnk because register space and RAM space do

not overlap.

Chapter 22–86
L
IN
K
E
R

registers

Function

Specifies the range of registers available to the application.

Syntax

Select the EDE | Linker Options... menu item. Enter a register

address range in the Register space field in the Memory tab.

registers(address_range [,...])

where:

address_range is an address range specifying the starting and ending

address of the available register space separated by a

hyphen.

Abbreviation

rg

Class

Locating control

Default

registers(1AH–0FFH) or

registers(26–255)

Description

Use this control to specify the range of registers available to the

application. You must specify the register sections in ascending order.

Follow these rules for each start_address – end_address pair:

• The start_address must be greater than the previous

end_address .

• The start_address must begin at a 128 byte boundary (except

for the first 1AH).

• The end_address must be greater than or equal to its

start_address .

• The end_address must be at multiples of 128 minus 1.

RL196 Linker 2–87

• • • • • • • •

If you do not specify this control, the linker uses the default,

registers(1AH–0FFH) , which produces an output object file that

matches the one produced without windowing capabilities. If you specify

this control with a non-default address range, the linker locates the

register overlay segments into the additional register space using the

vertical windowing mechanism of the 80C196KC and the 80C196KR

microcontrollers. See Section 2.5.6 for more information on how RL196

allocates register variables.

Example

This example shows that the register space ranges from 1AH to 1FFH and

that you are requesting a window size of 64 bytes.

rl196 mod1.obj, mod2.obj, mod3.obj, mod4.obj
 rg(1AH–7FH, 80H–17FH, 180H–1FFH) windowsize(64)

windowsize

Chapter 22–88
L
IN
K
E
R

regfirst

Function

Allocate register segments first.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Locate register segments before overlayable segments
check box in the Locating tab.

regfirst | noregfirst
–rf | –rf–

Abbreviation

rf | norf

Class

Locating control

Default

noregfirst

Description

If the regfirst control is specified relocatable register segments are

allocated first, followed by relocatable overlay segments of modules

specified by the regoverlay control and relocatable overlay segments

not yet allocated.

If the noregfirst control is specified (default) relocatable overlay

segments of modules specified by the regoverlay control are allocated

first, followed by relocatable overlay segments not yet allocated and

relocatable register segments.

When you use the windowsize control this control has no effect.

See Section 2.5 for more information on memory allocation.

RL196 Linker 2–89

• • • • • • • •

Example

The following example allocates register segments first:

rl196 mod1.obj, mod2.obj rf

Chapter 22–90
L
IN
K
E
R

regoverlay

Function

Overlay register.

Syntax

Select the EDE | Linker Options... menu item. Enter an overlay_unit
in the User specified regoverlay control field in the Locating
tab.

regoverlay(overlay_unit [,...]) | noregoverlay

where:

overlay_unit :⇒ overlay_element [{ –> | –] } overlay_element]

overlay_element :⇒ module_name | (overlay_unit [,...])

module_name is a valid name of a module.

overlay_factor [–> | –] overlay_factor]

overlay_factor is defined as:

module_name | (overlay_unit [,...])

Abbreviation

ov | noov

Class

Locating control

Default

noregoverlay

Description

Use this control to specify register overlaying for the specified modules.

You can also specify the constraints to be applied in performing register

overlaying.

RL196 Linker 2–91

• • • • • • • •

Because some registers serve different purposes at different times during

program execution, register overlaying enables more variables be allocated

in the register section than in on-chip or off-chip RAM. The result is an

increased in execution speed and a decreased in memory demand.

In the 80C196 environment, you can only overlay registers in the

relocatable overlay segments.; therefore, the term overlaying is used rather

than register overlaying. Therefore, the phrase module A overlays
module B means that the overlay segment of module A overlays the

overlay segment of module B.

If you specify overlaying between modules, the linker generates a calling

graph which determines what modules can be overlayed. The linker

might not overlay the registers completely or perhaps none at all, as

determined by the calling graph. However, the linker does not overlay

modules specified in a call relationship or if you use noregoverlay .

Based on the regoverlay control, the linker builds a calling graph

internally, as follows:

• Each module specified is designated as a node.

• Each A -> B relationship is designated by an arc from A to B.

This calling graph can be cyclic. The calling graph guides RL196 during

memory allocation of overlay segments.

In the calls relationship, the right arrow signifies a hyphen followed by a

greater than sign (–>) or a hyphen followed by a right square bracket

(–]). For some operating systems, the greater than sign (>) has a special

meaning so it cannot be used to designate the calls relationship. The

hyphen followed by a right square bracket (–]) can be used on all

operating systems.

A right arrow (–>) designates the calls relationship. A Calls B means that

module A cannot overlay module B. The calls relationship is transitive,

that is, A -> B and B -> C implies A -> C.

In general, the default of overlaying is not to overlay segments. The

default is expressed in two ways:

• The control default is noregoverlay .

• Any module not mentioned in the regoverlay control is not

overlaid, that is, its relocatable overlay segment, if it has one, is

regarded as a register segment during the memory allocation

process.

Chapter 22–92
L
IN
K
E
R

Regarding modules whose names appear in the regoverlay control, you

must specify any relevant calls relationships between two modules. If

both module X and module Y are mentioned within the regoverlay
control parameter, but neither X -> Y or Y -> X is specified and neither of

the relationships can be deduced (by transitivity), then the linker

concludes that X and Y can overlay. By the same token, if you specify a

module without using the calls relationship, the linker overlays the module

on another specified module.

Try to avoid hidden calls. Sometimes RL196 does not detect dangerous

overlaying, such as when the address of a procedure in module A is

passed through module C to the calling module, B.

As mentioned earlier, a module name within the control parameter stands

for its relocatable overlay segment. Absolute overlay segments are treated

like any other absolute segments, so they do not participate in the

overlaying. Therefore, overlaying modules during an incremental

link-locate is usually less efficient than overlaying them during a

single-step link-locate.

If you specify a module in the regoverlay control that does not exist,

the following error is issued:

THE SPECIFIED MODULE DOES NOT EXIST

The overlay segments of modules A and B are allowed to overlay only if

during program execution, procedures in module A do not call any

procedure of module B, directly or indirectly.

If the linker finds a call or a jump between two overlayed modules, that is,

their relocatable overlay segments are overlaid, the linker issues the

following warning:

A DIRECT CALL BETWEEN TWO OVERLAID MODULES

In some situations, you can disregard this warning. For example, you

have two modules, Y and Z. Module Y consists of functions AB and CD.

Function AB has overlayable register variables and CD does not. Module

Z consists of functions EF and GH. EF has overlayable register variables

and GH does not. As long as AB calls GH or CD calls EF, no two overlay

segments are active at the same time. You can avoid complex overlaying

by keeping one function per module or place all functions with

overlayable registers in the same module.

RL196 Linker 2–93

• • • • • • • •

Examples

1. In this example, Module A calls Modules B, C, and D. The calling graph of

the application is as follows:

A

B C D

You can ask for the maximum overlaying possible by using either of the

control sequences:

regoverlay(A –> (B, C, D))
ov(B, C, D)

In the first alternative, the control parameter specifies that modules A, B, C
and D are to be overlaid under the constraint that A cannot overlay B, C, or

D. This call relationship means that A cannot overlay any other specified

module. Therefore, A can be eliminated from the control parameter,

shown in the second alternative.

2. In this example, Module A calls Modules B and C. Module D also calls

Module C. The calling graph of the application is as follows:

A D

B C

You can specify the maximum overlaying:

ov(A –> (B,C), D –> C)

You can also specify the same structure:

ov((A,D) –> C, A –> B)

Chapter 22–94
L
IN
K
E
R

3. In this example, Module A calls Modules B and C, and Module C calls

Module D. The calling graph of the application is as follows:

A

B C

D

You can specify the maximum overlaying:

ov(A –> (B,C –> D))

However, since the call relationship is transitive, the following control line

is also sufficient:

ov(A –> (B,C), C –> D)

RL196 Linker 2–95

• • • • • • • •

rom

Function

Specifies designated ROM sections.

Syntax

Select the EDE | Linker Options... menu item. Enter a ROM address

range in the ROM field in the Memory tab.

rom(rom_section [(module_list [(rom_seg_list)])] [,...])

where:

rom_section is an address range specifying the starting address and the

ending address of available ROM separated by a hyphen.

module_list is an optional list of valid module names.

rom_seg_list is an optional list of code and constant segments found in

the module. Possible segments are code , farcode ,

const , farconst .

Abbreviation

ro for rom

co for code

fc for farcode

ko for const

fk for farconst

Class

Locating control

Default

rom(2000H–0FFFFH) for 16-bit models

rom(0FF2000H–0FFFFFFH) for 24-bit models

Chapter 22–96
L
IN
K
E
R

Description

Use this control to designate the ROM address range. You must specify

the ROM sections in ascending order. Follow these rules for each

start_address – end_address pair:

• The start_address must be greater than the previous

end_address . The minimum start_address is 0H.

• The end_address must be greater than or equal to its

start_address . The maximum end_address is 0FFFFH or

0FFFFFFH for far code or high code and far constant segments.

When you specify a module_list with this control, the linker allocates

the relocatable code and constant segments of the specified modules

within the address range specified. However, if a module name in the

module_list is followed by an explicit rom_seg_list , then only the

code and constant segments specified in the rom_seg_list for this

module is allocated in the specified memory range. The linker performs

the memory allocation for these segments from left to right as the modules

appear in the list. Because of the fragmentation that results from the

scattering of absolute segments in the memory section, the actual order of

the segments in physical memory does not necessarily match the order in

which they were appear in the command line. You cannot specify stack
in the rom control.

The linker allocates the relocatable code and constant segments after all of

the absolute segments are allocated. This process has two steps:

1. Code and constant segments for the modules specified in the rom control

are allocated so that each segment is within its specified ROM section.

2. The rest of the code and constant segments are allocated in the remaining

free ROM.

The second step allocates any code and constant segments not specified

for allocation by the first step.

ROM and RAM sections must not overlap unless the inst control is in

effect. Also, they need not exhaust the entire memory range. Unspecified

memory locations are treated as gaps.

RL196 Linker 2–97

• • • • • • • •

Once you explicitly specify a particular ROM section with this control, you

must specify all of the remaining ROM sections. The address range

2000H–207FH or 0FF2000H–0FF207F for the 80C196NT components is

reserved for special use by Intel. RL196 does not locate any relocatable

segments in this range. The only way to place code or constants in this

range is by using absolute segments. Modules belonging to publicsonly
files cannot be specified in the module_list .

You can use the romcode and romdata controls instead of the rom
control. These controls can be very useful when using the 80C196KR or a

24-bit processor.

Examples

1. The ROM sections in this example are 2180H to 2300H and 0E000H to

0FFFFH. The range 2180H to 2300H is specified in two parts to indicate

that the relocatable code segment of module allocmod must be allocated

in the range 2180H to 2200H and that the relocatable code segment of

module main must be allocated in the range 2201H to 2300H.

rl196 main.obj, allocate.obj, srt.obj to main.lnk noas
 rom(2180H–2200H(allocmod), 2201H–2300H(main),
 0E000H–OFFFFH)

2. In this example, the following memory sections are considered as

ROM-type sections: 2000H–2FFFH, 3000H–4000H , 5001H–5FFFH. After

all absolute segments are allocated, mod1's code and constants are is

allocated within 2000H–2FFFH, mod7's code and constants also have to be

allocated within the same range, but only after mod1's allocation. The

code for mod3 is and constants are allocated within 5001H–5FFFH, then

the rest of the relocatable code and constant segments are allocated within

the free memory sections of the range.

rom(2000H–2FFFH(mod1,mod7), 3000H–4000H, 5001H–5FFFH(mod3))

Chapter 22–98
L
IN
K
E
R

3. In this example, the following memory sections are considered as

ROM-type sections: 2000H–2FFFH, 3000H–4000H , 15001H–15FFFH .

After all of the absolute segments have been allocated, mod1's code and

constant are allocated within 2000H–2FFFH. After mod1's allocation,

mod7's near constants are allocated somewhere within that range. mod3's
far code and far constants are allocated within the 15001H–15FFFH range,

as well as mod7's far code and far constants. The rest of the relocatable

code and constant segments are then allocated within the free memory

sections of the address range.

rom(2000H–2FFFH(mod1,mod7(const)), 3000H–4000H,

 15001H–15FFFH(mod3,mod7(code,farconst)))

romcode
romdata

RL196 Linker 2–99

• • • • • • • •

romcode

Function

Specifies designated ROM sections for CODE, HIGHCODE and FARCODE

segments.

Syntax

Select the EDE | Linker Options... menu item. Enter a ROM address

range in the ROMCODE field in the Memory tab.

romcode(rom_section [(module_list [(rom_seg_list)])] [,...])

where:

rom_section is an address range specifying the starting address and the

ending address of available ROM separated by a hyphen.

module_list is an optional list of valid module names.

rom_seg_list is an optional list of code segments (code, high code or

far code) found in the module. Possible segments are

code , farcode .

Abbreviation

rc for romcode

co for code

fc for farcode

Class

Locating control

Default

romcode(2000H–0FFFFH) for 16-bit models

romcode(0FF2000H–0FFFFFFH) for 24-bit models

Chapter 22–100
L
IN
K
E
R

Description

Use this control to designate the ROM address range for code, high code

and far code segments. You must specify the ROM sections in ascending

order. Follow these rules for each start_address – end_address
pair:

• The start_address must be greater than the previous

end_address . The minimum start_address is 0H.

• The end_address must be greater than or equal to its

start_address . The maximum end_address is 0FFFFH or

0FFFFFFH for far code or high code segments.

When you specify a module_list with this control, the linker allocates

the relocatable code segments of the specified modules within the address

range specified. However, if a module name in the module_list is

followed by an explicit rom_seg_list , then only the code segments

specified in the rom_seg_list for this module is allocated in the

specified memory range. The linker performs the memory allocation for

these segments from left to right as the modules appear in the list.

Because of the fragmentation that results from the scattering of absolute

segments in the memory section, the actual order of the segments in

physical memory does not necessarily match the order in which they were

appear in the command line. You cannot specify stack in the romcode
control.

The linker allocates the relocatable code segments after all of the absolute

segments are allocated. This process has two steps:

1. Code segments for the modules specified in the romcode control and/or

rom control are allocated so that each segment is within its specified ROM

section.

2. The rest of the code segments are allocated in the remaining free ROM.

The second step allocates any code segments not specified for allocation

by the first step.

RL196 Linker 2–101

• • • • • • • •

Examples

1. In this example all CONST segments are located in the range

0E000h–0E7FFh . All CODE segments are located in the range

2000h–3FFFh . All DATA and REGISTER segments are located in the range

1Ah–1FFFh (default range). Note that the linker knows where to find

cstart.obj and c96.lib if they are not in the current directory. The

MODEL in this example is KB.

rl196 cstart.obj, hello.obj, c96.lib
 romdata(0e000h–0e7ffh) romcode(2000h–3fffh)

2. In this example all CONST segments are located in the range

2000h–57FFh . All CODE segments are located in the range 2000h–3FFFh .

All DATA and REGISTER segments are located in the range 1Ah–1FFFh
(default range). The MODEL in this example is KR.

rl196 cstart.obj, hello.obj, c96.lib
 md(kr) romdata(02000h–057ffh)
 romcode(2000h–3fffh) inst

rom
romdata

Chapter 22–102
L
IN
K
E
R

romdata

Function

Specifies designated ROM sections for CONST and FARCONST segments.

Syntax

Select the EDE | Linker Options... menu item. Enter a ROM address

range in the ROMDATA field in the Memory tab.

romdata(rom_section [(module_list [(rom_seg_list)])] [,...])

where:

rom_section is an address range specifying the starting address and the

ending address of available ROM separated by a hyphen.

module_list is an optional list of valid module names.

rom_seg_list is an optional list of constant segments found in the

module. Possible segments are const , farconst .

Abbreviation

rd for romdata

ko for const

fk for farconst

Class

Locating control

Default

romdata(2000H–0FFFFH) for 16-bit models

romdata(0FF2000H–0FFFFFFH) for 24-bit models

Description

Use this control to designate the ROM address range for constant and far

constant segments. You must specify the ROM sections in ascending

order. Follow these rules for each start_address – end_address
pair:

• The start_address must be greater than the previous

end_address . The minimum start_address is 1AH.

RL196 Linker 2–103

• • • • • • • •

• The end_address must be greater than or equal to its

start_address . The maximum end_address is 0FFFFH or

0FFFFFFH for far constant segments.

When you specify a module_list with this control, the linker allocates

the relocatable constant segments of the specified modules within the

address range specified. However, if a module name in the module_list
is followed by an explicit rom_seg_list , then only the constant

segments specified in the rom_seg_list for this module is allocated in

the specified memory range. The linker performs the memory allocation

for these segments from left to right as the modules appear in the list.

Because of the fragmentation that results from the scattering of absolute

segments in the memory section, the actual order of the segments in

physical memory does not necessarily match the order in which they were

appear in the command line. You cannot specify stack in the romdata
control.

The linker allocates the relocatable constant segments after all of the

absolute segments are allocated. This process has two steps:

1. Constant segments for the modules specified in the romdata control

and/or rom control are allocated so that each segment is within its

specified ROM section.

2. The rest of the constant segments are allocated in the remaining free ROM.

The second step allocates any constant segments not specified for

allocation by the first step.

Examples

1. In this example all CONST segments are located in the range

0E000h–0E7FFh . All CODE segments are located in the range

2000h–3FFFh . All DATA and REGISTER segments are located in the range

1Ah–1FFFh (default range). Note that the linker knows where to find

cstart.obj and c96.lib if they are not in the current directory. The

MODEL in this example is KB.

rl196 cstart.obj, hello.obj, c96.lib
 romdata(0e000h–0e7ffh) romcode(2000h–3fffh)

Chapter 22–104
L
IN
K
E
R

2. In this example all CONST segments are located in the range

2000h–57FFh . All CODE segments are located in the range 2000h–3FFFh .

All DATA and REGISTER segments are located in the range 1Ah–1FFFh
(default range). The MODEL in this example is KR.

rl196 cstart.obj, hello.obj, c96.lib
 md(kr) romdata(02000h–057ffh)
 romcode(2000h–3fffh) inst

rom
romcode

RL196 Linker 2–105

• • • • • • • •

searchlib

Function

Specifies search paths for input files.

Syntax

Select the EDE | Directories... menu item. Add one or more

directory paths to the Library Files Path field.

searchlib(pathprefix [,...])
–L pathprefix [,...]

where:

pathprefix is a string of characters that RL196 prepends to an input

file's filename. This string must include any special

characters that the operating system expects in a path

prefix.

Abbreviation

sl

Class

Linking control

Description

Use this control to specify a list of possible path prefixes for input files.

Each pathprefix argument is a string that, when concatenated to a

filename, specifies the relative or absolute path of a file (including a

device name and directory name, if necessary). RL196 tries each prefix in

the order in which they are specified, until a legal filename is found. If a

legal filename is not found, RL196 issues an error.

RL196 searches for input files in a specific order. See Section 2.6.2 for

more details.

Chapter 22–106
L
IN
K
E
R

sfr

Function

Specifies to include model specific SFR file.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Link Special Function Register object file check box in the

Linking tab.

sfr | nosfr
–S | –S–

Abbreviation

sfr | nosfr

Class

Linking control

Default

nosfr

Description

Use this control to include the model specific SFR object file to the list of

input files. The object file has the name xx _sfrs.obj , where xx is a

model as specified with the model control.

Example

Specifying,

rl196 mod1.obj, mod2.obj sfr md(kb)

is the same as specifying,

rl196 mod1.obj, mod2.obj, kb_sfrs.obj md(kb)

model

RL196 Linker 2–107

• • • • • • • •

stacksize

Function

Specifies the size of the stack segment

Syntax

Select the EDE | Linker Options... menu item. Enter a stack size or

stack offset in the Specify or modify stack size field in the

Locating tab.

stacksize([{ + | – }] n)
–ss [{ + | – }] n

where:

n must be an even number in the decimal or hexadecimal

format. If n is supplied as an absolute number, without a

preceding sign, it must be less than or equal to 0FFFEH.

Abbreviation

ss

Class

Locating control

Default

stacksize(total) if total ≥ 6

or stacksize(6) if total < 6

Description

Use this control to specify or modify the resultant RL196 output module's

stack segment. The linker calculates the default stack size by adding the

sizes of all stack segments of the input modules. The default stack size is

the sum of the sizes of all stack segments of the input modules or 6 bytes,

whichever is greater.

To specify a stack size different from the default, indicate the desired size,

in bytes, within the parenthesis. The n parameter must be an even

number in the decimal or hexadecimal format.

Chapter 22–108
L
IN
K
E
R

For example, the following control line indicates you want a stack size of

256 bytes, in decimal:

stacksize(256)

You can indicate the same condition using the hexadecimal format, as

follows:

stacksize(100H)

To modify the stack size, specify a signed parameter. This parameter is

added to or subtracted from the default total. If the resultant stack size is

less than zero or greater than 0FFFEH, the linker issues a warning. If you

specify an absolute number with no preceding sign, this number overrides

the default value.

If you specify a stack size that is smaller than the default, the linker issues

a warning. If you specify a stack size and the stack is already absolute,

the control has no effect and a warning is issued.

Use stacksize(+2) or more when linking to run on the ICE -196PC,

ICE -196KB/HX or ICE -196KC/HX in-circuit emulator. The emulator

requires two bytes on the program stack in addition to the stack space

required by the program.

If you have reentrant procedures, you must use this control. A translator

can calculate the stack requirement of a single entry but cannot determine

how many times such a procedure is called recursively. In this case, you

must anticipate the program behavior and modify the stack size.

Example

For this example, the stack segment size is 880.

rl196 main.obj stacksize(880)

RL196 Linker 2–109

• • • • • • • •

typecheck

Function

Specifies if type checking is performed.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Perform type checking check box in the Linking tab.

typecheck | notypecheck
–tc | –tc–

Abbreviation

tc | notc

Class

Linking control

Default

typecheck

Description

When this control is in effect, the linker performs type checking during

publics-externals resolution. In case of a mismatch, the linker issues a

SYMBOL ATTRIBUTE MISMATCH warning message. The notypecheck
control inhibits type checking during the resolution process. This control

does not delete the type definition information from the output object file.

See purge control.

RL196 disregards the specified value of the compiler control

type/notype . The linker performs the type checking even if you

specified the control notype during compilation; however, in that case,

the compiler renders the symbol types as null symbols. These null
symbols appear in the symbol table listing and in the intermodule

cross-reference listing.

Chapter 22–110
L
IN
K
E
R

Example

No type checking is performed in this link example:

rl196 mod1.obj, mod2.obj notypecheck

RL196 Linker 2–111

• • • • • • • •

uniquemods

Function

Allow more than one module with the same name.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Allow more than one module with the same name check box in

the Linking tab.

uniquemods | nouniquemods
–um | –um–

Abbreviation

um | noum

Class

Locating control

Default

uniquemods

Description

When this control is in effect, you can use more than one module with the

same name. rl196 locates all modules with the same name together.

Example

The following example assumes that the module names of mod1.obj and

mod2.obj are the same; both modules are located together:

rl196 mod1.obj, mod2.obj um

Chapter 22–112
L
IN
K
E
R

warning

Function

Specifies a non-zero exit value when warnings occur.

Syntax

Select the EDE | Linker Options... menu item. Enable or disable the

Continue building process when warning(s) occur check box

in the Linking tab.

warning | nowarning
–W | –W–

Abbreviation

wa | nowa

Class

Linking control

Default

nowarning

Description

When this control is in effect, the linker exits with a non-zero value when

one or more warnings are present. When you are running rl196 from a

makefile, mk196 will stop execution.

Example

This example generates a non-zero exit value when warning(s) occur:

rl196 mod1.obj, mod2.obj warning

RL196 Linker 2–113

• • • • • • • •

windowsize

Function

Specifies the desired window size for vertical windowing.

Syntax

Select the EDE | Linker Options... menu item. Select a Register
vertical window size in the Memory tab.

windowsize(n)
–ws: n

where:

n is window size desired in bytes: 32 , 64 , 128 .

Abbreviation

ws

Class

Locating control

Description

Use this control to specify, in bytes, the vertical window size you want to

use. Since the 80C196KC and the 80C196KR microcontrollers have

additional registers, vertical windowing provides access to the additional

registers using the 8-bit direct addressing mode. The C196 compiler can

then use these additional registers for block scope register variables. The

vertical window can be subdivided into 3 different sizes: 32 bytes, 64

bytes, or 128 bytes.

During the link, the linker selects the biggest window size based on the

last (highest) address occupied by the last register segment. The last

occupied address must fall below 80H (128-byte window) or 0C0H
(64-byte window) or 0E0H (32-byte window). Otherwise, the linker sets

WSR to 0 and takes no action on the additional registers. If you do not

specify this control, the linker uses the biggest window size possible, if

more than 256 registers are specified using the registers control. See

Section 2.5.6 for more information on how the linker allocates register and

overlay segments in vertical windows.

Chapter 22–114
L
IN
K
E
R

The linker considers your window size request when selecting the window

size. If you specify a window size that is smaller than the biggest possible

window size, the window size you specified is used. If you specify a

window size that is larger than the biggest possible size, the linker uses its

selected window size and issues a warning.

Example

This example species a register space range from 1AH to 01FFH and a

window size of 64 bytes.

rl196 mod1.obj, mod2.obj, mod3.obj, mod4.obj
 registers(1AH – 01FFH) windowsize(64)

registers

TASKING
Quality Development Tools Worldwide

3

OH196
CONVERTER

C
H

A
P

T
E

R

Chapter 33–2
O
H
1
9
6

3

C
H

A
P

T
E

R

OH196 Converter 3–3

• • • • • • • •

The OH196 object-to-hexadecimal converter converts an absolute

OMF196 file to a hexadecimal file for use with tools that do not accept this

standard Intel object file format.

3.1 INVOCATION SYNTAX

The invocation syntax for OH196 is:

oh196 [options] abs_objfile [to hexfile]
oh196 -?

oh196 -V

where:

abs_objfile is an absolute OMF196 file created by RL196.

hexfile is the file to contain the hexadecimal output.

-? displays the invocation syntax at stdout.

-V displays version information at stderr.

options is one or more of the following options:

-o hexfile specify the file to contain the hexadecimal output.

-p offset add an additional offset to all outputted segments. The

maximum value for the offset is +/- 0FFFFFFFFH.

-s segment select the segment which will be outputted into the hex file.

The segment can either be code (for CODE and FAR_CODE

segments) or const (for CONST and FAR_CONST segments).

If this option is omitted, all segments will be outputted.

If you do not specify hexfile , the output file name takes the name of the

root of the object file with a .hex extension.

When an error occurs, OH196 generates a fatal error and aborts the

processing of the object file. See Chapter 9 for a complete list of error

messages and their causes.

Chapter 33–4
O
H
1
9
6

3.2 EXAMPLES

1. The following example converts the absolute OMF96 file created by RL196,

sort.abs , to hexadecimal format and places the output into the file

sort.hex .

oh196 sort.abs

2. The following example converts the absolute OMF96 file save1.obj to

hexadecimal format and places the output into the file save.h96 .

oh196 save1.obj to save.h96

3. The following example converts the absolute OMF96 file tot2.obj to

hexadecimal format and places the output into the file tot2.hex.

oh196 tot2.obj

4. The following example converts the absolute OMF96 file created by RL196,

tst.abs , to hexadecimal format and places only CODE segments into the

file codes.hex .

oh196 –o codes.hex –s code tst.abs

5. The following example converts the absolute OMF96 file created by RL196,

tst2.abs , to hexadecimal format and adds an offset of 02000H to all

outputted segments into the file tst2.hex .

oh196 –p 02000H tst2.abs

3.3 OUTPUT FILE

In the output file, the record format is:

ÁÁÁ
ÁÁÁ
ÁÁÁ

:
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

length
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

offset
ÁÁÁ
ÁÁÁ
ÁÁÁ

type
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

content
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

checksum

where:

: is the record header.

OH196 Converter 3–5

• • • • • • • •

length is the record length. This value occupies one byte (two

hexadecimal digits). OH196 outputs records of 16 bytes (32

hexadecimal digits) or less; that is, length is never greater

than 10H.

offset is the absolute address in memory where the data is to be

located when loaded by a tool. This field is two bytes long.

type is the record type. This value occupies one byte (two

hexadecimal digits). The record types are:

Byte Type Record type

00 Data

01 End of File

02 Extended address

03 Start

04 New (64k) Page Nr

content is the information contained in the record. This value

occupies up to 16 bytes (32 hexadecimal digits).

If the information in an OMF96 record occupies more than 16 bytes,

OH196 divides it into 16-byte hexadecimal records. If any bytes are left

over after this operation, OH196 combines those remaining bytes with

bytes left over from adjacent records in the OH196 buffer. These adjacent

bytes can be part of either a previous or a subsequent record. If no

adjacent bytes are available for combination, OH196 puts the remaining

bytes in a separate record.

The hexadecimal file always ends with the following end-of-module

record:

:00000001FF

The following is a sample of hexadecimal output:

:10208000A1002030B2310F89003030D7F7FE6F0148
:1020900000401CFE6C201CFE4F010040201CFE4C2A
:1020A00020201CFE7F01004020FE7C2220FE5F01DC
:1020B00000402220FE5C222220FE8F0100401CFEF8
:0F20C0008C201CFE9F01004020FE9C222027FE4A
:00000001FF

Chapter 33–6
O
H
1
9
6

The first record is read as follows:

Field Value Meaning

10H This hexadecimal record contains 16 bytes of information.

2080H The information in this hexadecimal record was at location
2080H in the original OMF96 record.

00H The record is a data record.

A1...01H These 16 bytes (32 hexadecimal digits) are the information
contained in this record.

48H This value is the record checksum. The OH196 converter
computes the checksum by first adding the binary
representation of the previous bytes, starting with 10H to 01H,
in this example. OH196 then computes the result of sum
modulo 256 and subtracts the remainder subtracted from 256.

The fifth and last hexadecimal record in this example contains one byte

(two hexadecimal digits) less than 16 bytes of information. This decrease

in size indicates that the length of the original OMF96 record in bytes is

one less than a multiple of 16.

TASKING
Quality Development Tools Worldwide

4

LIB196
LIBRARIAN

C
H

A
P

T
E

R

Chapter 44–2
L
IB
R
A
R
IA
N

4

C
H

A
P

T
E

R

LIB196 Librarian 4–3

• • • • • • • •

LIB196 allows you to create, modify, and examine library files. This

chapter describes the library commands you can use to maintain your

library files.

4.1 INVOKING LIB196

The following is the syntax for invoking the librarian:

[pathname] lib196 [options] command

Where:

pathname is the device and/or directory where LIB196 resides.

options is an optional list of one or more options. See Section 4.1.1

for a detailed description of each option.

command is a command entry discussed in Section 4.2 and Section 4.3.

The librarian responds with the sign-on message then executes the given

command. After processing, control returns immediately to the host

operating system.

If your command line becomes too long you can use the -f option to

specify a command file.

4.1.1 OPTIONS

The format for a single option is:

-option_name [[{= | : | space}] argument]

where:

– (minus sign) must be prefixed to every option name.

option_name is the name of the option. This name is case sensitive.

= , : or space are used to separate the option name from the argument.

argument the argument for an option. This is optional.

Below are the detailed descriptions of options.

-? Display an explanation of options on stdout .

Chapter 44–4
L
IB
R
A
R
IA
N

-V Display version information on stdout and stop.

-case With this option the librarian works in a case sensitive

manner.

-f file Use file for command line processing. In this way you can

extend the command line. This option can be used more

than once.

4.1.2 CHARACTER SET

The LIB196 character set consists of the letters A through Z, the digits 0
through 9 and the special characters ?, @, and _.

4.2 LIB196 COMMANDS

Table 4-1 summarizes the LIB196 commands.

Command Description

a lib { file [(module[,...])] } [,...] adds modules to a library

c lib creates a library file

d lib module[,...] deletes modules from library

x lib module[,...] extracts modules from libraries

l[p] { lib [(module[,...])] |
 file [(module[,...])] } [,...]

lists modules contained in
libraries or modules, and
optionally lists all publics

r lib { file [(module[,...])] } [,...] replaces modules in a library

Table 4-1: LIB196 commands

LIB196 Librarian 4–5

• • • • • • • •

4.3 COMMAND DESCRIPTIONS

The remainder of this section explains each LIB196 command in detail.

The commands appear in alphabetical order.

Square brackets ([]) enclose optional arguments for controls. If you do

not specify optional arguments for a particular control, do not use an

empty pair of brackets.

Some commands use an optional list of arguments. Separate multiple

argument definitions with commas. Brackets surrounding a comma and

ellipsis ([,...]) indicate an optional list.

Curly braces ({ }) indicate that you must pick one of the options provided.

See Conventions Used in this Manual at the beginning of the manual for

special meanings of type styles used in by this manual.

Chapter 44–6
L
IB
R
A
R
IA
N

a (add)

Function

Add specified file to the library

Syntax

a library_file { file [(module [,...])] } [,...]

where:

library_file is the name of the library being added to.

file is the filename of the module.

module is the name of the module being added to the library.

Description

Use this command to add the specified files to the specified library file.

The input filenames can be the names of ordinary object files or object

library files. If the input file is an ordinary object file, all modules

contained within that file are added to the designated library. The

ordinary object file can be produced by a translator, RL196, or the extract

command (x) of LIB196.

If the input file is a library file, it can be specified with or without a list of

module names. If you do not specify any module names, the librarian

adds all of the modules contained in the input library to the destination

library. If you do specify a list of module names, the librarian adds only

those modules specified in the command into the destination library.

If the library does not exist, it is created first.

Examples

1. This command adds the three files sin , cos , and tan to the destination

library user .lib .

lib196 a user.lib sin, cos, tan

2. This command adds the three modules mod1, mod2, and mod3 of the

library lib.tmp to the destination library proj.tom .

lib196 a proj.tom lib.tmp(mod1, mod2, mod3)

LIB196 Librarian 4–7

• • • • • • • •

c (create)

Function

Create library file

Syntax

c library_file

where:

library_file is the name you give to the new library being created.

Description

Use this command to create an empty library file with the specified name.

If the file already exists, an error message is issued and the command

terminates. See Chapter 9 for a complete list of error messages.

Example

This command creates the empty library file new.lib .

lib196 c new.lib

Chapter 44–8
L
IB
R
A
R
IA
N

d (delete)

Function

Delete specified module from library

Syntax

d library_file module_name [,...]

where:

library_file is the name of the existing library.

module_name is the name of the module being deleted.

Description

Use this command to remove the specified modules from the designated

library file. You can delete only one module at a time from the library. If

any of the elements specified for deletion cannot be located, LIB196 issues

a warning.

Example

This command deletes the modules truth and value from the library

new.lib .

lib196 d new.lib truth,value

LIB196 Librarian 4–9

• • • • • • • •

x (extract)

Function

Builds an ordinary object file from the specified files and library members.

Syntax

x library_file module_name [,...]

where:

library_file is the name of the existing library.

module_name is the name of the module being extracted.

Description

Use this command to build an ordinary object file from the specified files

and library members. The extracted files are not deleted; they are copied

to destination object files for each extracted module.

Example

The modules worth and free are copied from new.lib and placed in

worth.obj and free.obj .

lib196 x new.lib worth,free

Chapter 44–10
L
IB
R
A
R
IA
N

l / lp (list)

Function

Print the name of the modules inside the library or the names inside the

module.

Syntax

l | lp { library_file [(module [,...])] |
 file [(module [,...])] } [,...]

where:

library_file is the name of the library.

file is the filename of the module.

module is the name of the module residing in the library.

Description

Use this command to print the names of the modules, and optionally, the

names of the public symbols. The librarian directs the listing to the

console output. Use lp to list all public symbols contained in those

modules with the module names.

Examples

1. List all module names in the library user.lib .

lib196 l user.lib

2. List all public symbols in the module temp in the library user.lib .

lib196 lp user.lib(temp)

LIB196 Librarian 4–11

• • • • • • • •

r (replace)

Function

Replace designated object in library file.

Syntax

r library_file { file [(module [,...])]} [,...]

where:

library_file is the name of the existing library.

file is the name of file containing the module.

module is the name of the new module.

Description

Use this command to replace object module or modules in the designated

library file with a new version. If the designated module does not exist in

the library file, the librarian adds the new version to the library.

Examples

1. Worth and free are replaced in the library new.lib .

lib196 r new.lib worth, free

2. The newer version of time in module counter replaces the older version

in library user.lib .

lib196 r user.lib counter(time)

Chapter 44–12
L
IB
R
A
R
IA
N

TASKING
Quality Development Tools Worldwide

5

USING THE
FPAL96 LIBRARY

C
H

A
P

T
E

R

Chapter 55–2
F

P
A

L
9
6
 L

IB
R

A
R

Y 5

C
H

A
P

T
E

R

Using the FPAL96 Library 5–3

• • • • • • • •

This chapter describes the different external data formats FPAL96

recognizes, the naming and parameter-passing conventions the library

follows, and the control variables FPAL96 uses when performing its

operations. This chapter also explains how to link the FPAL96 library to

your application.

5.1 DATA FORMATS SUPPORTED

FPAL96 supports three external data formats: single-precision

floating-point numbers, integers, and decimal floating-point numbers.

Each format is described in the following sections.

5.1.1 FLOATING POINT NUMBERS

A floating point value occupies four contiguous memory bytes that can be

viewed as 32 contiguous bits. The bits are divided into fields, as follows:

OSD1181

MSB LSB
sign

(1 bit)
exponent
(8 bits)

fraction
(23 bits)

Where:

sign is a 1-bit field that contains the value 0 if the floating point

value is positive; 1 if the floating point value is negative.

exponent is an 8-bit field that contains a value offset by 127; in other

words, the actual exponent can be obtained from the

exponent field by subtracting 127. An exponent field of all

0s or all 1s represents special cases that are described in the

following section. Otherwise, the floating point is called

normalized.

fraction is a 23-bit field that contains the fractional part of the floating

point value, represented in binary scientific notation.

The following examples illustrate these concepts:

1. The following binary number is equivalent to the decimal value of 10.25 :

1010.01B

Chapter 55–4
F

P
A

L
9
6
 L

IB
R

A
R

Y

The dot (.) in this number is a binary point. In binary scientific notation,

the same number can be represented as:

1.01001B*2 3

The binary point is to the immediate right of the most-significant digit.

The digits 01001 represent the fraction, and 3 is the exponent.

The complete 32-bit representation is:

0 10000010 01001000000000000000000

Where:

• The sign bit is 0 because the value is positive.

• The exponent field contains the binary equivalent of

127 + 3 = 130 .

• The leftmost digits of the fraction field are 01001 , and the

remainder of this field is all 0s.

The contents of the four contiguous memory bytes are:

highest address: 01000001
 00100100
 00000000
lowest address: 00000000

2. In binary, the fraction 1/16 or 0.0625 is represented as:

0.0001B

In binary scientific notation, the fraction 1/16 is represented as

1.0000B*2 –4

The actual exponent, –4 , is represented as 123 (the sum of +127 and -4),

and the fraction field contains all 0s.

The most-significant digit of the fraction field is not actually represented,

because by definition, this digit contains a value of 1 unless the floating

point number is 0 or denormalized. Section 5.1.1.1 discusses

representation of 0 and denormalized values.

Using the FPAL96 Library 5–5

• • • • • • • •

Floating point values can range approximately from 8.43*10 –37 to

3.38*10 38. The greatest finite number is 2104 *(2 24–1) , which is

approximately 3.38*10 38. The smallest normalized positive number is

2–126 , which is approximately 8.43*10 –37 . The smallest denormalized

positive number is 2–149 , which is approximately 1.4*10 –45 in scientific

notation.

ASM196 uses the floating point number format for the real data type, and

C196 uses this format for the float , double , and long double data

types. You can use the floating point number format in load, store, unary,

and binary operations.

5.1.1.1 SPECIAL FLOATING POINT NUMBERS

Special floating point numbers are identified by an exponent field with all

0 or all 1 values. The four kinds of special floating point numbers are

Not-a-Number (NaN), denormal, infinity, and zero. The special floating

point type is determined by the relationship between the fraction and

exponent in the single-precision format. Table 5-1 summarizes this

relationship.

Exponent Fraction Value Name

all 0s zero (–1)s*0 zero

all 1s zero (–1)s*infinity infinity

all 0s non–zero (–1)s*(0.F)*2–126 denormal

all 1s non–zero NaN Not–a–Number

Table 5-1: Relationship between exponent and fraction

Zeros

A zero is a number whose exponent and fraction fields contain all 0s. A

sign bit of 0 indicates the number is approaching zero from the positive

numbers. You can write this number as +0 or simply 0. A sign bit of 1
indicates the number is approaching zero from the negative numbers.

Write this number as -0. In other words, if a small positive number is

rounded to 0, the result is +0. If a small negative number is rounded to 0,

the result is –0 . Table 5-2 summarizes the effect of performing

operations on either +0 or –0 .

Chapter 55–6
F

P
A

L
9
6
 L

IB
R

A
R

Y

Type Operation Result

addition

+0 plus +0 +0
–0 plus –0 –0
+0 plus –0, –0 plus +0 see notes
+X plus –X, –X plus +X see notes
#0 plus #X, #X plus #0 #X

subtraction

+0 minus –0 +0
–0 minus +0 –0
+0 minus +0, –0 minus –0 see notes
+X minus +X, –X minus –X see notes
#0 minus #X !X

multiplication

+0 * +0, –0 * –0 +0
+0 * –0, –0 * +0 –0
+0 * +X, +X * +0 +0
+0 * –X, –X * +0 –0
–0 * +X, +X * –0 –0
–0 * –X, –X * –0 +0
+X * +Y, –X * –Y +0 (when underflow)
+X * –Y, –X * +Y –0 (when underflow)

division

#0/#0 invalid operation
#X/#0 zero divide
+0/+X, –0/–X +0
+0/–X, –0/+X –0
–X/–Y, +X/+Y +0 (when underflow)
–X/+Y, +X/–Y –0 (when underflow)

remainder

#0 REM #0 invalid operation
#X REM #0 invalid operation
+0 REM #X +0
–0 REM #X –0

Using the FPAL96 Library 5–7

• • • • • • • •

ResultOperationType

sqrt

–0 –0
+0 +0

NOTES:
The sign of zero is determined by the rounding mode as follows:
 + for nearest, up or truncate
 – for down
X and Y denote any nonzero operands.
denotes either sign (+ or –).
! denotes the complement of the sign of X.

Table 5-2: Operations executed with zero operands

Infinities

Infinity is represented by the exponent field containing all 1s and the

fraction field containing all 0s. A sign bit of 0 indicates +infinity, and a

sign bit of 1 indicates -infinity. Table 5-3 summarizes the effect of

performing operations on either infinity value.

Type Operation Result

addition

+infinity plus +infinity +infinity
–infinity plus –infinity –infinity
+infinity plus –infinity invalid operation
–infinity plus +infinity invalid operation
#infinity plus #X $infinity
#X plus #infinity $infinity

subtraction

+infinity minus –infinity +infinity
–infinity minus +infinity –infinity
+infinity minus +infinity invalid operation
–infinity minus –infinity invalid operation
#infinity minus #X $infinity
#X minus #infinity !infinity

multiplication

#infinity * #infinity ⊕ infinity
#infinity * #X ⊕ infinity
#X * #infinity ⊕ infinity
#0 * #infinity invalid operation
#infinity * #0 invalid operation

Chapter 55–8
F

P
A

L
9
6
 L

IB
R

A
R

Y

ResultOperationType

division

#infinity / #infinity invalid operation
#infinity / #X ⊕ infinity
#X / #infinity ⊕ 0

remainder

#infinity REM #infinity invalid operation
#infinity REM #X invalid operation
#X REM #infinity #X

sqrt

+infinity +infinity
NOTES:
X denotes a finite operand.
denotes either sign (+ or –).
$ denotes the sign of the original infinity operand.
! denotes the complement of $.
⊕ denotes the exclusive OR of the original operand signs.

Table 5-3: Operations executed with infinity operands

Denormalized Numbers

A normalized number is a number whose most-significant digit is a 1.

This digit does not appear in the actual representation. Therefore, the

smallest positive normalized number that can be represented using the

concept is 1.0B*2 –126 . The actual exponent, –126 , is represented as 1
(i.e., 127–126), and the fraction field contains all 0s.

By assuming that the most-significant digit is a 0, the denormalized

floating point format allows smaller numbers to be represented. You can

represent a denormalized number by setting the exponent field to all 0s.

The number is assumed to have an exponent of –126 , and its fraction

does not have a hidden leading 1. To distinguish it from zero, the fraction

field must not be all 0s.

For example, the number 2–130 can be represented as 0.0001B*2 –126 .

Therefore, this value is represented as follows:

• The sign bit is 0, because the value is positive.

• The exponent field contains all 0s to indicate a denormalized

number.

• The leftmost digits of the fraction field are 0001 , and the remainder

of this field is all 0s.

Using the FPAL96 Library 5–9

• • • • • • • •

Any access to denormalized operands causes a denormal exception.

However, if this exception is masked (set to 1), FPAL96 continues to use

the denormalized operand.

Not-a-Numbers (NaNs)

A floating point number is called a Not-a-Number (NaN) if its exponent is

all 1s and its fraction is nonzero. The two kinds of NaNs are signalling

NaNs and quiet NaNs.

The most-significant bit of the fraction field of a signalling NaN is a 0.

You can set the remaining bits in the fraction to suit your own purposes.

Attempting to load or operate on a signalling NaN raises an

invalid-operation exception. Signalling NaNs, however, are useful in

detecting operations on uninitialized variables. To do so, you must supply

an exception handler to manage the use of an uninitialized variable, then

enable the invalid-operation exception. If you set an uninitialized floating

point to a signalling NaN, you can determine when an invalid floating

point number was used as an operand.

The most-significant bit of the fraction field of a quiet NaN is a 1. FPAL96

sets the remaining bits in the fraction area to indicate the exception type

and the address where the exception occurred. The fraction field has the

following format:

1 0 0 exception addr

22 19 16 15 0

OSD1182

Where:

exception is a 4-bit field that contains the exception number. Table 5-4

contains the list of exception numbers.

addr is a 16-bit field that contains the address of the instruction

following the FPAL96 function call that caused the exception.

Chapter 55–10
F

P
A

L
9
6
 L

IB
R

A
R

Y

Note that the addr field contains 16 bits and uniquely identifies the

location of the FPAL96 call in all cases except for an 80C196NT component

executing in extended mode. For an 80C196NT component in

compatible mode, addr gives the low 16 bits of the location, and the

high 8 bits of the 24-bit address are assumed to be 0FFH. For an

80C196NT component in extended mode, the high 8 bits of the 24-bit

address are not recorded, but in most cases the low 16 bits of the address

provide sufficient information for you to deduce the exact location of the

call.

Table 5-4 describes the exceptions that cause a quiet NaN and lists the

corresponding code that is moved into the FPACC when a quiet NaN

occurs.

Code Number Exception

0000 The operand is a signalling NaN.

0001 A multiplication of zero by infinity and FPACC was zero.

0010 A multiplication of zero by infinity and FPACC was
infinity.

0011 A division of zero by zero occurred.

0100 A division of infinity by infinity occurred.

0101 An addition or subtraction leads to subtraction of
infinities with the same sign.

0110 The result is the square root from the negative nonzero.

0111 The result is the remainder when FPACC was infinity.

1000 The result is the remainder from a division by zero.

1001 Conversion from floating point to integer or decimal
occurred when a true result cannot be obtained.

1010 In decimal–to–floating point conversion with unmasked
overflow or underflow, the exponent is too large or too
small for conversion.

1011 Comparison with unordered operands occurred.

1100 The FPACC is a signalling NaN.

Table 5-4: Quiet NaN exceptions

If one of the operands is a quiet NaN, the result of the operation is the

quiet NaN. If both operands are quiet NaNs, the result of the operation is

the quiet NaN that was originally in the FPACC.

Using the FPAL96 Library 5–11

• • • • • • • •

5.1.2 INTEGERS

Integer values are represented as long (32-bit) integers in two's

complement format. Internally, integers are arranged so that the

least-significant byte occupies the lowest address, the second

least-significant byte occupies the second lowest address, and so on. You

can use an integer only as an operand during a load operation or as the

result of a store operation to convert between integer and floating point

format.

5.1.3 DECIMALS

Decimal floating-point numbers are represented as two consecutive binary

numbers: a 32-bit integer that represents the mantissa and an 8-bit integer

that represents the exponent. To use decimals in your program, use the

declarations shown below.

For ASM196, declare the following symbols in the data segment:

dseg
decimal_type:

mantissa: dsl 1
exponent: dsb 1

For C196, declare the following structure:

struct decimal_type {
long int mantissa; /* signed */
short char exp; /* signed */

}

The value represented by a decimal floating-point number is the result of

the operation M*10E. You can use a decimal number only as an operand

in a load operation or as the result of a store operation to convert between

decimal and floating point format.

Chapter 55–12
F

P
A

L
9
6
 L

IB
R

A
R

Y

5.2 CONVENTIONS

This section describes the naming and parameter-passing conventions

used by the FPAL96 library.

5.2.1 NAMING CONVENTIONS

FPAL96 uses several naming conventions to help you remember the names

of the routines you need:

• All FPAL96 procedures start with the prefix fp .

• All load operations start with fpld .

• All store operations start with fpst .

• Operations using floating point operands have no suffix, for

example, fpadd .

• Operations using integer operands have the suffix int , for

example, fpldint .

• Operations using decimal operands have the suffix dec , for

example, fpstdec .

FPAL96 also internally uses some public procedures and variables that start

with fp . To avoid duplicating FPAL96 names, do not define public

symbols beginning with the letters fp .

5.2.2 PARAMETER PASSING

The floating-point library uses the following parameter-passing

conventions:

• FPAL96 pushes parameters onto the stack in left-to-right order. A

byte parameter (8 bits) is pushed onto the stack as the low-order

byte of a word. A word parameter (16 bits) is pushed as a word. A

parameter longint or real (floating point) parameter (32 bits) is

pushed as two words; the high-order word is pushed first.

• FPAL96 returns function results to a global double-word register

called PLMREG. An ASM196 program that uses FPAL96 services must

define this register as external as shown below:

rseg
extrn PLMREG:dword

Using the FPAL96 Library 5–13

• • • • • • • •

If the register contains a word value, the low-order word is used.

Otherwise, the full register is used.

• FPAL96 passes basic parameters, such as byte, word, integers, long

integers, floating point numbers, etc., by value.

• FPAL96 passes structure parameters, such as decimal numbers and

save areas, by address, that is, as a near or far pointer.

5.3 FPAL96 CONTROL VARIABLES

This section describes three of the variables FPAL96 uses when performing

floating-point operations.

5.3.1 FLOATING-POINT ACCUMULATOR

All of the floating-point operations use a data structure called the

floating-point accumulator (FPACC) as one of the operands, or as the

place to store the result, or both. The FPACC value represents the result of

the last FPAL96 operation in floating point format, except for store

operations. Store operations do not change the FPACC but rather convert

and store it in an external format.

5.3.2 BUILT-IN VARIABLES

FPAL96 has two built-in variables that you can use in processing

exceptions: the control word and the status word.

You can set the control word to determine the response to various

exception conditions and to establish the rounding you desire. Section

5.3.2.1 discusses the format of the control word.

The status word is divided into two bytes. The first byte, called the error

byte, indicates any pending exceptions. The second byte shows the status

of the FPACC after an operation is executed. This second byte also holds

the result of an fpcomps or fpcompq operation, described in Chapter 6.

You can use the control word and status word with your exception

handler to continue a flagged operation or to analyze results when

debugging.

Chapter 55–14
F

P
A

L
9
6
 L

IB
R

A
R

Y

5.3.2.1 CONTROL WORD

The control word consists of 16 bits structured in the following bit format:

15

7

0

0

RC PM UM OM ZM DM IM

OSD1183

8 7

0 7Byte 1 Byte 0

The bits stand for the following functions:

IM is the invalid-operation mask.

DM is the denormal mask.

ZM is the zero-divide mask.

OM is the overflow mask.

UM is the underflow mask.

PM is the precision mask.

RC is the round control.

The settings of bits 0 through 5 determine whether exceptions are handled

by default recovery or by your own exception handler. If a bit is set to 1,

the exception condition is masked and FPAL96 calls the default exception

handler when that type of exception occurs. Otherwise, FPAL96 calls the

exception handler you provided, using the fpseteh function, when the

bit is unmasked (0).

Bits 10 and 11 determine how rounding is done. The combination codes

and their meanings are as follows:

00 round to nearest

01 round down

10 round up

11 truncate

Rounding modes are discussed in the next section.

Using the FPAL96 Library 5–15

• • • • • • • •

The other bits in the control word are reserved for future implementations.

FPAL96 initializes the control word to 003FH (i.e., round-to-nearest mode

and all exceptions masked). You can change this value with the fpldcw
function described in Chapter 6.

Rounding Modes

FPAL96 performs all of its operations with infinite precision. When an

infinitely precise result cannot be represented by the given format, FPAL96

performs rounding. FPAL96 supports four different rounding modes:

round to the nearest, round down, round up, and truncate. You choose

the rounding mode that best suits your application by setting the control

word (bits 10 and 11) appropriately. If r is the infinitely precise result,

and r_up and r_down are exactly representable numbers that lie closest

to r (i.e., r_down<r<r_up), then r is rounded as described in Table 5-5.

Rounding mode Bit setting in
Control Word

Rounded result

round to nearest 00 FPAL96 delivers the result closer to r of
r_down or r_up. If the numbers are
equally close, FPAL96 delivers the
number with zero as its least–significant
bit.

round down 01 FPAL96 delivers the r_down (toward
–infinity) result.

round up 10 FPAL96 delivers the r_up (toward
+infinity) result.

truncate 11 FPAL96 delivers the smaller number of
r_down (round toward 0) or r_up.

Table 5-5: FPAL96 rounding modes

Rounding introduces an exception in the result. The exception is less than

one unit in the last place to which the result is rounded. Round to nearest

is the default mode and is suitable for most applications. This mode

provides the most accurate and statistically unbiased estimate of the true

result. Truncate helps control conversions to integers that follow

conventions embedded in programming languages such as FORTRAN and

C.

Chapter 55–16
F

P
A

L
9
6
 L

IB
R

A
R

Y

Round up and round down are directed rounding, which you can use to

implement interval arithmetic. Interval arithmetic generates a certifiable

result independent of the occurrence of rounding and other exceptions.

You can compute the upper and lower bounds of an interval by executing

the algorithm twice, rounding up in one pass and rounding down in the

other.

Section 7.4 describes the case when r is infinity or approaches infinity.

5.3.2.2 STATUS WORD

The status word also contains 16 bits and is structured in the following

format:

PE UE OE ZE DE IESTAT C1 C0

OSD1184

15

7

0

0

8 7

0 7Byte 1 Byte 0

The bits stand for the following functions:

IE is the invalid operation.

DE is the denormal.

ZE is the zero divide.

OE is the overflow.

UE is the underflow.

PE is the precision.

C0 and C1 are set by fpcomps or fpcompq (see Chapter 6).

STAT is a 4-bit field that indicates the FPACC status as defined in

Table 5-5-6.

Using the FPAL96 Library 5–17

• • • • • • • •

STAT Value FPACC Value

0000 +0

0001 +infinity

0010 +denormal

0011 signalling NaN

0100 +normal

0101 (reserved)

0110 (reserved)

0111 quiet NaN

1000 –0

1001 –infinity

1010 –denormal

1011 signalling NaN

1100 –normal

1101 (reserved)

1110 (reserved)

1111 quiet NaN

Table 5-6: STAT field in the status word

Error Byte

Byte 0 of the status word is called the error byte. When an exception

occurs after a floating-point operation, FPAL96 sets the corresponding

exception flag bit in the error byte to 1, then it checks to see if the

corresponding bit in the control word is masked (1) or unmasked (0) and

calls the default or your exception handler respectively.

Processing Exceptions Using the Status Word

Your exception handler normally reads the status word using fpstsw
when using ASM196. The C196 compiler implicitly call fpstsw when

testing the status word to determine what caused the exception. To

determine the exception, do the following code:

You can determine the cause by ANDing the error byte with
NOT(control–word).

Chapter 55–18
F

P
A

L
9
6
 L

IB
R

A
R

Y

control_word = fpstcw();
excption_bit = struct_name .Status_Word & (~ control_word);
/* You can find the structure declaration in the fpal96.h file
*/

The lower byte of excption_bit variable contains the value of the error

byte. For example, if the last operation generated an invalid-operation

exception, excption_bit contains the value 0000000000000001 .

Process the exception accordingly, then reset the exception bit to 0 in the

error byte.

The exception bits 0 through 5 are sticky bits. That is, once an exception

has occurred, the corresponding bit remains set until you explicitly reset it

using the fpcleb , fprstor , or fpinit function. See Chapter 6 for an

explanation of each function. See Chapter 7 for instructions on how to

write your own exception handler.

5.4 DECLARATION AND LINKAGE

The following sections show you how to declare the floating-point

functions you want to use and how to link the FPAL96 library to your

application program. See Chapter 6 for complete examples for each

function.

5.4.1 DECLARING FLOATING-POINT FUNCTIONS

To use the floating-point libraries, you must declare the functions as

externals inside your program. The following sections show you how to

declare them as externals.

5.4.1.1 IN AN ASM196 PROGRAM

Since FPAL96 uses the PL/M-96 calling convention, you must use the

following rules when calling FPAL96 functions from ASM196 routines:

• Use the PL/M-96 calling sequence, given for each procedure, as a

basis.

• Declare FPAL96 functions as externals using the extrn directive.

• For an 80C196NT component operand in extended (far code)

mode, use the extended call (ecall) instruction. For all other cases,

use the call instruction.

Using the FPAL96 Library 5–19

• • • • • • • •

• Parameters are pushed onto the stack in a left-to-right order.

• A parameter of type byte or shortint is pushed as a word and is

contained in the low-order byte of this word.

• A parameter of type dword , longint , or real is pushed as two

words: first the high-order word then the low-order word. Thus,

the low-order word has the lower address.

• Any address (pointer) parameter is pushed as a word. NT near

pointers are pushed as words, far pointers are pushed as dwords.

• Typed FPAL96 function return their value in PLMREG. PLMREG must

be defined as external using the extrn directive.

• You can specify operands using any valid addressing modes, except

for destination operands which cannot use immediate.

See the 80C196 Assembler User's Guide, listed in Related Publications, for

more information on ASM196 conventions, instructions, and directives.

5.4.1.2 IN AN C196 PROGRAM

The C196 compiler automatically translates expressions containing floating

point variables or constants to the correct sequence of FPAL96 function

calls for binary operations. These operations include addition, subtraction,

multiplication, division, modulo, and comparison.

To explicitly use any of the FPAL96 functions, you need only to include

the fpal96.h file inside your program using the #include directive. C: A
Reference Manual, listed in Related Publications, tells you how to use the

#include directive.

5.4.2 SELECTING THE CORRECT LIBRARY

The FPAL96 library comes in multiple versions. One library for each

microcontroller family.

Based on the model control given to the linker, the linker searches for the

correct fpal96.lib library in the library search path. See Section 2.6.2 for

more information on the the library search path.

Chapter 55–20
F

P
A

L
9
6
 L

IB
R

A
R

Y

5.4.3 INITIALIZING THE FLOATING-POINT LIBRARY

Before you can use floating point routines in your C or assembly source,

the FPAL96 library must be initialized.

In assembly, you can do this by a call to fpinit :

cseg
extrnfpinit
call fpinit ; Initialize FPAL96
 ...

In C, it depends on the OMF version what you should do. In the default

situation, OMF V3.2, you do not have to put anything special in your C

source. The initialization is done in the cstart.obj module. So, with

OMF V3.2 you only have to link cstart.obj with your object modules

and libraries.

In older OMF versions (< V3.2), you have to call the function fpinit() ,

which is normally done in the C function _main() . See the file _main.c
delivered with the product for more details.

5.4.4 LINKING THE FLOATING-POINT LIBRARY

Because FPAL96 is an 80C196 application library, you must use RL196 to

link it with your application. You must specify the name of the library at

the end of the input file list to the RL196 linker. The linker scans your

program and links only those procedures you need. Procedures you do

not use, even if they are declared as externals in your program or in one

of your include files, are not linked to your application. The following

example shows the RL196 invocation line:

For 16-bit components:

rl196 input_list , fpal96.lib [to output_file]
model(kc) [controls]

For a 24-bit component in compatible code mode:

rl196 input_list , fpal96.lib [to output_file]
model(nt–c) [controls]

Using the FPAL96 Library 5–21

• • • • • • • •

For a 24-bit component in extended code mode:

rl196 input_list , fpal96.lib [to output_file]
model(nt–e) [controls]

Where:

input_list is a list of object files or library files. If you are working

with C196, the list must include c96.lib .

output_file is the optional file that receives the output module.

controls is an optional list of RL196 controls.

5.5 EXAMPLES USING FPAL96 ROUTINES

For the examples the parameters are defined as follows:

anyVar A variable of type any , where any can be real, long

(integer), integer, short (integer), word, byte, or decimal.

anyOpr An operand of type any .

.anyOpr The near or far address of an operand. That is, the full

24-bit address of an operand for an 80C196NT component

operated in compatible or extended mode; otherwise, it

contains the 16-bit address of an operand.

CRef The near or far address of a code entry point. That is, it is

equivalent to the ”@” operator producing a 24-bit address

for an 80C196NT component in extended mode, and to the

". " operator producing a 16-bit address for any other case.

CODEPTR A near or far pointer to a code entry point. That is, it is

equivalent to "pointer " which holds a 24-bit address for an

80C196NT in extended mode, and to "address " which holds

a 16-bit address for any other case.

This terminology is also used in the sections delineating usage of the

various FPAL96 procedures unless otherwise noted.

Examples

The following examples of FPAL96 function invocation use the

conventions described in Section 5.2. You can find additional examples

under the description of each function in Chapter 6.

Chapter 55–22
F

P
A

L
9
6
 L

IB
R

A
R

Y

1. The following ASM196 example for a non-80C196NT program invokes the

fplddec function:

dseg
shortopr: dsb 1
decopr: dsl 1 ; Mantissa.
 dsb 1 ; Exponent.

cseg
extrn fpinit, fplddec
call fpinit ; Initialize FPAL96.
push shortopr ; ShortOpr and following byte
 ; are pushed onto the stack.
push #decopr ; Address of DecOpr is pushed
 ; onto the stack.
call fplddec ; Convert to floating point
 ; in FPACC.

The same function is written in C196 as follows:

#include <fpal96.h> /* Include header file. */
short shortopr /* Number of digits to the
 right of the decimal
 point. */
DecimalType decopr; /* DecimalType is defined in
 fpal96.h */

main()
{
 shortopr = 3; /* 3 digits after the decimal
 point. */
 fplddec(shortopr, &decopr);
}

Using the FPAL96 Library 5–23

• • • • • • • •

ASM196 calling sequence for an 80C196NT program with far code and

arguments in a near data segment:

dseg near
ShortOpr: dsb 1
DecOpr: dsl 1 ;Mantissa
 dsb 1 ;Exponent

cseg far
extrn fplddec:entry

push ShortOpr ;ShortOpr and following byte are pushed
push 0 ;High order bits of address of DecOpr
 ;are zero.
push #DecOpr ;Low order bits of address of DecOpr
 ;are pushed.
ecall fplddec ;Convert to floating point in FPACC.

ASM196 calling sequence for an 80C196NT program with far code and

arguments in a far data segment:

rseg
reg: dsb 1

dseg far
ShortOpr: dsb 1
DecOpr: dsl 1 ;Mantissa
 dsb 1 ;Exponent

cseg far
extrn fplddec:entry

eldb reg, ShortOpr
push reg ;ShortOpr and following byte are pushed
push #msw(DecOpr) ;High order bits of address of DecOpr
 ;are pushed.
push #lsw(DecOpr) ;Low order bits of address of DecOpr
 ;are pushed.
ecall fplddec ;Convert to floating point in FPACC.

Chapter 55–24
F

P
A

L
9
6
 L

IB
R

A
R

Y

2. The following ASM196 example for non-80C196NT program, or for an

80C196NT program with near code and variables in a near data segment

invokes the fpst function:

rseg
extrn plmreg:word

dseg
realvar: dsr 1

cseg
extrn fpinit, fpst

call fpinit ; Initialize FPAL96.
call fpst ; Store FPACC in PLMREG.
st plmreg, realvar ; Move bits 0–15.
st plmreg+5, realvar+5 ; Move bits 16–31.

The same function is written in C196 as follows:

#include <fpal96.h> /* Include FPAL96 header file. */
float realvar;

main()
{
 realvar = 3.1; /* Initialize realvar */
 fpld(realvar); /* Load realvar to FPACC */
}

ASM196 calling sequence for an 80C196NT with near code and variables in

a far data segment:

rseg
extrn plmreg:word

dseg far
RealVar: dsr 1

cseg near
extrn fpst:entry

call fpst ;Store FPACC in PLMREG
est plmreg, RealVar ;Move bits 0–15
est plmreg+5, RealVar+5 ;Move bits 16–31

Using the FPAL96 Library 5–25

• • • • • • • •

3. The following ASM196 calling sequence for a non-80C196NT program, or

for an 80C196NT program with near code and arguments in a near data

segment invokes the fpadd function:

dseg
realvar: dsr 1

cseg
extrn fpinit, fpadd

call fpinit ; Initialize FPAL96.
push realvar+5 ; Push high–order word (sign
 ; + exp + 7 bits of the
 ; fraction) onto the stack.
push realvar ; Push low–order word (16
 ; least–significant bits of
 ; the fraction) onto the
 ; stack.
call fpadd ; Add to FPACC.

The same function is written in C196 as follows:

#include <fpal96.h> /* Include FPAL96 header file */

float realvar; /* Define floating point variable */

main()
{
 fpld(1.5); /* Store 1.5 in FPACC */
 fpadd(5.3); /* Add 5.3 to FPACC */
 realvar = fpst(); /* Store result in realvar */
}

ASM196 calling sequence for 80C196NT program with far code and

arguments in a near data segment:

dseg near
RealVar: dsr 1

cseg
extrn fpadd:entry

push RealVar+5 ; High–order word (s+exp+7 ms bits of
 ; frac.)
push RealVar ; Low–order word (16 1s bits of frac.)
ecall fpadd ; add to FPACC

Chapter 55–26
F

P
A

L
9
6
 L

IB
R

A
R

Y

ASM196 calling sequence for an 80C196NT program with far code and

arguments in a far data segment:

rseg
reg: dsw 1

dseg far
RealVar: dsr 1

cseg far
extrn fpadd:entry

eld reg, RealVar+5 ; High–order word (s+exp+7 ms bits of
 ; frac.)
push reg
eld reg, RealVar ; Low–order word (16 1s bits of frac.)
push reg
ecall fpadd ; Add to FPACC

TASKING
Quality Development Tools Worldwide

6

FPAL96
FUNCTIONS
REFERENCE

C
H

A
P

T
E

R

Chapter 66–2
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

6

C
H

A
P

T
E

R

FPAL96 Function Reference 6–3

• • • • • • • •

6.1 INTRODUCTION

FPAL96 operations can be divided in three groups: administrative, load and

store, and unary and binary operations. This chapter describes each group

and the functions associated within the group.

See Section 6.7 for a description of each function. The functions are

arranged in alphabetical order. Chapter 7 describes the cause or causes of

each exception.

6.2 ADMINISTRATIVE OPERATIONS

The following administrative functions control the execution environment

in which FPAL96 works:

fpinit Initializes FPAL96.

fpldcw Loads the control word.

fpstcw Stores the control word.

fpstsw Stores the status word.

fpcleb Clears the error byte.

fpsave Saves the state of FPAL96.

fprstor Restores the state of FPAL96.

fpseteh Sets the exception handler.

6.3 LOAD OPERATIONS

Load functions load various operand types (common constants, floating

point numbers, integers, and decimals) into the floating-point accumulator

(FPACC). FPAL96 converts non-floating point operands into floating point

operands before performing these load operations.

Loading operations include:

fpldz Loads the FPACC with +0.0 .

fpld1 Loads the FPACC with +1.0 .

Chapter 66–4
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpld Loads the FPACC with a floating point operand.

fpldint Converts an integer operand to floating point and loads it

into the FPACC.

fplduint Converts an unsigned integer operand to floating point and

loads it into the FPACC.

fplddec Converts a decimal operand to floating point and loads it into

the FPACC.

6.4 STORE OPERATIONS

Store functions first convert the value of the FPACC into the desired format

then store the converted value into the destination operand.

Store operations include:

fpst Stores the value in the FPACC into a floating point variable.

fpstint Stores the value in the FPACC into an integer variable after

converting it from floating point format to integer format.

fpstuint Stores the value in the FPACC into an usigned integer

variable after converting it from floating point format to

integer format.

fpstdec Stores the value in the FPACC into a decimal variable after

converting it from floating point format to decimal format.

6.5 UNARY OPERATIONS

Unary functions operate on the FPACC value, then place the result in the

FPACC. This group consists of the following functions:

fpneg Sets the sign of the FPACC value to negative.

fpabs Sets the sign of the FPACC value to positive.

fpsqrt Takes the square root of the number in the FPACC.

fprndint Rounds the FPACC value to an integer value.

FPAL96 Function Reference 6–5

• • • • • • • •

6.6 BINARY OPERATIONS

Binary functions accept an operand in floating point format, then perform

the specified operation on that operand and the FPACC accumulator, as

shown in the following process:

FPACC ... FPACC operation y

Where:

operation is the binary function to be performed.

y is the operand in floating point format.

The operation function operates on the initial FPACC value and the

value indicated by y , then places the result in the FPACC accumulator, as

indicated by the left arrow (…).

For example, fpadd (RealOpr) adds the FPACC value and the value of

RealOpr . The result is then placed in the FPACC. The fpcomps and

fpcompq functions, however, do not follow this pattern.

Binary functions include:

fpadd Adds a floating point number to the number in the FPACC.

fpsub Subtracts a floating point number from the number in the

FPACC.

fpmul Multiplies a floating point number by the number in the

FPACC.

fpdiv Divides the number in the FPACC by a floating point

operand.

fprem Finds the remainder of a division operation.

fpcomps Compares a floating point number with the value in the

FPACC for numerical order.

fpcompq Does the same comparison as fpcomps , but does not raise

an invalid operation exception even if one of the operands is

a NaN.

See Section 5.1.1.1 for the results of operations that use zeroes and

infinities.

Chapter 66–6
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

6.7 FUNCTIONS LIST

The following pages explain each function in detail. The functions appear

in alphabetical order.

FPAL96 Function Reference 6–7

• • • • • • • •

fpabs

Function

Sets the sign of the FPACC value to positive.

Syntax

fpabs

Description

Use fpabs to set the sign of the FPACC value to positive. This operation

generates an invalid-operation exception if the FPACC is a signalling NaN.

See Chapter 7 for more information on exceptions.

Example

The following examples show how to call the fpabs function in ASM196,

and C196. The examples contain the minimum lines of code needed to

obtain a successful translation.

1. The following example illustrates the code needed for ASM196:

 test module main

 rseg
 realopr: dsr 1
 extrn PLMREG
 sp equ 18h

 cseg at 2080H
 extrn fpinit, fpabs, fpld, fpst

start: ld sp, #stack
 call fpinit ; Initialize FPAL96.
 push #0BFC0H ; Push –1.5 onto the stack.
 push #0
 call fpld ; Load FPACC with –1.5
 call fpabs ; Convert to positive.
 call fpst ; Load PLMREG with FPACC.
 st PLMREG+2, realopr+2 ; Load realopr with
 ; PLMREG
 st PLMREG,realopr ; value.
 end

Chapter 66–8
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 and */
#include <math.h> file. /* math.h header files. */

float realopr, rv;

main()
{
 rv = –1.5;
 realopr = fabs(rv); /* fabs is a run–time
 library function
 declared in the
 math.h header file.
 */
}

invalid-operation exception

Not-a-Number

FPAL96 Function Reference 6–9

• • • • • • • •

fpadd

Function

Adds a floating point number to the FPACC value.

Syntax

fpadd(real_var)

where:

real_var is a variable in floating point format.

Description

Use fpadd to add the value of the floating point operand to the FPACC

value. FPAL96 places the sum back in the FPACC. Table 6-1 shows the

FPACC content when adding zero or infinity numbers.

Operation Result

+0 plus +0 +0

–0 plus –0 –0

+0 plus –0, –0 plus +0 see the notes

+X plus –X, –X plus +X see the notes

#0 plus #X, #X plus #0 #X

+infinity plus +infinity +infinity

–infinity plus –infinity –infinity

+infinity plus –infinity invalid operation

–infinity plus +infinity invalid operation

#infinity plus #Z $infinity

#Z plus #infinity $infinity

NOTES:
The sign of zero is determined by the rounding mode as follows:
 + for nearest, up or truncate
 – for down
X and Y denote any nonzero operands.
denotes either sign (+ or –).

Table 6-1: Addition with zero and infinity operands

Chapter 66–10
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

The fpadd function can generate an invalid operation, denormal,

overflow, underflow, or precision exception. See Chapter 7 for more

information on these exceptions.

Example

The following example shows how to call the fpadd function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

The following example illustrates the code needed for ASM196:

 test module main
 rseg
 realopr: dsr 1 ; Define floating point
 ; operands.
 result: dsr 1

 extrn PLMREG
 sp equ 18h

 cseg at 2080H
 extrn fpinit, fpadd, fpst, fpld

start: ld sp, #stack ; Load stack pointer.
 call fpinit ; Initialize FPAL96.
ldacc: push #404DH ; Load 3.21 value to FPACC.
 push #70A4H
 call fpld
ldopr: ld realopr+2, #3FC0H ; Load realopr with 1.5
 ld realopr, #0 ; to realopr.
 push realopr+2 ; Push the high–order
 ; part
 push realopr ; Push low–order part of
 ; operand onto the
 ; stack.
 call fpadd ; Add 1.5 to 3.21.
sum: call fpst
 st PLMREG+2, result+2 ; Put sum into result.
 st PLMREG,result
 end

FPAL96 Function Reference 6–11

• • • • • • • •

You need not call fpadd explicitly in C196. The compiler calls the

function implicitly when performing the operations shown below. Make

sure fpinit is called before performing any floating-point operation.

#include <fpal96.h>
float a,b;

a = 1.1;
b = a + 2.5;

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

denormal exception
infinity
invalid-operation exception
overflow exception

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

precision exception
underflow exception
zero

Chapter 66–12
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpcleb

Function

Clears the error byte

Syntax

fpcleb(byte_val)

where:

byte_val is a byte value.

Description

Use fpcleb to clear the error byte after an exception occurs. This

function sets the error byte to zero if the value of the byte variable is

greater than 7. Otherwise, only the bit designated by the variable in the

error byte is cleared. For example, if you include the line, fpcleb(0) ,

FPAL96 only clears bit 0 of the error byte.

Examples

The following examples show how to call the fpcleb function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
rseg
clrvar: dsw 1 ; Defined as a word to

; guarantee word
; alignment.

cseg at 2080H
extrn fpinit, fpcleb ; Declare fpinit and

; fpcleb as externals.
br start

excpt_hndlr:
ldbze clrvar, #08H ; Load the value of

; eight
; in bytevar and sign
; extend.This clears all
; the bits in the error
; byte.

FPAL96 Function Reference 6–13

• • • • • • • •

push clrvar ; Push bytevar onto the
; stack.

call fpcleb ; Call fpcleb.
ret

start:
call fpinit ; Initialize FPAL96
push #excpt_hndlr ; Push exception handler

; address onto the
; stack.

call fpseteh ; Set exception handler.
end

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

#define CLRVAR 8

void alien err_hndlr(Info *info, Result *result)
/* Info and Result are */
/* defined in fpal96.h. */

{
fpcleb(CLRVAR); /* Clears the error byte. */

}

main()
{

fpseteh(err_hndlr); /* Set the exception
 handler. */

}

fpseteh
status word

Chapter 66–14
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpcomps / fpcompq

Function

Compare FPACC with a floating point number

Syntax

fpcomps(real_var) | fpcompq(real_var)

Where:

real_var is a variable in floating point format.

Description

Use fpcomps or fpcompq to compare the number in the FPACC with a

floating point number for numerical order. The functions set the C1 and

C0 comparison bits of the status word depending on the result, as shown

in Table 6-2.

Order C1 C0

FPACC > realopr 0 1

FPACC < realopr 1 0

FPACC = realopr 0 0

unordered 1 1

Table 6-2: Status word (C1 and C0) settings

The unordered case occurs when at least one of the operands is

Not-a-Number (NaN).

The fpcompq and fpcomps functions can generate a denormal exception.

However, only the fpcomps function generates an invalid-operation

exception if one of its operands is a NaN. See Chapter 7 for more

information on these exceptions.

Example

The following example shows how to call the fpcomps and fpcompq
function in ASM196, and C196. The examples contain the minimum lines

of code for a successful translation.

FPAL96 Function Reference 6–15

• • • • • • • •

The following example illustrates the code needed for ASM196:

test module main
rseg
 realopr: dsr 1
sp equ 18H

cseg at 2080H
extrn fpinit, fpld ; Declare as
extrn fpcomps, fpcompq ; externals.
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
push #404DH ; Load 3.21 value to
push #70A4H ; FPACC.
call fpld
ld realopr+2, #3FC0H ; Load realopr with
ld realopr, #0 ; 1.5.
push realopr+2 ; Push high–order part

; of operand onto the
; stack.

push realopr ; Push low–order part
; of operand onto the
; stack.

call fpcomps ; Compare realopr with
; FPACC (signalling
; comparison)

call fpcompq ; Compare realopr with
; FPACC
; (quiet comparison).

end;

You need not call fpcomps and fpcompq explicitly in C196. The

compilers call the functions implicitly when performing the operation

shown below. Make sure fpinit is called before performing any

floating-point operation.

float a,b;

if (a > b)
 printf(” a is greater than b”);

denormal exception

Not-a-Number

status word

Chapter 66–16
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpdiv

Function

Divides the FPACC value by a floating point number.

Syntax

fpdiv(real_var)

where:

real_var is a variable in floating point format.

Description

Use fpdiv to divide the FPACC value by a floating point operand.

FPAL96 places the result back in the FPACC. Table 6-3 shows the FPACC

content when dividing zero or infinity numbers.

Operation Result

#0/#0 invalid operation

#X/#0 zero divide

+0/+X, –0/–X +0

+0/–X, –0/+X –0

–X/–Y, +X/+Y +0 (when underflow)

–X/+Y, +X/–Y –0 (when underflow)

#infinity / #infinity invalid operation

#infinity / #Z ⊕ infinity

#Z / #infinity ⊕ 0

NOTES:
X and Y denote any nonzero operands.
denotes either sign (+ or –).
Z denotes a finite operand.
⊕ denotes the exclusive OR of the original operand signs.

Table 6-3: Division with zero and infinity operands

FPAL96 Function Reference 6–17

• • • • • • • •

The fpdiv function can generate an overflow, zero divide, underflow,

precision, invalid operation, or denormal exception. Table 6-6-3 shows

some cases when you can get the invalid operation and the zero-divide

exceptions. See Chapter 7 for more information on these exceptions.

Example

The following example shows how to call the fpdiv function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

The following example illustrates the code needed for ASM196:

test module main
rseg
 realopr: dsr 1 ; Define floating point

; operands.
 result: dsr 1

extrn PLMREG
sp equ 18h

cseg at 2080H
extrn fpinit, fpdiv, fpst, fpld

start: ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.

ldacc: push #40C7H ; Load 6.23 value to FPACC.
push #5C29H
call fpld

ldopr: ld realopr+2, #404DH ; Load realopr with 3.21
ld realopr, #70A4H ; to realopr.
push realopr+2 ; Push realopr value onto
push realopr ; the stack.
call fpdiv ; Divide FPACC by realopr.
call fpst
st PLMREG+2, result+2 ; Put quotient into result
st PLMREG,result
end

Chapter 66–18
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

You need not call fpdiv explicitly in C196. The compilers call the

function implicitly when performing the operations shown below. Make

sure fpinit is called before performing any floating-point operation.

float a,b;

a = 6.25;
b = a / 2.5;

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

denormal exception
infinity
invalid-operation exception
overflow exception

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

precision exception
underflow exception
zero
zero-divide

FPAL96 Function Reference 6–19

• • • • • • • •

fpinit

Function

Initializes the FPAL96 control variables with default values.

Syntax

fpinit

Description

Use fpinit to initialize the FPAL96 environment with default values. This

function performs the following tasks:

• Sets the control word to its default value of 003FH, that is, round to

nearest and all exceptions masked.

• Sets the status word to 3000H which indicates that the FPACC is a

signalling NaN and the error byte is zero. The fraction part of the

signalling NaN stored in the FPACC is 000001H , that is, 1 in the

least significant bit of the fraction.

• Attaches the default exception handler.

Example

The following example shows how to call the fpinit function in

ASM196. The example contain the minimum lines of code for a successful

translation. For C196, with OMF V3.2 you only have to link cstart.obj
with your modules and libraries. With older OMF versions the function

fpinit is usually called in the function _main() . See the file _main.c
for details.

The following example illustrates the code needed for ASM196:

test module main

sp equ 18H

cseg at 2080H

extrn fpinit

ld sp, #stack ; Load stack pointer.

call fpinit ; Initialize FPAL96.

end

Chapter 66–20
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpld

Function

Loads a floating point value into the FPACC.

Syntax

fpld(real_var)

where:

real_var is a variable in floating point format.

Description

Use fpld to load a single-precision floating point number into the FPACC.

This function can generate an invalid operation or denormal exception.

See Chapter 7 for more information on these exceptions.

Example

The following example shows how to call the fpld function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

The following example illustrates the code needed for ASM196:

test module main
rseg
realopr: dsr 1

cseg at 2080H
extrn fpinit, fpld

call fpinit ; Initialize FPAL96.
ld realopr+2, #3FC0H ; Load the 1.5 to realopr.
ld realopr, #0
push realopr+2 ; Push high–order part of

; operand onto the stack.
push realopr ; Push low–order part of

; operand onto the stack.
call fpld ; Loads realopr value to

; FPACC.
end

FPAL96 Function Reference 6–21

• • • • • • • •

The compiler will notice any explicit floating point operation on a variable

and will call fpld implicitly. See the example below. Make sure fpinit
is called before performing any floating-point operation.

float a, b;

a = 1.5; /* Initialize a and call fpld */
b = 2 * a;

denormal exception

invalid-operation exception

Chapter 66–22
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpldcw

Function

Sets the control word to the specified value.

Syntax

fpldcw(word_val)

where:

word_val is a word variable.

Discussion

Use fpldcw to change the default setting of the control word after calling

fpinit . FPAL96 loads the value, specified by word_val , into the control

word. The library takes no additional action even if this function unmasks

a previously masked exception.

Examples

The following examples show how to call the fpldcw function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
rseg
wordvar: dsw 1

cseg at 2080H
extrn fpinit, fpldcw

call fpinit ; Initialize FPAL96.
ld wordvar, #083FH ; Selects round–up mode.
push wordvar ; Push the value onto

; the stack.
call fpldcw
end

FPAL96 Function Reference 6–23

• • • • • • • •

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include the FPAL96 header
 file. */
unsigned int wordvar;

main()
{
 wordvar = 0x083F; /* Selects round–up mode */
 fpldcw(wordvar);
}

control word

fpinit

Chapter 66–24
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fplddec

Function

Converts a decimal to floating point and places the result in the FPACC.

Syntax

fplddec(shortopr,decopr)

where:

shortopr is a 16-bit signed variable.

decopr is a structure containing the mantissa and exponent of a

decimal number.

Description

Use fplddec to convert a decimal value into floating point format.

FPAL96 places the result back in the FPACC.

The value of the converted decimal number is:

FLOAT = decopr.mantissa*10 decopr.exponent – shortopr

Here the period (.) is used as the C196 membership operator and not as a

decimal point. See Chapter 5 for further details on the representation of

decimal operands in FPAL96.

This function can generate a precision, overflow, or underflow exception.

See Chapter 7 for more information on these exceptions.

Examples

The following examples show how to call the fplddec function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

FPAL96 Function Reference 6–25

• • • • • • • •

1. The following example illustrates the code needed for

test module main

extrn PLMREG
rseg
 realopr: dsr 1
 shortopr: dsw 1 ; The number of digits to the

; right of decimal point.
 decopr: dsl 1 ; Mantissa.
 exp: dsb 1 ; Exponent.
sp equ 18H

cseg at 2080H
extrn fpinit, fplddec
extrn fpst

ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
ld shortopr, #3 ; 3 digits after the decimal

; point.
ld decopr, #4D2H ; Load decopr with 1234.
ld decopr+2, #0
ldb exp, #0 ; Exponent = 0.
push shortopr ; Make sure shortopr is

; word–aligned.
push #decopr ; Push address of decopr onto

; stack.
call fplddec ; Convert decimal to floating

; point.
call fpst
st PLMREG+2,realopr+2
st PLMREG,realopr ; Load floating point number

; to realopr.
end

Chapter 66–26
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include header file. */
short shortopr; /* Number of digits to the

/* right of the decimal pt.*/
DecimalType decopr; /* DecimalType structure is

/* defined in fpal96.h */
float result;

main()
{
 shortopr = 3; /* 3 digits after the decimal

/* point. */
 decopr.mantissa = 1234;
 decopr.exponent = 0;
 fplddec(shortopr, &decopr);
 result = fpst(); /* result = 1.234 */
}

decimal floating-point number

overflow exception

precision exception

underflow exception

FPAL96 Function Reference 6–27

• • • • • • • •

fpldint / fplduint

Function

Converts a long integer or a long unsigned integer to floating point and

places the result in the FPACC.

Syntax

fpldint(long_var) | fplduint(ulong_var)

where:

long_var is a signed 32-bit variable.

ulong_var is an unsigned 32-bit variable.

Description

Use fpldint to convert a long integer operand into floating point format.

Use fplduint to convert a long unsigned integer operand into floating

point format. FPAL96 places the result back in the FPACC. This function

can generate a precision exception when the operation sets the overflow

or underflow exception bit. See Chapter 7 for more information on this

exception.

Examples

The following examples show how to call the fpldint function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
rseg
 longopr: dsl 1
 realopr: dsr 1
sp equ 18H

cseg at 2080H
extrn fpinit, fpldint, fpst

Chapter 66–28
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
ld longopr+2, #0H ; Load longopr with 47018.
ld longopr, #0B7AAH
push longopr+2 ; Push longopr onto stack.
push longopr
call fpldint ; Convert long to floating

; point
call fpst
st PLMREG+2,realopr+2 ; Load FPACC to realopr.
st PLMREG,realopr ; realopr = 47018.0
end

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include the FPAL96 header
 file. */

long longopr;
float result;

main()
{
 longopr = 47018;
 fpldint(longopr); /* Convert long to float. */
 result = fpst(); /* Place FPACC value to

 result. */
}

overflow exception

precision exception

underflow exception

FPAL96 Function Reference 6–29

• • • • • • • •

fpldz / fpld1

Function

Facilitates the use of the constants 0 and 1.

Syntax

fpldz | fpld1

Description

Use fpldz and fpld1 to facilitate the use of the commonly applied

constants, 0 and 1. These functions load +0.0 or +1.0 to the FPACC

respectively.

Example

This example shows how to call fpldz and fpld1 in ASM196:

test module main
extrn PLMREG
sp equ 18H
rseg
 a: dsr 1
 b: dsr 1

cseg at 2080H
extrn fpinit, fpldz, fpld1, fpst
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
call fpld1 ; Load FPACC with 1.
call fpst
ld a+2H,PLMREG+2 ; Load a with 1.0
ld a,PLMREG
call fpldz ; Load FPACC with 0.0
call fpst
ld b+2H,PLMREG+2 ; Load b with 0.0
ld b,PLMREG
end

Chapter 66–30
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

The compiler will notice any explicit floating point operation on a variable

and will call fpldz and fpld1 implicitly. See the example below. Make

sure fpinit is called before performing any floating-point operation.

float a, b, c, d;

a = 1.0; /* Initialize a and call fpld1 */
b = a + 2.5;

c = 0.0; /* Initialize c and call fpldz */
d = c + 1.5;

FPAL96 Function Reference 6–31

• • • • • • • •

fpmul

Function

Multiplies a floating point number by the FPACC value.

Syntax

fpmul(real_var)

where:

real_var is a variable in floating point format.

Description

Use fpmul to multiply a floating point number by the FPACC value.

FPAL96 places the result in the FPACC. Table 6-4 shows the FPACC

content when multiplying zero or infinity numbers.

Operation Result

+0 * +0, –0 * –0 +0

+0 * –0, –0 * +0 –0

+0 * +X, +X * +0 +0

+0 * –X, –X * +0 –0

–0 * +X, +X * –0 –0

–0 * –X, –X * –0 +0

+X * +Y, –X * –Y +0 (when underflow)

+X * –Y, –X * +Y –0 (when underflow)

#infinity * #infinity ⊕ infinity

#infinity * #Z ⊕ infinity

#Z * #infinity ⊕ infinity

#0 * #infinity invalid operation

#infinity * #0 invalid operation

NOTES:
X and Y denote any nonzero operands.
Z denotes a finite operand.
denotes either sign (+ or –).
⊕ denotes the exclusive OR of the original operand signs.

Table 6-4: Multiplication with Zero or Infinity Operands

Chapter 66–32
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

The fpmul function can generate an invalid operation, denormal,

overflow, underflow, or precision exception. Table 6-6-4 shows some

cases when an invalid-operation exception is generated. See Chapter 7

for more information on these exceptions.

Example

The following example shows how to call the fpmul function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

The following example illustrates the code needed for ASM196:

test module main
rseg
 realopr: dsr 1 ; Define floating point

; operands.
 result: dsr 1
extrn PLMREG
sp equ 18h

cseg at 2080H
extrn fpinit, fpmul, fpst, fpld

start: ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.

ldacc: push #40C7H ; Load 6.23 to FPACC.
push #5C29H
call fpld
ld realopr+2, #404DH ; Load realopr with 3.21
ld realopr, #70A4H
push realopr+2 ; Push realopr value onto
push realopr ; the stack.
call fpmul ; Multiply FPACC by realopr.
call fpst
st PLMREG+2, result+2 ; Put product into result.
st PLMREG,result
end

FPAL96 Function Reference 6–33

• • • • • • • •

You need not call fpmul explicitly in C196. The compilers call the

function implicitly when performing the operations shown below. Make

sure fpinit is called before performing any floating-point operation.

float a,b;

a = 6.25;
b = a * 2.5;

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

denormal exception
infinity
invalid-operation exception
overflow exception

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

precision exception
underflow exception
zero

Chapter 66–34
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpneg

Function

Changes the FPACC value to a negative number.

Syntax

fpneg

Description

Use fpneg to change the FPACC value to a negative number. This

function can generate an invalid-operation exception when the FPACC is a

signalling NaN. See Chapter 7 for more information on this exception.

Example

This example shows how to use fpneg in ASM196:

test module main
rseg
 realopr: dsr 1

extrn PLMREG
sp equ 18h

cseg at 2080H
extrn fpinit, fpneg, fpld, fpst

ld sp, #stack
call fpinit ; Initialize FPAL96.
push #3FC0H ; Push –1.5 onto the

; stack.
push #0
call fpld ; Load FPACC with 1.5
call fpneg ; Convert to negative.
call fpst ; Load PLMREG with

; FPACC.
st PLMREG+2, realopr+2 ; Load realopr with
st PLMREG,realopr ; PLMREG value.
end

FPAL96 Function Reference 6–35

• • • • • • • •

You need not explicitly call fpneg when coding in C196. The compiler

implicitly calls the function when performing the following operation:

float a, b;

a = –b; /* a equals negative b */

invalid-operation exception

Chapter 66–36
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fprem

Function

Computes the remainder of FPACC divided by a floating point number.

Syntax

fprem(real_var)

where:

real_var is a variable in floating point format.

Description

Use fprem to compute the remainder of FPACC value divided by a

floating point operand. The remainder is defined as FPACC–Q*realopr ,

where Q is the integer nearest to the exact value of FPACC/realopr . The

remainder is always greater or equal to -realopr/2 , and less than or

equal to +realopr/2 . FPAL96 places the remainder back in the FPACC.

Table 6-5 shows the FPACC content when operating with zero and infinity

numbers.

Operation Result

#0 REM #0 invalid operation

#X REM #0 invalid operation

+0 REM #X +0

–0 REM #X –0

#infinity REM #infinity invalid operation

#infinity REM #Z invalid operation

#Z REM #infinity #X

NOTES:
X denotes any nonzero operands.
denotes either sign (+ or –).
Z denotes a finite operand.

Table 6-5: Remainder With Zero and Infinity Operands

FPAL96 Function Reference 6–37

• • • • • • • •

The fprem function can generate an invalid operation, denormal, or

underflow exception. Table 6-6-5 shows some cases when an

invalid-operation exception is generated. See Chapter 7 for more

information on these exceptions.

Examples

The following examples show how to call the fprem function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
rseg
 realopr: dsr 1 ; Define floating point

; operands.
 rem: dsr 1

extrn PLMREG
sp equ 18h

cseg at 2080H
extrn fpinit, fprem, fpst, fpld

start: ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.

ldacc: push #40C7H ; Load 6.23 value to FPACC
push #5C29H
call fpld

ldopr: ld realopr+2, #404DH ; Load realopr with 3.21
ld realopr, #70A4H ; to realopr.
push realopr+2 ; Push realopr value onto
push realopr ; the stack.
call fprem ; Calculate remainder of

; FPACC/realopr.
call fpst
st PLMREG+2, result+2 ; result = remainder
st PLMREG,result
end

Chapter 66–38
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

float realopr;

main()
{
 realopr = 6.23;
 fpld(realopt);
 fprem(3.21); /* Calculate remainder. */
 result = fpst(); /* result = remainder. */
}

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

denormal exception
infinity
invalid-operation exception

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

precision exception
underflow exception
zero

FPAL96 Function Reference 6–39

• • • • • • • •

fprndint

Function

Round the FPACC value to the nearest integer.

Syntax

fprndint

Description

Use fprndint to round the number stored in the FPACC to the nearest

integer value. This function can generate an invalid operation or precision

exception. See Chapter 7 for more information on these exceptions.

Examples

The following examples show how to call the fprndint function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
rseg
 result: dsl 1
 realopr: dsr 1
sp equ 18H

cseg at 2080H
extrn fpinit, fprndint, fpstint, fpld
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
ld realopr+2, #404DH ; Load realopr with 3.21456
ld realopr, #0BB5AH
push realopr+2
push realopr
call fpld ; Load FPACC with realopr.
call fprndint ; Round to nearest integer.
call fpstint
st PLMREG+2, result+2 ; Load integer to result.
st PLMREG,result
end

Chapter 66–40
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

int a;

main()
{
 fpld(3.21456); /* Load FPACC with 3.21456 */
 fprndint();
 a = fpstint(); /* a now contains 3. */
}

invalid-operation exception

FPAL96 Function Reference 6–41

• • • • • • • •

fprstor

Function

Restores the previous values of the FPAL96 variables.

Syntax

fprstor(struc)

where:

struc is a structure containing the values of the status word, the

address of the exception handler, the control word, and local

data.

Description

Use fprstor to restore FPAL96 to its previous state by loading the value

of the storage structure (struc), previously saved using fpsave . FPAL96

takes no additional action even if a previously masked exception becomes

unmasked when this function is invoked. You can use this function in the

epilog of interrupt procedures with fpsave to allow reentrancy within

FPAL96.

Examples

The following examples show how to call the fprstor function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
sp equ 18H
dseg
savearea: ; Savearea structure
 status_word: dsw 1
 err_handler: dsp 1
 control_word: dsw 1
 local_data: dsb 60

Chapter 66–42
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

cseg at 2080H
extrn fpinit, fprstor, fpsave
ld sp, #stack
call fpinit ; Initialize FPAL96.
push #savearea ; Push the address of

; savearea onto the stack.
call fpsave ; Save the FPAL96 status.
.
.
push #savearea
call fprstor ; Restore the previous

; status.
end

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

SaveArea savearea; /* SaveArea is predefined
 in fpal96.h */

main()
{
 fpsave(&savearea) /* Save the FPAL96 status. */
.
.
.
 fprstor(&savearea);

/* Restore the previous
 status. */

}

Creating your own exception handler

fpsave
Program status word

FPAL96 Function Reference 6–43

• • • • • • • •

fpsave

Function

Saves the complete state of FPAL96

Syntax

fpsave(struc)

where:

struc is a structure containing the value of the status word, as well

as the address of the exception handler, the control word,

and local data.

Description

Use fpsave to save the complete state of FPAL96 (status word, exception

handler address, control word, and local data including the FPACC and the

program status word) to the savearea and initialize the state of FPAL96 as

if fpinit is executed. You can use this function in the prolog of interrupt

functions to allow reentrancy in FPAL96 or to save data for diagnostic

purposes.

This function calls the pushf instruction to save the program status word

(PSW) onto the stack. The pushf instruction also clears the interrupt

masks. Make sure you reload the interrupt masks after calling fpsave if

you want interrupts to be enabled.

Examples

The following examples show how to call the fpsave function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
sp equ 18H
dseg
savearea: ; Savearea structure
 status_word: dsw 1
 err_handler: dsp 1
 control_word: dsw 1
 local_data: dsb 60

Chapter 66–44
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

cseg at 2080H
extrn fpinit, fpsave
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
push #savearea ; Save the address of

; savearea onto the stack.
call fpsave ; Save FPAL96 status. */
end

2. The following example illustrates the code needed for C196

#include <fpal96.h> /* Include FPAL96 header
 file. */

SaveArea savearea; /* SaveArea is defined in
 fpal96.h */

main()
{
 fpsave(&savearea); /* Save FPAL96 status. */
}

Creating your own exception handler

fprstor
Program status word

pushf

FPAL96 Function Reference 6–45

• • • • • • • •

fpseteh

Function

Sets the exception handler

Syntax

fpseteh(handler_name)

where:

handler_name is the name of your exception handler routine.

Description

Use fpseteh to tell FPAL96 to invoke your exception handler upon

detection of any unmasked exceptions. This function overrides the default

exception handler FPAL96 attaches after initialization (fpinit). See

Section 7.8 for details on how to build your own exception handler.

Examples

The following examples show how to call the fpseteh function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
sp equ 18H

cseg at 2080H
extrn fpinit, fpseteh
ld sp, #stack
br START

errhndlr: . ; Define error handler
. ; procedure.
.
.
ret

Chapter 66–46
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

start: call fpinit ; Initialize FPAL96.
push #errhndlr ; Push the exception handler

; address onto the stack.
call fpseteh
end

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include header file. */
void alien err_hndlr (Info *info, Result *result)

/* Info and Result are */
/* predefined in fpal96.h, */

{ /* Define the Handler */
} /* routine. */

main()
{
 fpseteh(err_hndlr); /* Set handler. */
}

control word

exception handler

fpldcw

FPAL96 Function Reference 6–47

• • • • • • • •

fpsqrt

Function

Sets the FPACC value to its square root.

Syntax

fpsqrt

Description

Use fpsqrt to set the FPACC value to its square root. Table 6-6-6 shows

the FPACC content when operating with zero or infinity numbers.

Operation Result

–0 –0

+0 +0

+infinity +infinity

Table 6-6: Square root with zero and infinity operands

The fpsqrt function can generate an invalid operation, denormal, or

precision exception. See Chapter 7 for more information on these

exceptions.

Examples

The following examples show how to call the fpsqrt function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
sp equ 18H

rseg
 b: dsr 1

cseg at 2080H
extrn fpinit, fpsqrt, fpst, fpld

Chapter 66–48
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
push #4101H ; Push 8.1234 onto the stack.
push #0F972H
call fpld ; Load FPACC with 8.1234
call fpsqrt ; Calculate the square root.
call fpst
ld b+2H,PLMREG+2 ; Load b with square root.
ld b,PLMREG
end

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Load header file. */
float result;

main()
{
 fpld(8.1234);
 fpsqrt();
 result = fpst(); /* result = square root of

 8.1234 */
}

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

denormal exception
infinity
invalid-operation exception

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

precision exception
zero

FPAL96 Function Reference 6–49

• • • • • • • •

fpst

Function

Returns the FPACC value in floating point format.

Syntax

real_var = fpst

where:

real_var is a variable in floating point format.

Description

Use fpst to return the FPACC value in floating point format. This

function generates an invalid operation if the operand is a signalling NaN.

See Chapter 7 for more details on these exceptions.

Examples

The following examples show how to call the fpst function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
sp equ 18H

rseg
realvar: dsr 1

cseg at 2080H
extrn fpinit, fpst
ld sp,#stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
call fpst ; Load FPACC value in PLMREG.
st PLMREG+2, realvar+2 ; Store high–order part of

; the result to realvar.
st PLMREG,realvar ; Store low–order part of

; result to realvar.
end

Chapter 66–50
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

float realvar;

main()
{
 realvar = fpst(); /* Store FPACC value in

 realvar. */
}

invalid-operation exception

signalling NaN

FPAL96 Function Reference 6–51

• • • • • • • •

fpstcw

Function

Stores the content of the control word into a word variable.

Syntax

word_var = fpstcw

where:

word_var is a unsigned 16-bit variable.

Description

Use fpstcw to store the content of the control word into the word

variable, indicated by word_var .

Examples

The following examples show how to call the fpstcw function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
sp equ 18H

dseg
 wordvar: dsw 1

cseg at 2080H
extrn fpinit, fpstcw
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
call fpstcw ; Load the control word

; value in PLMREG.
st PLMREG, wordvar ; Store the control word

; value in wordvar.
end

Chapter 66–52
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

2. The following example illustrates the code needed for C196:

#include<fpal96.h> /* Include header file. */

unsigned int wordvar;

main()
{
 wordvar = fpstcw();

/* Store the control word
 value in wordvar. */

}

control word

FPAL96 Function Reference 6–53

• • • • • • • •

fpstdec

Function

Stores the FPACC value in

a decimal floating-point number.

Syntax

fpstdec(shortopr ,. dec_var)

where:

shortopr is a signed 16-bit variable.

dec_var is a structure containing the mantissa and exponent of a

decimal number.

Description

Use fpstdec to convert the value in the FPACC into decimal format.

FPAL96 stores the converted value in a decimal variable.

The value of the converted decimal number is:

FLOAT = decopr.mantissa*10 (decopr.exponent – shortopr + 1)

The dot (.) here acts as the C196 membership operator and not as a

decimal point. See Chapter 5 for further details on the representation of

decimal operands in FPAL96.

This function can generate an invalid operation or a precision exception.

See Chapter 7 for more information on these exceptions.

Examples

The following examples show how to call the fpstdec function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

Chapter 66–54
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
rseg
 realopr: dsr 1
 shortopr: dsw 1 ; The number of digits to the

; right of the decimal point.
 decopr: dsl 1 ; Mantissa.
 exp: dsb 1 ; Exponent.
 decopr2: dsl 1 ; Mantissa.
 exp2: dsb 1 ; Exponent.
sp equ 18H

cseg at 2080H
extrn fpinit, fplddec
extrn fpst, fpstdec
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
ld shortopr, #3 ; 3 digits to the right of

; the decimal point.
ld decopr, #4D2H ; Load 1234 to decopr.
ld decopr+2, #0
ldb exp, #0 ; Exponent = 0.
push shortopr ; Make sure shortopr is

; word–aligned.
push #decopr ; Push address of decopr onto

; stack.
call fplddec ; Convert to decimal to

; floating point.
call fpst
st PLMREG+2,realopr+2 ; Move floating point value

; to realopr.
st PLMREG,realopr ; realopr = 1.234
ld shortopr, #4 ; 4 digits to the right of

; the decimal point
push shortopr
push #decopr2
call fpstdec ; Convert floating point

; to decimal.
; decopr2 = 1234

end

FPAL96 Function Reference 6–55

• • • • • • • •

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include header file. */
short shortopr;
DecimalType decopr; /* DecimalType is predefined
 in fpal96.h. */
main()
{
 fpstdec(shortopr,&decopr); /* Convert FPACC value */
 /* to decimal. */
}

decimal floating-point number

invalid-operation exception

precision exception

Chapter 66–56
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpstint and fpstuint

Function

Stores the FPACC value in a long integer variable or in a long unsigned

integer variable.

Syntax

long_var = fpstint | ulong_var = fpstuint

where:

long_var is a signed 32-bit variable.

ulong_var is an unsigned signed 32-bit variable.

Description

Use fpstint to store the FPACC value in a long integer format. Use

fpstuint to store the FPACC value in a long unsigned integer format.

Before the value is stored in the long integer variable, FPAL96 converts the

value from the internal floating point format to the external long integer

format. The conversion does not affect the FPACC.

This function can generate an invalid operation or precision operation.

See Chapter 7 for more details on these exceptions.

Examples

The following examples show how to call the fpstint function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module main
extrn PLMREG
rseg
 result: dsl 1
 realopr: dsr 1
sp equ 18H

FPAL96 Function Reference 6–57

• • • • • • • •

cseg at 2080H
extrn fpinit, fprndint, fpstint, fpld
ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.
ld realopr+2, #404DH ; Load realopr with 3.21456
ld realopr, #0BB5AH
push realopr+2
push realopr
call fpld ; Load FPACC with realopr.
call fprndint ; Round to nearest integer.
call fpstint
st PLMREG+2, result+2 ; Load integer to result.
st PLMREG,result
end

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

long longvar;

main()
{
 fpld(3.21456); /* Load FPACC with 3.21456 */
 fprndint(); /* Round to nearest int. */
 longvar = fpstint();

/* Store FPACC value in
 longvar. */

}

invalid-operation exception

precision exception

Chapter 66–58
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpstsw

Function

Stores the content of the status word in a word variable.

Syntax

word_var = fpstsw

where:

word_var is a unsigned 16-bit variable.

Description

Use fpstsw to store the content of the status word into a variable.

Examples

The following examples show how to call the fpstsw function in

ASM196, and C196. The examples contain the minimum lines of code for

a successful translation.

1. The following example illustrates the code needed for ASM196:

test module

extrn PLMREG
sp equ 18H
dseg
wordvar: dsw 1

cseg at 2080H
extrn fpinit, fpstsw

ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96
call fpstsw ; Load status word value in

; PLMREG.
st PLMREG, wordvar ; Store PLMREG value in

; wordvar.
end;

FPAL96 Function Reference 6–59

• • • • • • • •

2. The following example illustrates the code needed for C196:

#include <fpal96.h> /* Include FPAL96 header
 file. */

unsigned int wordvar;

main()
{
 wordvar = fpstsw(); /* Store status word value

 in wordvar. */
}

status word

Chapter 66–60
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

fpsub

Function

Subtract a floating point number from the FPACC value.

Syntax

fpsub(real_var)

where:

real_var is a variable in floating point format.

Description

Use fpsub to subtract the value of a floating point number from the

FPACC value. FPAL96 places the result back in the FPACC. Table 6-7

shows the FPACC content when subtracting zero or infinity numbers.

Operation Result

+0 minus –0
–0 minus +0
+0 minus +0, –0 minus –0
+X minus +X, –X minus –X
#0 minus #X

+0
–0
see Note 1
see Note 1
!X

+infinity minus –infinity
–infinity minus +infinity
+infinity minus +infinity
–infinity minus –infinity
#infinity minus #Z
#Z minus #infinity

+infinity
–infinity
invalid operation
invalid operation
$infinity
!infinity

NOTES:
The sign of zero is determined by the rounding mode as follows:
 + for nearest, up or truncate
 – for down
X denotes any nonzero operands.
denotes either sign (+ or –).
! denotes the complement of the sign of X.

Z denotes a finite operand.
$ denotes the sign of the original infinity operand.

Table 6-7: Subtraction with zero and infinity operands

FPAL96 Function Reference 6–61

• • • • • • • •

The fpsub function can generate an invalid operation, denormal,

overflow, underflow, or a precision exception. Table 6-6-7 shows some

cases when an invalid-operation exception is generated. See Chapter 7

for more information on each exception.

Example

The following example shows how to call the fpsub function in ASM196,

and C196. The examples contain the minimum lines of code for a

successful translation.

The following example illustrates the code needed for ASM196:

test module main
rseg
 realopr: dsr 1 ; Define floating point

; operands.
 result: dsr 1

extrn PLMREG
sp equ 18h

cseg at 2080H
extrn fpinit, fpsub, fpst, fpld

start: ld sp, #stack ; Load stack pointer.
call fpinit ; Initialize FPAL96.

ldacc: push #40C7H ; Load 6.23 value to FPACC
push #5C29H
call fpld

ldopr: ld realopr+2, #404DH ; Load realopr with 3.21
ld realopr, #70A4H ; to realopr.
push realopr+2 ; Push realopr value onto
push realopr ; the stack.
call fpsub ; Divide FPACC by realopr.
call fpst
st PLMREG+2, result+2 ; Move value into result.
st PLMREG,result
end

Chapter 66–62
F

P
A

L
9
6
 F

U
N

C
T

IO
N

S

You need not call fpsub explicitly in C196. The compilers call the

function implicitly when performing the operations shown below. Make

sure fpinit is called before performing any floating-point operation.

float a, b;

a = 6.25;
b = a – 2.6;

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

denormal exception
infinity
invalid-operation exception
overflow exception

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

precision exception
underflow exception
zero

TASKING
Quality Development Tools Worldwide

7

EXCEPTIONS
AND EXCEPTION
HANDLING

C
H

A
P

T
E

R

Chapter 77–2
E
X
C
E
P
T
IO
N
S

7

C
H

A
P

T
E

R

Exceptions and Exception Handling 7–3

• • • • • • • •

7.1 INTRODUCTION

This chapter explains the different exceptions that FPAL96 can generate

during a floating-point operation. FPAL96 recognizes six exceptions:

invalid operation, zero divide, overflow, underflow, precision, and

denormal. Table 7-1 gives a list of possible exceptions for each operation.

The operation code is the number associated with the corresponding

operation.

Operation Operation Code Possible Exceptions *

fpabs 8 I

fpadd 11 I, D, O, U, P

fpcompq 17 D

fpcomps 16 I, D

fpdiv 14 I, D, O, U, P, Z

fpneg 7 I

fpld 1 I, D

fplddec 3 P, O, U

fpldint 2 P

fplduint 18 P

fpmul 13 I, D, O, U, P

fprem 15 I, D, U

fprndint 10 I, P

fpsqrt 9 I, D, P

fpst 4 I

fpstdec 6 I, P

fpstint 5 I, P

fpstiunt 19 I, P

fpsub 12 I, D, O, U, P
* Abbreviations for exceptions are:
 I invalid operation exception.
 U underflow exception.
 D denormal exception.
 P precision exception.
 O overflow exception.
 Z zero divide exception.

Table 7-1: Possible exceptions for each procedure

Chapter 77–4
E
X
C
E
P
T
IO
N
S

You can use the operation codes found in Table 7-7-1 to determine the

last operation FPAL96 performed before the exception occurred. For

example, the exception handler checks to see whether the operation that

caused an overflow was a division operation:

#include <fpal96.h>

#define OVERFLOW 0x08 /* Overflow mask. */
/* Unmask bit. */

#define CLRB(var,bit_mask) var &= (~bit_mask)
/* Info, Result, DIV_OP
 and OPERATION are
 predefined in the
 fpal96.h file. */

void alien errhndlr(Info *info, Result *result)
{
 if (info–>OPERATION == DIV_OP)

/* Check if the operation
 is a division. */

 printf(”Division Error\n\r”);
 fpcleb(3); /* Clear OV mask. */
}

main()
{
 float f1;
 register unsigned int temp;

 fpinit(); /* Initialize FPAL96. */
 fpseteh(errhndlr); /* Set exception handler. */
 temp = fpstcw; /* Get the control word.

 value. */
 CLRB(temp, OVERFLOW); /* Enable overflow mask. */
 fpldcw(temp); /* Load new control word. */
 f1 = 3.3e38 / 2.0e–20; /* Causes an overflow. */
}

Exceptions and Exception Handling 7–5

• • • • • • • •

When an exception occurs, FPAL96 sets the appropriate flag in the status

word to 1, and checks the corresponding exception mask in the control

word for a response. If the exception mask bit is 0, the response is

unmasked, FPAL96 calls your supplied exception handler. If the mask bit

is 1, FPAL96 processes the exception using the default exception handler.

To direct FPAL96 to use your own handler, clear the appropriate bit in the

control word and use the fpseteh function to assign the handler name.

See Section 7.8 for instructions on how to create your own exception

handler. See Chapter 5 for more details on the bits of the status word and

control word.

7.2 INVALID-OPERATION EXCEPTION

An invalid-operation exception occurs if an operand is invalid for the

specified operation. The exception occurs in any of the following cases:

• An operand is a signalling NaN.

• Zero is multiplied by infinity.

• Infinity is divided by infinity.

• Infinities of opposite signs are added together, or infinities with the

same sign are subtracted from one another; for example,

(+infinity) - (+infinity).

• The square root of a negative nonzero number is attempted.

• The remainder of an infinity is divided by any number.

• Any number is divided by zero.

• A floating point number is converted to integer or decimal and the

operand cannot be represented in the resulting format, for example,

if the floating point number is a NaN or infinity.

• A NaN operand is used with the fpcomps comparison.

• FPACC is a signalling NaN.

If the invalid operation exception mask bit is unmasked, that is, the bit has

a 0 value, FPAL96 calls your exception handler in each of the above cases.

Otherwise, FPAL96 returns a quiet NaN as the result of the operation. For

more information on NaNs, See Chapter 5.

Chapter 77–6
E
X
C
E
P
T
IO
N
S

7.3 ZERO-DIVIDE EXCEPTION

A zero-divide exception occurs when a finite nonzero number is divided

by 0. When the zero-divide exception mask bit is unmasked, FPAL96 calls

your exception handler. Otherwise, FPAL96 returns either +infinity or

-infinity as the result. The result is positive when both operands have the

same sign, negative otherwise.

7.4 OVERFLOW EXCEPTION

An overflow exception occurs when the exponent of the rounded result

from an operation, assuming an unbounded exponent range, is greater

than its upper limit (127).

If the overflow exception bit is unmasked, meaning it has a 0 value,

FPAL96 divides the infinitely precise result, assuming an unbounded

exponent, by 2192 then rounds the quotient according to the rounding

mode selected. FPAL96 passes the rounded result to your exception

handler. If the operation is a conversion from decimal, the exponent of

the rounded result can still be greater than 127. If so, FPAL96 sets the

rounded result to a quiet NaN before passing it to your exception handler.

If the overflow exception is masked, FPAL96 returns a value determined

by the sign of the result of the operation and the current rounding mode,

as shown by Table 7-2.

Sign of Result Rounding Mode Result Returned by FPAL96

positive nearest +infinity

positive down largest finite positive number

positive up +infinity

positive truncate largest finite positive number

negative nearest –infinity

negative down –infinity

negative up argest finite negative number

negative chop largest finite negative number

Table 7-2: FPAL96 Rounding result with overflow exception masked

Exceptions and Exception Handling 7–7

• • • • • • • •

7.5 UNDERFLOW EXCEPTION

FPAL96 raises underflow exceptions under various conditions, depending

on whether the underflow exception bit is masked.

If the underflow exception bit is unmasked, an underflow exception

occurs when the infinitely precise result, assuming an unbounded

exponent, lies in the range –2–126 < x < 2–126 , where x is not 0. When

the result falls within this range, FPAL96 multiplies this number by 2192

and then rounds the quotient according to the specified rounding mode.

FPAL96 then passes the rounded result to your exception handler. If the

operation is a conversion from decimal, the exponent of this rounded

result can still be too low. If so, FPAL96 sets the rounded result to a quiet

NaN before passing it to your exception handler.

When the exception bit is masked, FPAL96 denormalizes a result that lies

in the range –2–126 < x < 2–126 , where x is not 0. The denormalization is

done by shifting the fraction right while incrementing the value of the

exponent until it reaches –126 . FPAL96 then rounds this value according

to the selected rounding mode. FPAL96 sets the underflow bit in the error

byte if any bits were lost during the shift which means a loss of precision.

7.6 PRECISION EXCEPTION

A precision exception occurs when the rounded result is not exact or

when the rounded result overflows and the overflow exception bit is

masked. FPAL96 uses the rounding mode in the control word to round

the result properly. For example, if the numbers 1.0000001 and 1.0000000

are rounded to the nearest thousandth, both results contain the number

1.000. However, the first number generates a precision exception, while

the other does not.

If the precision exception bit is unmasked, FPAL96 passes the rounded

result to your exception handler. Otherwise, FPAL96 returns the rounded

result as the result of the operation.

Chapter 77–8
E
X
C
E
P
T
IO
N
S

7.7 DENORMALIZED-NUMBER EXCEPTION

Denormalized-number exceptions occur when at least one of the

floating-point operands is a denormal number, as specified in Chapter 2.

If the denormal exception bit is unmasked, FPAL96 passes the

denormalized operand to your exception handler without performing the

operation. Make the necessary correction, such as normalization, if you

do not want to operate on a denormal operand. FPAL96 uses the result

returned by your exception handler to proceed with the operation.

Otherwise, when the exception bit is masked, FPAL96 continues to use the

denormalized operand in the operation. Your program is more likely to

generate an overflow or underflow exception when using denormal

numbers.

7.8 CREATING YOUR OWN EXCEPTION HANDLER

As part of the FPAL96 initialization, you can attach your own exception

handler. The handler can perform the following tasks:

• handle uninitialized variables

• execute nonstandard data by using signalling NaNs for operands

• store diagnostic information for debugging purposes

• generate your own responses to the exceptions raised

FPAL96 calls your exception handler and supplies to it the relevant

information when an exception occurs. The exception handler can use

information stored in the built-in variables, the status word and the control

word, to continue a flagged operation or to analyze results when

debugging.

The following code is an example of an exception handler written in C.

The code checks for a divide-by-zero exception or an overflow then calls

the exception handler.

Exceptions and Exception Handling 7–9

• • • • • • • •

#include <fpal96.h> /* FPAL96 include file */
#define MASK 0x0C /* Select OV and divide by
 0 bits of control word*/
#define TSTBIT(var, bit_mask) ((var) &= (~(bit_mask)))
 /* Unmask bits OV and
 divide–by–0 bits */
#pragma fixedparams(errhndlr) /* Floating–point uses
 fixedparam convention */
#define CLR_ALL 8
 /* Info and Result are
 predefined in the
 fpal96.h file */

void errhndlr(Info *info, Result *result)
{
 if (info–>Status_Word & 0x04)
 /* Check if divide bit */
 printf(”Divide by 0 occurred!\n\r”);
 /* is set */
 else
 if (info–>Status_Word & 0x08)
 /* Check if OV bit is set*/
 printf(”Overflow occurred!\n\r”);
 fpcleb(CLR_ALL); /* Clear error byte */
}

float f1, f2;

main()
{ register unsigned int temp;
 init_putchar(); /* Prime TI bit */
 fpseteh(errhndlr); /* Assigns the exception
 handler */
 temp = fpstcw(); /* Get the control word
 value */
 TSTBIT(temp,MASK); /* Enable Overflow and
 Divide–by–0 exceptions*/
 fpldcw(temp); /* Load new control word */
 f2 = 3.3e38;
 f1 = f2 / 2.0e–30; /* Causes an overflow */
 f1 = f2 / 0; /* Causes a divide–by–zero
 error */
}

Chapter 77–10
E
X
C
E
P
T
IO
N
S

After a normal return from the exception handler, FPAL96 uses the

returned result as the actual result for the current operand or operation.

If, for example, the exception occurred during an fpadd operation,

FPAL96 converts the returned result to the internal representation for

floating point values then stores the value in the FPACC. However, if you

do not want to do a normal return from the exception handler, you can

use a goto statement rather than a return statement when your

exception handler finishes.

You must specify your exception handler using the fpseteh procedure

described in Chapter 6. A default exception handler is attached upon

initialization of FPAL96, using fpinit . This exception handler manages

the exception by returning the preliminary result to the area pointed to by

the Result_Ptr pointer variable.

If your exception handler uses floating-point functions during its

execution, you must save the current state of FPAL96, using fpsave ,

before invoking the floating-point functions from your exception handler.

You must also restore the FPAL96 state, using fprstor , before returning

to the next instruction following your exception handler. Your exception

handler must be reentrant.

TASKING
Quality Development Tools Worldwide

8

MK196 MAKE
UTILITY

C
H

A
P

T
E

R

Chapter 88–2
M
A
K
E

8

C
H

A
P

T
E

R

MK196 Make Utility 8–3

• • • • • • • •

This chapter describes the operation of the MK196 program. MK196 allows

you to maintain, update, and reconstruct groups of programs.

8.1 INVOCATION SYNTAX

mk196 [option ...] [target ...] [macro=value ...]
mk196 -V

mk196 -? (UNIX C-shell: ” -?” or -\?)

8.2 DESCRIPTION

mk196 takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mk196 or written to the

standard output without executing them.

If no target is specified on the command line, mk196 uses the first target

defined in the first makefile.

Long filenames are supported when they are surrounded by double quotes

("). It is also allowed to use spaces in directory names and file names.

Options

-? Show invocation syntax.

-D Display the text of the makefiles as read in.

-DD Display the text of the makefiles and 'mk196.mk'.

-G dirname
Change to the directory specified with dirname before

reading a makefile. This makes it possible to build an

application in another directory than the current working

directory.

-K Do not remove temporary files.

-S Undo the effect of the -k option. Stop processing when a

non-zero exit status is returned by a command.

-V Display version information at stderr.

Chapter 88–4
M
A
K
E

-W target Execute as if this target has a modification time of "right

now". This is the "What If" option.

-d Display the reasons why mk196 chooses to rebuild a target.

All dependencies which are newer are displayed.

-dd Display the dependency checks in more detail. Dependencies

which are older are displayed as well as newer.

-e Let environment variables override macro definitions from

makefiles. Normally, makefile macros override environment

variables. Command line macro definitions always override

both environment variables and makefile macros definitions.

-f file Use the specified file instead of 'makefile'. A - as the

makefile argument denotes the standard input.

-i Ignore error codes returned by commands. This is equivalent

to the special target .IGNORE:.

-k When a nonzero error status is returned by a command,

abandon work on the current target, but continue with other

branches that do not depend on this target.

-m file Read command line information from file. If file is a '-', the

information is read from standard input.

-n Perform a dry run. Print commands, but do not execute

them. Even lines beginning with an @ are printed. However,

if a command line is an invocation of mk196, that line is

always executed.

-q Question mode. mk196 returns a zero or non-zero status

code, depending on whether or not the target file is up to

date.

-r Do not read in the default file 'mk196.mk'.

-s Silent mode. Do not print command lines before executing

them. This is equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than

performing the rules to reconstruct them.

MK196 Make Utility 8–5

• • • • • • • •

-w Redirect warnings and errors to standard output. Without,

mk196 and the commands it executes use standard error for

this purpose.

macro=value
Macro definition. This definition remains fixed for the mk196

invocation. It overrides any regular definitions for the

specified macro within the makefiles and from the

environment. It is inherited by subordinate mk196's but act

as an environment variable for these. That is, depending on

the -e setting, it may be overridden by a makefile definition.

8.3 USAGE

Makefiles

The first makefile read is 'mk196.mk', which is looked for at the following

places (in this order):

- in the current working directory

- in the directory pointed to by the HOME environment variable

- in the etc directory relative to the directory where mk196 is

located

Example (PC):

when mk196 is installed in \C196\BIN the directory \C196\ETC is

searched for makefiles.

Example (UNIX):

when mk196 is installed in /usr/local/c196/bin the directory

/usr/local/c196/etc is searched for makefiles.

It typically contains predefined macros and implicit rules.

The default name of the makefile is 'makefile' in the current directory. If

this file is not found on a UNIX system, the file 'Makefile' is then used as

the default. Alternate makefiles can be specified using one or more -f

options on the command line. Multiple -f options act as if all the makefiles

were concatenated in a left-to-right order.

Chapter 88–6
M
A
K
E

The makefile(s) may contain a mixture of comment lines, macro

definitions, include lines, and target lines. Lines may be continued across

input lines by escaping the NEWLINE with a backslash (\). If a line must

end with a backslash then an empty macro should be appended. Anything

after a "#" is considered to be a comment, and is stripped from the line,

including spaces immediately before the "#". If the "#" is inside a quoted

string, it is not treated as a comment. Completely blank lines are ignored.

An include line is used to include the text of another makefile. It consists

of the word "include" left justified, followed by spaces, and followed by

the name of the file that is to be included at this line. Macros in the name

of the included file are expanded before the file is included. Include files

may be nested.

An export line is used for exporting a macro definition to the environment

of any command executed by mk196. Such a line starts with the word

"export", followed by one or more spaces and the name of the macro to

be exported. Macros are exported at the moment an export line is read.

This implies that references to forward macro definitions are equivalent to

undefined macros.

Conditional Processing

Lines containing ifdef , ifndef , else or endif are used for conditional

processing of the makefile. They are used in the following way:

ifdef macroname
if-lines
else
else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any

kind, even other ifdef , ifndef , else and endif lines, or no lines at all.

The else line may be omitted, along with the else-lines following it.

First the macroname after the if command is checked for definition. If

the macro is defined then the if-lines are interpreted and the else-lines are

discarded (if present). Otherwise the if-lines are discarded; and if there is

an else line, the else-lines are interpreted; but if there is no else line,

then no lines are interpreted.

When using the ifndef line instead of ifdef , the macro is tested for not

being defined. These conditional lines can be nested up to 6 levels deep.

MK196 Make Utility 8–7

• • • • • • • •

Macros

Macros have the form `WORD = text and more text'. The WORD need not

be uppercase, but this is an accepted standard. Spaces around the equal

sign are not significant. Later lines which contain $(WORD) or ${WORD}

will have this replaced by `text and more text'. If the macro name is a

single character, the parentheses are optional. Note that the expansion is

done recursively, so the body of a macro may contain other macro

invocations. The right side of a macro definition is expanded when the

macro is actually used, not at the point of definition.

Example:

FOOD = $(EAT) and $(DRINK)
EAT = meat and/or vegetables
DRINK = water
export FOOD

`$(FOOD)' becomes `meat and/or vegetables and water' and the

environment variable FOOD is set accordingly by the export line.

However, when a macro definition contains a direct reference to the

macro being defined then those instances are expanded at the point of

definition. This is the only case when the right side of a macro definition is

(partially) expanded. For example, the line

DRINK = $(DRINK) or beer

after the export line affects `$(FOOD)' just as the line

DRINK = water or beer

would do. However, the environment variable FOOD will only be updated

when it is exported again.

You are advised not to use the double quotes (") for long filename support

in macros, otherwise this might result in a concatination of two macros

with double quotes (") in between.

Special Macros

MAKE This normally has the value mk196. Any line which invokes

MAKE temporarily overrides the -n option, just for the

duration of the one line. This allows nested invocations of

MAKE to be tested with the -n option.

Chapter 88–8
M
A
K
E

MAKEFLAGS

This macro has the set of options provided to mk196 as its

value. If this is set as an environment variable, the set of

options is processed before any command line options. This

macro may be explicitly passed to nested mk196's, but it is

also available to these invocations as an environment

variable. The -f and -d flags are not recorded in this macro.

PRODDIR This macro expands the name of the directory where mk196

is installed without the last path component. The resulting

directory name will be the root directory of the installed

80196 package, unless mk196 is installed somewhere else.

This macro can be used to refer to files belonging to the

product, for example a library source file.

Example:

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mk196 is installed in the directory /c196/bin this line expands to:

DOPRINT = /c196/lib/src/_doprint.c

SHELLCMD

This contains the default list of commands which are local to

the SHELL. If a rule is an invocation of one of these

commands, a SHELL is automatically spawned to handle it.

$ This macro translates to a dollar sign. Thus you can use "$$"

in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as

abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

MK196 Make Utility 8–9

• • • • • • • •

The $< and $* macros are normally used for implicit rules. They may be

unreliable when used within explicit target command lines. All macros

may be suffixed with F to specify the Filename components (e.g. ${*F},

${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to

specify the directory component.

The result of the $* macro is always without double quotes ("), regardless

of the original target having double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory

component) is also always without double quotes ("), regardless of the

original contents having double quotes (") around it or not.

Functions

A function not only expands but also performs a certain operation.

Functions syntactically look like macros but have embedded spaces in the

macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and

currently there are five of them: match , separate , protect , exist and

nexist .

The match function yields all arguments which match a certain suffix:

$(match .obj prog.obj sub.obj mylib.lib)

will yield

prog.obj sub.obj

The separate function concatenates its arguments using the first

argument as the separator. If the first argument is enclosed in double

quotes then '\n' is interpreted as a newline character, '\t' is interpreted as

a tab, '\ooo' is interpreted as an octal value (where, ooo is one to three

octal digits), and spaces are taken literally. For example:

$(separate ”, &\n” prog.obj sub.obj)

will result in

prog.obj, &
sub.obj

Function arguments may be macros or functions themselves. So,

$(separate ”, &\n” $(match .obj $!))

will yield all object files the current target depends on, separated by a

comma - ampersand - newline string.

Chapter 88–10
M
A
K
E

The protect function adds one level of quoting. This function has one

argument which can contain white space. If the argument contains any

white space, single quotes, double quotes, or backslashes, it is enclosed in

double quotes. In addition, any double quote or backslash is escaped with

a backslash.

Example:

echo $(protect I’ll show you the ”protect” function)

will yield

echo ”I’ll show you the \”protect\” function”

The exist function expands to its second argument if the first argument is

an existing file or directory.

Example:

$(exist test.c c196 test.c)

When the file test.c exists it will yield:

c196 test.c

When the file test.c does not exist nothing is expanded.

The nexist function is the opposite of the exist function. It expands to its

second argument if the first argument is not an existing file or directory.

Example:

$(nexist test.obj c196 test.c)

Targets

A target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]
[rule]
...

Any line which does not have leading white space (other than macro

definitions) is a 'target' line. Target lines consist of one or more filenames

(or macros which expand into same) called targets, followed by a colon

(:). The ':' is followed by a list of dependent files. The dependency list

may be terminated with a semicolon (;) which may be followed by a rule

or shell command.

MK196 Make Utility 8–11

• • • • • • • •

Special allowance is made on MS-DOS for the colons which are needed to

specify files on other drives, so for example, the following will work as

intended:

c:foo.obj : a:foo.c

If a target is named in more than one target line, the dependencies are

added to form the target's complete dependency list.

The dependents are the ones from which a target is constructed. They in

turn may be targets of other dependents. In general, for a particular target

file, each of its dependent files is 'made', to make sure that each is up to

date with respect to it's dependents.

The modification time of the target is compared to the modification times

of each dependent file. If the target is older, one or more of the

dependents have changed, so the target must be constructed. Of course,

this checking is done recursively, so that all dependents of dependents of

dependents of ... are up-to-date.

To reconstruct a target, mk196 expands macros and functions, strips off

initial white space, and either executes the rules directly, or passes each to

a shell or COMMAND.COM for execution.

For target lines, macros and functions are expanded on input. All other

lines have expansion delayed until absolutely required (i.e., macros and

functions in rules are dynamic).

Special Targets

.DEFAULT:

The rule for this target is used to process a target when there

is no other entry for it, and no implicit rule for building it.

mk196 ignores all dependencies for this target.

.DONE: This target and its dependencies are processed after all other

targets are built.

.IGNORE: Non-zero error codes returned from commands are ignored.

Encountering this in a makefile is the same as specifying -i

on the command line.

.INIT: This target and its dependencies are processed before any

other targets are processed.

Chapter 88–12
M
A
K
E

.SILENT: Commands are not echoed before executing them.

Encountering this in a makefile is the same as specifying -s

on the command line.

.SUFFIXES:

The suffixes list for selecting implicit rules. Specifying this

target with dependents adds these to the end of the suffixes

list. Specifying it with no dependents clears the list.

.PRECIOUS:

Dependency files mentioned for this target are not removed.

Normally, mk196 removes a target file if a command in its

construction rule returned an error or when target

construction is interrupted.

Rules

A line in a makefile that starts with a TAB or SPACE is a shell line or rule.

This line is associated with the most recently preceding dependency line.

A sequence of these may be associated with a single dependency line.

When a target is out of date with respect to a dependent, the sequence of

commands is executed. Shell lines may have any combination of the

following characters to the left of the command:

@ will not echo the command line, except if -n is used.

- mk196 will ignore the exit code of the command, i.e., the

ERRORLEVEL of MS-DOS. Without this, mk196 terminates when a

non-zero exit code is returned.

+ mk196 will use a shell or COMMAND.COM to execute the command.

If the '+' is not attached to a shell line, but the command is a DOS

command or if redirection is used (<, |, >), the shell line is passed to

COMMAND.COM anyway. For UNIX, redirection, backquote (`)

parentheses and variables force the use of a shell.

You can force mk196 to execute multiple command lines in one shell

environment. This is accomplished with the token combination ';\'.

Example:

cd c:\c196\bin ;\
c196 –V

MK196 Make Utility 8–13

• • • • • • • •

The ';' must always directly be followed by the '\' token. Whitespace is not

removed when it is at the end of the previous command line or when it is

in front of the next command line. The use of the ';' as an operator for a

command (like a semicolon ';' separated list with each item on one line)

and the '\' as a layout tool is not supported, unless they are separated with

whitespace.

mk196 can generate inline temporary files. If a line contains '<<WORD'

then all subsequent lines up to a line starting with WORD, are placed in a

temporary file. Next, '<<WORD' is replaced by the name of the temporary

file.

No whitespace is allowed between '<<' and 'WORD'.

Example:

rl196 & < <<EOF

$(separate ”, &\n” $(CSTART) $(match .obj $!) $(match .lib $!) $(LIBS)) &

to $@ &

$(separate ” &\n” $(LDFLAGS))

EOF

The three lines between the tags (EOF) are written to a temporary file

(e.g., "\tmp\mk2"), and the command line is rewritten as "rl196 & <

\tmp\mk2".

Implicit Rules

Implicit rules are intimately tied to the .SUFFIXES: special target. Each

entry in the .SUFFIXES: list defines an extension to a filename which may

be used to build another file. The implicit rules then define how to

actually build one file from another. These files are related, in that they

must share a common basename, but have different extensions.

If a file that is being made does not have an explicit target line, an implicit

rule is looked for. Each entry in the .SUFFIXES: list is combined with the

extension of the target, to get the name of an implicit target. If this target

exists, it gives the rules used to transform a file with the dependent

extension to the target file. Any dependents of the implicit target are

ignored.

Chapter 88–14
M
A
K
E

If a file that is being made has an explicit target, but no rules, a similar

search is made for implicit rules. Each entry in the .SUFFIXES: list is

combined with the extension of the target, to get the name of an implicit

target. If such a target exists, then the list of dependents is searched for a

file with the correct extension, and the implicit rules are invoked to create

the target.

8.4 EXAMPLE

This makefile says that serialk.out depends on two files serialk.obj
and cstart.obj , and in turn they depend on their corresponding source

files (serialk.c and cstart.a96).

The makefile uses the implicit rules (from mk196.mk) to perform

compilation, assembly, linking, and converting to HEX.

#
Makefile for the serialk example.
#

MODEL = md(kd)
CCFLAGS = $(MODEL) type debug code dn(0)
CSTART = $(C196LIB)/cstart.obj
LIBS = $(C196LIB)/c96.lib
LDFLAGS = ss(+20) ra(1ah–1ffh,5000h–7fffh) ro(2000h–4fffh)
ixref

all: all_hex

all_hex: all_out \
serialk.hex

all_out: serialk.out

Serialk is an example for 196KD
Explicit rules are still needed to enforce suffix–rules.

serialk.hex: serialk.out
serialk.out: cstart.obj serialk.obj
serialk.obj: serialk.c
cstart.obj: cstart.a96

See the examples directory for a more detailed example of a makefile.

MK196 Make Utility 8–15

• • • • • • • •

8.5 FILES

makefile Description of dependencies and rules.

Makefile Alternative to makefile, for UNIX.

mk196.mk Default dependencies and rules.

8.6 DIAGNOSTICS

mk196 returns an exit status of 1 when it halts as a result of an error.

Otherwise it returns an exit status of 0.

Chapter 88–16
M
A
K
E

TASKING
Quality Development Tools Worldwide

9

MESSAGES AND
ERROR
RECOVERY

C
H

A
P

T
E

R

Chapter 99–2
M
E
S
S
A
G
E
S

9

C
H

A
P

T
E

R

Messages and Error Recovery 9–3

• • • • • • • •

This chapter provides a list of all the console, warning, error, and fatal

error messages produced by the RL196 linker, OH196 converter, and

LIB196 librarian.

The text of each message is in uppercase; placeholders in the message are

shown in lowercase italics. A brief explanation of the probable cause for

the error condition accompanies each message.

9.1 RL196 MESSAGES

The RL196 linker generates three different error messages: warnings,

errors, and fatal errors. A warning reports a suspicious condition that you

might want to change. A warning does not terminate the link-locate

operation. Neither does an error but the resulting output module might be

unusable. A fatal error, on the other hand, terminates the link-locate

operation immediately.

If an error occurs in a segment, RL196 displays the names of the file and

module containing the segment and the segment's type classification.

RL196 supplies the public symbols and when absstack is in effect. The

associated module and file names are <Dummy> when MEMORY and

?MEMORY_SIZE appear in the symbol table, the intermodule

cross-reference listing, or the error messages.

If the offset parameter appears in some of the messages, the offset is

simply the offset from the segment base to be used if the associated

segment is relocatable. If the associated segment is absolute (i.e., located),

that offset displayed is actually an absolute address.

9.1.1 CONSOLE MESSAGES

RL196 sends a sign-on message and a sign-off message to the console.

The sign-on message appears when you invoke the linker.

The sign-on message appears in the following format:

80C196 relocator/linker v x.y r z SN00000–005 (c) year TASKING, Inc.

where:

vx.y identifies the version of the assembler.

Chapter 99–4
M
E
S
S
A
G
E
S

r z identifies the revision of the assembler.

year identifies the copyright year.

When the linker completes its processing, the following sign-off message

is sent to the console:

RL196 COMPLETED,nnn WARNING(S), mmm ERROR(S)

where:

nnn is the number of warnings issued by RL196.

mmm is the number of errors issued by RL196.

If mmm is not zero, the output object file is marked as erroneous. If a fatal

error occurs, an error message to that effect replaces the sign-off message.

9.1.2 FATAL ERRORS

Upon detecting a fatal error within the system hardware or on the

invocation line, RL196 prints a message on the screen, terminates the

linking/locating processing, and returns control to the host system.

Fatal error messages can be caused by the following:

• invocation-line errors

• memory errors

• I/O errors

9.1.2.1 RL196 ERROR MESSAGES

The linker displays fatal RL196 errors in the following form:

FATAL RL196 ERROR num: message

where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

Messages and Error Recovery 9–5

• • • • • • • •

201: Invalid command line syntax: token

A syntax error was detected in the command line near the specified token.

202: Invalid command line, token too long

203: Expected item missing

An expected item in the command line (e.g., an input filename or a

filename following to) is missing. A filename longer than 128 characters

also causes these errors.

204: Invalid keyword

An invalid keyword was found in the command line.

206: Invalid constant: name

An illegally constructed constant was found in the command line. For

example, RL196 found a hexadecimal number that begins with a letter.

These hexadecimal numbers must be preceded with a zero (0).

207: Invalid module name: name

The specified name on the command line is an illegal module name. See

name control in Chapter 2.

208: Invalid file name

The specified file on the command line is an illegal filename. See Chapter

2 for more information on filenames.

209: File used in conflicting contexts: filename

The specified file was used in more than one context, for example, for

both input and output. This error can be due to the default rules

regarding the output object filename and the print filename. For example,

if the first input filename is [directory / device] ABCD and no output

filename is specified by a to keyword, the output object filename, by

default, also becomes [directory device] ABCD.

210: I/O error, input file

The linker detected an I/O error while accessing the specified input file.

211: I/O error, output file

The linker detected an I/O error while accessing the specified output file.

Chapter 99–6
M
E
S
S
A
G
E
S

212: I/O error, print file

The linker detected an I/O error while accessing the specified print file.

213: Duplicate keyword: keyword

The specified keyword appears in the command line more than once.

215: Checksum error

The linker detected a bad checksum in the specified input module. This

message indicates a bad input module.

217: No module to be processed

After scanning all the input files, RL196 selected no module to process.

This message usually indicates an empty input file. This error also appears

if you link an empty a library or a publicsonly file.

218: Invalid input object file: filename

The specified file is not a valid object file. Possible causes are incorrect

record order, incorrect record type, illegal field, illegal relation between

fields, or a required record is missing. This error can be the result of a

translator error, a librarian error, or a disk error.

219: Not an 8096 object module

The translator_id field in the module header record indicates that the

specified module is not an OMF96 module. Another possible cause is the

RL196 version is not compatible with the translator (or tool) that has

produced the object file. Check the RL196 version.

220: No object file to be processed

RL196 expects at least one object file to process.

221: Addresses not in ascending order: addr1-addr2

Addresses specified in a locating control are not in ascending order. For

example, the following control line generates this error:

 rom(3000H–4000H(mod1),3000H–4000H(mod2))

222: Address out of range: address

An address specified in a locating control is out of the permissible range.

Either the address in the rom control is below 100H or the address in the

ram control is below 1AH.

Messages and Error Recovery 9–7

• • • • • • • •

223: Overlap between ROM and RAM ranges

The ROM and the RAM sections, as specified by the rom and ram controls,

overlapped. ROM and RAM sections are not allowed to overlap unless the

inst control is in effect. Recheck the address range you specified in the

ram and rom controls.

224: The STACK may not be specified there as a module

Stack (or st) has been specified where a module name is expected. For

example, you specified stack with the rom control or with the

regoverlay control.

225: Internal processing error

RL196 has made a processing error. This error message indicates a

problem within RL196. Report such errors to TASKING by calling your

local TASKING sales representative.

226: "PURGE(SEGMENTS)" and "NOABSSTACK" not allowed

simultaneously

A relocatable stack and a segment definition purging are incompatible

because the result of the purging is no stack segment at all.

227: Module used in conflicting contexts: filename(module_name)

The specified module name has already been specified explicitly at the

command line in another conflicting context. For example, the same

module name appears more than once in association with the same

locating control (ram or rom), or the same module name is specified for

more than one input file.

228: Parameter is not allowed in that context: name

The negative form of the control (with the prefix no) cannot have

parameters.

229: The prefix "NO" is not allowed for this control

The control has no negative form.

230: Invocation line too long

The invocation line is too long, that is, it contains too many characters.

Chapter 99–8
M
E
S
S
A
G
E
S

231: An ordinary file may not be specified with a module list: filename

RL196 process an ordinary file as a whole; modules can only be selected

out of a library file.

232: A library file may not be specified with "PUBLICSONLY"

Only an ordinary file can be specified as publicsonly . See Chapter 2

for definitions of ordinary files and publicsonly files.

233: The specified module does not exist in the specified file:

filename(module_name)

The module specified in module list of the library file does not exist. Use

the LIB196 list command to display all objects modules in a library.

234: I/O error, ixref file

During the preparation of the ixref listing, RL196 uses an auxiliary

temporary file. The above error indicates that an I/O error was detected

during file access.

235: The specified module does not exist: module_name

A module specified as a parameter of either the ram , rom or regoverlay
control does not exist.

236: PARAMETER OUT OF RANGE: name

The specified parameter does not lie in its legal range. For example, the

parameter specified as pagewidth must be in the inclusive range 72 to

132 .

237: REGOVERLAY parameter too complex

The specified parameter is too complex (e.g., too long) to be processed by

RL196. Simplify your parameter.

242: Invalid register range: addr1-addr2

The address range specified in the registers control does not conform

to the component's register space. See the Embedded Microcontrollers
and Processors Handbook, listed in Related Publications, for memory

space information.

243: Windowsize specified for default register space

A window size other than 0 was specified for the default register range of

1AH to 0FFH (i.e., a component without vertical windowing feature).

Messages and Error Recovery 9–9

• • • • • • • •

244: Invalid windowsize specified for register space

A window size of 0 was specified for a register space larger than 256

bytes. Do not specify the registers control if you are not using vertical

windows.

245: Illegal segment for current model

The farconst or fardata was specified in the rom or ram control and

the model control was not specified.

246: Segment cannot be placed in address range

An attempt was made to place a code, constant or data segment above

0FFFFH, or a high code segment below 0FF0000H .

247: Segment cannot be placed in ROM

Data and far data segments cannot be placed in ROM.

248: Segment cannot be placed in RAM

Code, near constant, and far constant segments cannot be placed in RAM.

249: Invalid segment name

An unknown segment name was specified in a rom or ram control.

250: Conflict between MODEL and INST controls

The model and inst controls cannot coexist.

251: Invalid model

The only models allowed are 24-bit models.

252: Segment used in conflicting contexts

An attempt was made to place the same segment from the same module in

two different ROM/RAM sections, or to demand multiple placement in one

section.

Chapter 99–10
M
E
S
S
A
G
E
S

253: Segment type incompatible with current model:

filename(module-name), segment-type

The segment type in the module is not compatible with the model. That

is, if no model control was specified, a far code, far data, far const or high

code segment was found. If a 24-bit model in compatible mode was

specified, a code or far code segment was found. If a 24-bit model in

extended mode was specified, a code or high code segment was found.

254: Internal error, please report: message

This error should not occur. If it does, report it to your local TASKING

representative.

255: This DEMO RL196 has reached its limit.

You have a restricted demo version of the linker. Contact TASKING for a

registered version.

256: Too many input files for this DEMO RL196: filename.

You have a restricted demo version of the linker. Contact TASKING for a

registered version.

257: Conflict between selection of OMF96 version.

You may have used features not present in the selected OMF96 version.

Check for the correct omf control.

258: Invalid OMF96 version requested.

You can only use omf(0) , omf(1) or omf(2) for the OMF96 versions

V2.0, V3.0 or V3.2 respectively.

259: Control control is obsolete, use control instead

The control oo1 is no longer valid. It has been replaced by the omf
control.

260: Invalid range for STACK: addr1-addr2

The address range specified in the ram control does not conform to the

component's stack space. The minimum address of addr1 is 1AH and the

maximum address of addr2 is 0FFFFH for data segments of 0FFFFFFH for

far data segments.

261: Control invalid in current context: control

An invalid control is specified on the command line. Check your controls.

Messages and Error Recovery 9–11

• • • • • • • •

262: Expression evaluation stack overflow

The expression which is being evaluated is to complex. Try to simplify the

expression in the assembler.

263: Expression evaluation stack underflow

This error should not occur. If it does, report it to your local TASKING

representative.

264: Cannot swap expressions on evaluation stack

This error should not occur. If it does, report it to your local TASKING

representative.

265: Control only valid for model NP or NU.

The np_rsvup6 control is specified without using an NP or NU model.

9.1.2.2 ARGUMENT ERROR MESSAGES

RL196 displays fatal argument errors in the following form:

FATAL ARGUMENT ERROR num: message

where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

0: Unexpected end of argument: arg

Check and correct the syntax.

1: Control or option cannot be negated: name

The control name cannot have a no prefix, or the option name cannot

have a minus sign appended. Remove the negation.

2: Syntax error in control: control

Check and correct the syntax.

Chapter 99–12
M
E
S
S
A
G
E
S

3: Argument expected for control or option: name

Specify an argument to name.

4: Syntax error in option: option

Check and correct the syntax.

5: Unknown option specified: name

Replace name with the correct option.

6: Maximum depth in buffer stack reached

The control or option has too many argument levels. Reduce the number

of argument levels.

7: Buffer stack is empty

This error should not occur. If it does, report it to your local TASKING

representative.

8: Argument too long

Reduce the length of the argument.

9: Unexpected argument for control: name

Control name cannot have an argument. Remove the argument.

10: Unexpected internal error: message

This error should not occur. If it does, report it to your local TASKING

representative.

9.1.2.3 MEMORY ERROR MESSAGES

RL196 displays fatal memory errors in the following form:

FATAL MEMORY ERROR num: message

where:

num is an error number.

message is a message describing the cause of the error.

Messages and Error Recovery 9–13

• • • • • • • •

The following list of error messages provides their decimal codes and their

meanings.

0: Cannot allocate memory block of size size

1: Cannot reallocate memory block to size size

The memory available for execution of RL196 has been exhausted. This

error is usually caused by the program containing too many external or

public symbols, or containing a large number of publics or externals

references when the ixref control was specified. In the latter case, link

with noixref , the default mode. Not enough free conventional memory

check can also cause this error.

9.1.2.4 I/O ERROR MESSAGES

RL196 displays fatal I/O errors in the following form:

FATAL I/O ERROR num: message

where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

0: Unexpected end of file detected

Check your file.

1: Cannot write to standard input

Specify a file or standard output to write to. Standard input is used for

input only.

2: Cannot read from standard output

Specify a file or standard input to read from. Standard output is used for

output only.

3: Filename too long

Give your file a shorter name.

Chapter 99–14
M
E
S
S
A
G
E
S

4: Filename not conform DOS standard

Check your DOS Reference Manual for the correct filename syntax.

5: Cannot read from null device

Specify another device or filename to read from.

6: Cannot rename :WORK:

This is a temporary file. So, you cannot rename it.

9.1.3 ERROR MESSAGES

The linker displays RL196 errors in the following form:

ERROR num: message

Where:

num is an error number.

message is a message describing the cause of the error.

The following list of error messages provides their decimal codes and their

meanings.

101: Code memory overlap: addr1-addr2

Two or more absolute segments occupy the memory in the given inclusive

range. One of the absolute segments is a code segment. Any overlap

with the reserved section (address 0 to 1AH) also triggers this error.

102: Erroneous input module: filename(module_name)

The specified module generated by the translator or a previous link step

contains erroneous data. Warnings do not have this effect. RL196 marks

an output object module as erroneous. Be sure that all input modules are

processed without any errors.

Messages and Error Recovery 9–15

• • • • • • • •

103: Memory overflow: segment type in filename(module_name)

RL196 was unable to allocate the specified relocatable segment in the

appropriate memory section. Therefore, the specified segment does not

appear in the segment map. All of the symbols (and lines) that are relative

to the above segment are improperly located in the output object module.

The same is true for code sections if they belong to a code segment for

which this error is issued.

105: Incompatible stack segments: filename(module_name)

The specified module contains a stack segment that is incompatible with

the stack segments already processed. Incompatibility between stack

segments occurs when more than one stack segment exists, and one or

more of these segments is absolute. RL196 takes no action on the

indicated stack segment.

110: No room for relocatable segment in the specified range:

filename(module_name), segment_type(addr1-addr2)

This message indicates that RL196 was unable to allocate memory in the

requested range for the specified segment because of lack of memory

space. For example, memory allocation can fail because the segment size

was larger than the specified range, or the segment does not fit in the

remaining memory.

111: Instruction operand doesn't meet alignment requirement in

filename(module_name) at segment_type(offset)

A code segment of the specified module contains the indicated violation.

The offset placeholder is the offset of the first byte of the operand

reference (relative to the beginning of the segment in a relocatable

segment). In absolute segments, offset is the absolute address of the

operand reference. The problem can be caused, for example, by using a

byte-type symbol where a word-type symbol is needed or by some wrong

assumptions about an external symbol.

Chapter 99–16
M
E
S
S
A
G
E
S

112: Instruction operand out of range in a JUMP/CALL instruction in

filename(module_name) at segment_type(offset)

A code segment of the specified module contains the indicated violation.

The offset placeholder is the offset of the first byte of the operand

reference, relative to the beginning of the segment in a relocatable

segment. In absolute segments, offset is the absolute address of the

operand reference. This error occurs when the distance between two

statements in the absolute code segments exceeds the maximum size that

can be specified with the selected jump or call instruction.

113: Instruction operand out of range in filename(module_name) at

segment_type(offset)

A code segment of the specified module contains the indicated violation.

The offset placeholder is the offset of the first byte of the operand

reference (relative to the beginning of the segment in a relocatable

segment). In absolute segments, offset is the absolute address of the

operand reference. Basically, the error results from the same kind of

mistakes that occurred in Errors 111 and 112 .

Another possible cause: you compiled your program with

registers(all) , the default for C196 programs. The compiler assumes

that all symbols are placed in the register space and generates assembly

instructions with register operands. If your program contains symbols

located in external memory, the assembly instructions generated are not

valid for external memory access. If you have variables in external

memory, do not compile with this option: registers(all) .

115: Module not compiled for windows: filename(module_name)

For C196 programs, one of the input modules was not compiled with the

windows control. For ASM196 programs, no reference to ?wsr was

found. See Chapter Processor Registers of the 80C196 C Compiler User's
Guide for an example of an ASM196 module written for vertical windows.

116: Too many global registers

During incremental links, RL196 locates all register segments in the

unmapped portion of the register space and the overlay segments in the

mapped area of the register space. This error can occur when the register

segment requires a larger space than the unallocated unmapped register

space, or a register segment was allocated above an overlay segment. This

error can also occur if the total requirement of the register segments is too

large that the registers were allocated beyond 0FFH. Decrease the number

of global registers in your modules.

Messages and Error Recovery 9–17

• • • • • • • •

117: Illegal forward type reference

A module is specified in a command line locating control (ram , rom ,

romcode , romdata), but the referenced segment is not present in the

module.

118: Invalid expression operand.

A module is specified in a command line locating control (ram , rom ,

romcode , romdata), but the referenced segment is not present in the

module.

119: Invalid floating point expression

An operand is non-integral, but the operator requires integral operands.

That is, for example, NOT, AND, OR, XOR all require integral operands.

Check the assembler source file.

120: Character string value expected

A string is expected. Check the assembler source file.

121: Operator "operator" can only be used in absolute expression

The LOW or HIGH keyword is not used with an absolute expression. Check

the assembler source file.

122: Attempt to divide by zero.

The linker encounter an expression where an attempt is made to divide by

zero. Check your source code.

123: Floating point constant underflow

The absolute value of floating-point constant must be above 1.17E-38

124: Floating point constant overflow

The absolute value of floating-point constant must be below 3.37E38

125: More than one absolute segment definition in module

module_name: segment segment_name

When you have more than one module with the same name, you can only

have one absolute segment definition per segment. Change your source

code so only one segment is defined absolute.

Chapter 99–18
M
E
S
S
A
G
E
S

126: Initialized data was not located

When using initialized data, the linker needs to locate two sections: one in

ROM and one in RAM. Either one or both of these sections could not be

located.

127: More than one user defined stack in the input modules

There is more than one module in which a SSEG segment is defined.

Change your source code so only one SSEG is present for each project.

9.1.4 WARNINGS

The linker displays warning messages in the following form:

WARNING num: message

where:

num is a warning number.

message is a message describing the cause of the warning.

The following list of warning messages provides their decimal codes and

their meanings.

1: Symbol attribute mismatch: symbol_name, defined in

filename(module_name), referenced in filename(module_name)

The attributes of the specified symbol (external or public) in the second

module do not match the attributes in the first module. To find the actual

attributes of the symbol in the output object file, look at the symbol table

or the ixref listing in the .m96 print file.

2: Unresolved external symbol: external_name in

filename(module_name)

The specified symbol was declared as external in the specified module.

No public symbol with the same name was found in any of the input

modules. This error message is issued only for the first module that

contains this unresolved external. Look at the ixref listing for a

complete list of modules in which this name was declared external. This

warning does not imply that the module actually used that external

symbol. Such a case is indicated by Warning 4 .

Messages and Error Recovery 9–19

• • • • • • • •

3: Multiple public definition: public_name, filename(module_name) and

in filename(module_name)

The specified symbol was declared as public in the first specified module

and also in the second module. RL196 does not use the declaration in the

second module. The only exception is that in the ixref listing, the name

of the second module also appears in the line corresponding to the

specified symbol.

4: Reference made to unresolved external: external_name in

filename(module_name) at segment_type(offset)

No public definition was found for the referenced external symbol. The

offset placeholder indicates the location in which the reference was made.

This message appears once per each reference to the specified symbol.

5: Module name not unique: filename(module_name)

Another module with the same name has been processed. RL196 does not

process the specified module of the specified file. Recheck all your

module names or use the uniquemods control.

6: More than one MAIN module: filename(module_name)

The specified module in the specified file was not the first processed

module marked as main . For example, if your program contains four

input modules all marked as main , RL196 issues this error for the last three

modules. The output object module is marked as main .

7: Specified stack size too small: size

The size you specified in the stacksize control is less than the

computed size of the stack based on the contents of the input file(s). The

specified stack size overrides the computed stack size (see also WARNING
9).

8: Illegal specified stack size, should be even.

The stack size must be an even number because stack operations are

performed on word items. RL196 adds 1 to the specified stack size

(modulo 216).

9: Stack already located, "STACKSIZE" ignored.

The stacksize control was specified but the stack segment of the input

modules is already absolute (i.e., located). RL196 takes no action on the

stacksize control.

Chapter 99–20
M
E
S
S
A
G
E
S

10: Data memory overlap: addr1-addr2

The memory in the given (inclusive) range is occupied by two or more

absolute segments. None of the overlapping segments is a code segment.

11: STACKSIZE parameter is odd (=num), incremented to make it even.

The stack size must be an even number because stack operations are

performed on word items. RL196 adds 1 to the specified stack size

(modulo 216).

12: Specified stack size too large

The sum of stack size calculated from the total stack segments in the input

files and the increment specified in the invocation line is greater than

0FFFEH. Stack size is set to 0FFFEH.

13: Stack already located, "NOABSSTACK" ignored.

The noabsstack control was specified but the stack segment of the input

modules is already absolute (i.e., located). RL196 takes no action on the

noabsstack control.

14: No MAIN module

None of the input modules is a main module. Consequently, the output

object module also is not marked as main. For C196 applications, mark

one module as main using ASM196 or include the cstart.obj in your

RL196 invocation.

16: Symbol defined out of segment: symbol_name in

filename(module_name) at segment_type(offset)

The symbol was defined outside the segment to which it belongs. This

error usually occurs when a symbol was defined via the equ directive, in

ASM196.

17: Absolute segment does not fit: filename(module_name),

segment_type(addr1-addr2)

The absolute segment you named to occupy the specified range does not

fit inside one of the corresponding memory sections (code , rom , data ,

stack , ram , register , or overlay). This warning can be the result of

employing an incremental link-locate while changing the ROM and/or

RAM sections between the steps.

Messages and Error Recovery 9–21

• • • • • • • •

20: Type definition too complex

The specified module contains a type definition that is too complex to be

processed by RL196. The linker simplifies the definition. In some cases,

the too-complex type definition can be the result of two or more type

definitions from different modules. If so, the linker generates the error

message on only one of definitions.

21: A direct call between two overlaid modules: symbol_name, defined

in filename(module_name), referenced in filename(module_name)

The second module specified contains a call or a jump to the specified

public symbol of the first module. However, the regoverlay control

specifies that the two modules can be overlaid.

If you specified regoverlay :

• The overlaying takes place.

• The warning indicates a possible, but not necessarily

wrong,overlaying.

• Lack of such errors does not imply a correct overlaying. See the

regoverlay control entry in Chapter 2.

22: Too many global registers

The total requirement of the register segments for the input modules was

so large that it exceeded the window base of the smallest window (0E0H).

In this case, RL196 could not generate vertical windows and uses no

register space above 0FFH. RL196 then locates the overlay segments in the

remaining unallocated register space up to 0FFH. If all of your overlay

segments do not fit under 0FFH, RL196 generates a memory overflow

error. To resolve this problem, reduce the number of global register

variables.

23: Window size specified too large, ignored

RL196 cannot generate a window with the window size you specified in

the windowsize control. The linker uses the biggest possible window

size.

24: Module module does not have the expected segment(s): segment

A module is specified in a command line locating control (ram , rom ,

romcode , romdata), but the referenced segment is not present in the

module.

Chapter 99–22
M
E
S
S
A
G
E
S

25: Possible OMF version clash in filename(module_name)

The linker is invoked with a lower version of OMF than the one of the

input module. Invoke the linker with the correct omf version control.

26: Expression name in filename(module_name) contains unresolved

references

The expression could not be solved because it contains an unresolved

external. See also warning #2.

27: FLOAT truncated to INT

A float is casted to an integer during expression evaluation. This can result

in a loss of precision. Check if the cast is necessary.

28: CODE2HIGH control is disabled for 16-bit models

This control was used while a 16-bit model was in effect. See description

code2high control.

9.2 OH196 ERROR MESSAGES

OH196 errors are always fatal errors. When an error occurs, processing of

the object file is stopped and one of the following error messages is

issued:

*** ERROR - invocation should be: OH196 <infile> [TO outfile]

This message means that the invocation syntax is incorrect. OH196

expected the to keyword but found something else. Reinvoke OH196

using the correct syntax.

*** ERROR - input is not an absolute object file

This message means that the object file is not absolutely located.

*** ERROR - input has a record longer than 32K, sorry

Make sure the records in the input object file are less than 32K bytes.

Reduce record size in your applications code space by breaking modules

into smaller functions, procedures, or subroutines. Reduce the size of a

data record, for example, a large array, by breaking it into two or more

smaller structures.

Messages and Error Recovery 9–23

• • • • • • • •

*** ERROR - on Reading OBJECT: I/O error in invalid object file.

This messages means that OH196 has detected an invalid format. Be sure

the input object file is available and that it is an absolutely located file.

9.3 LIB196 ERROR MESSAGES

The following is a list of LIB196 error messages and their probable causes:

pathname, ATTEMPT TO ADD DUPLICATE MODULE

The specified module name already appears within the library.

pathname, BAD RECORD SEQUENCE

This error is usually caused by an I/O error or a translation error.

pathname, CHECKSUM ERROR

The specified file has an error in one of its checksum fields. This is

usually the result of an I/O error.

pathname, DUPLICATE SYMBOL IN INPUT

You have attempted to add or replace a module containing a public

symbol that is already within the library.

pathname, FILE ALREADY EXISTS

The specified file in the create command already exists. Choose another

name for the library.

pathname, ILLEGAL RECORD FORMAT

This error is usually caused by an I/O error or a translation error.

INSUFFICIENT MEMORY

LIB196 cannot execute the command because it requires more memory

than the amount of memory available in the system.

INVALID MODULE NAME

The specified module name contains an invalid character or starts with a

digit.

Chapter 99–24
M
E
S
S
A
G
E
S

pathname, NOT LIBRARY

The specified file is not a library.

INVALID SYNTAX

The command was not entered properly. Reenter it using the correct

syntax.

MODULE NAME TOO LONG

The specified module name exceeds 40 characters.

RIGHT PARENTHESIS EXPECTED

A ”)” is missing in the command.

UNRECOGNIZED COMMAND

An illegal or misspelled command was entered. The only commands are

add , create , delete , exit , extract , help , list , replace , and their

respective abbreviations.

TASKING
Quality Development Tools Worldwide

A

GLOSSARY
A
P
P
E
N
D
I
X

Appendix AA–2
G
L
O
S
S
A
R
Y

A

A
P
P
E
N
D
I
X

Glossary A–3

• • • • • • • •

A

absolute address. An address that corresponds directly to a storage

location in the processor's address space. See relocatable address.

absolute object file. An object file containing no relocatable segments.

absolute segment. A segment of code or data absolutely located at a

specific address.

address. A specific memory location.

alignment. The arrangement of data in memory relative to the byte

boundaries of the memory location.

B

base. (1) A term used in logarithms and exponentials. In both contexts, it

is a number that is being raised to a power.

(2) A number that defines the representation being used for a string of

digits. Base 2 is the binary representation.

base address. A starting address from which an absolute address can be

calculated by combination with an offset.

bias. A constant that is added to the true exponent of a real number to

obtain the field of that number's floating-point representation in the

80C196 processor. To obtain the true exponent, you must subtract the bias

from the given exponent. For the 80C196, the bias is 127.

binary point. An entity just like a decimal point, except that it exists in

binary numbers. Each binary digit to the right of the binary point is

multiplied by an increasing negative power of two.

C

calling convention. Object code inserted by the compiler to handle

function calls.

code segment. An address space containing instructions and constants.

constant. A value that does not change during execution.

Appendix AA–4
G
L
O
S
S
A
R
Y

control. A command-line parameter that determines features or actions

of the program being invoked.

D

data segment. An address space containing data.

data type. A format for storing or displaying a value.

debug information. Information produced in the object file by the

translator or linker to aid in the process of symbolic debugging.

denormalized number. A number whose most-significant digit is a 0.

E

error. An exception that does not immediately terminate the program's

operation but can cause an invalid object module.

exception. Any of the six conditions (invalid operation, denormal, zero

divide, overflow, underflow, and precision) detected by the FPAL96 library

and signalled by status flags or by status flags and exception handlers.

exponent. (1) Any number that indicates the power to which another

number is raised. (2) A field of a floating-point number which indicates

the magnitude of the number.

external reference. A reference to a location in a different object

module via a data pointer or function call.

external symbol. A symbol used in the current module but defined in

another module.

F

fatal error. An unrecoverable error detected by the executing program.

fixup. Instructions placed in the object file that allow RL196 to fix

undetermined calls in the code image.

fraction. The part of a floating-point significand that lies to the right of

the binary point.

Glossary A–5

• • • • • • • •

I

include file. Source text files named in an include compiler/assembler

control or in a #include preprocessor directive.

incremental linking. Linking modules in small subgroups before linking

the subgroups together.

integral types. Types that include all forms of integers, characters, and

enumerations.

K

keyword. A character string that has special meaning to the program.

See reserved word.

L

library file. A file containing a collection of linkable object modules

indexed by module name.

listing controls. Controls that manipulate the format of the print or

listing file.

listing file. User-readable text recording and summarizing the linking

process.

local symbols. Symbols that are defined and used in only one module of

a program.

M

mantissa. The significand of a floating-point number.

map file. Description of the layout of a linked program in memory.

memory allocation. The manner in which memory is assigned to code

and data.

module. A separately translated part of a program.

Appendix AA–6
G
L
O
S
S
A
R
Y

N

normalized number. A number whose most-significant digit is a 1.

Not-a-Number. Value in floating-point format that does not represent

any real number.

O

object code. Executable instructions and associated data in binary format.

object file. File containing the translated module.

object module. Formatted object code resulting from translation.

offset. A byte address within a segment.

OH196. 80C196 object code to hexadecimal conversion utility.

opcode fetch. Reading an instruction from memory.

P

parameter. A variable element in a command, such as a value, argument,

or identifier.

pathname. The name of a directory or file relative to a given directory.

print file. See map file.

Q

quasi-absolute file. An object file that contains a relocatable stack

segment.

R

RAM. Random access memory

reentrant. A function that calls itself or gets called again in a call loop.

Glossary A–7

• • • • • • • •

register. A high-speed storage location on a processor chip.

register file. 80C196 on-chip memory used for high-speed data access

and for hardware control; also called register memory.

relative address. See relocatable address.

relocatable address. A symbolic address generated by a language

translator as a placeholder for an absolute address. The absolute address

can be evaluated at a later time by language utilities.

relocatable object file. File containing code and data whose location is

defined at load time or run time.

reserved word. A character or character string defined and used by the

program.

RL196 linker. 80C196 relocation and linking utility used in preparing

object code for execution.

ROM. Read-only memory.

run-time. The time during which a program is executing.

S

scalar. A single value.

scope. The section of a program within which a symbol is recognized.

search path. The list of directories that the compiler or the host system

can search to find a filename.

segment. A block of code or data that fits into an addressable block of

memory.

SFRs. Special function registers: part of the register file of the 80C196

component used for hardware control.

Significand. The part of a floating-point number that consists of a

leading bit to the left of the binary point and a fraction to the right.

stack pointer. Processor register that contains the address of the top of

the stack.

Appendix AA–8
G
L
O
S
S
A
R
Y

stack segment. Portion of memory reserved for dynamic use during

execution.

symbol table. A table in the object file containing information about the

symbols used in the program.

T

target. System on which the application program executes.

target system. The hardware and operating system for which the user is

developing an application.

translator. An assembler, interpreter, or compiler.

type casting. Changing the representation of a value from one data type

to another.

type checking. Test performed by the linker to see if two symbols of the

same name have the same attribute.

U

unresolved external. A symbol that is not matched by a public symbol

in one of the input modules.

V

variable. A quantity that can assume any of a set of values, or a symbol

that refers to a value.

W

work files. Files created and deleted by the development tool during

translation.

TASKING
Quality Development Tools Worldwide

INDEX
I
N
D
E
X

IndexIndex–2
IN
D
E
X

I
N
D
E
X

Index Index–3

• • • • • • • •

Symbols
.abs extension, 1-7

.DEFAULT, 8-11

.DONE, 8-11

.IGNORE, 8-11

.INIT, 8-11

.lst extension, 1-7

.m96 extension, 1-7

.m96 file, 2-30

.PRECIOUS, 8-12

.SILENT, 8-12

.SUFFIXES, 8-12

?MEMORY_SIZE symbol, 2-15, 9-3

?wsr variable, 2-21

: (colon), 2-23, 4-3

#include directive, 5-19

- (minus sign), 2-23, 4-3

= (equal sign), 2-23, 4-3

_BOTTOM_OF_STACK_, 2-13

_HEAP_END_ symbol, 2-15

_HEAP_START_ symbol, 2-15

_INIT_TABLE_START_, 2-9

_TOP_OF_STACK_, 2-13

Numbers
80C196KC processor, 2-20

80C196KR processor, 2-20

80C196NT microcontrollers, 5-10, 5-19

Compatible mode, 5-10
Extended mode, 5-10

A
a command, 4-6

Absolute object file, 1-7

Creating an, 2-38, 2-46
Absolute segment, 2-4

absstack control, 2-12, 2-16, 2-46

Addition, 6-9

Administrative operations, 6-3

fpcleb function, 6-3, 6-12
fpinit function, 6-3, 6-19
fpldcw function, 6-3, 6-22
fprstor function, 6-3, 6-41
fpsave function, 6-3, 6-43
fpseteh function, 6-3, 6-45
fpstcw function, 6-3, 6-51
fpstsw function, 6-3, 6-58

Alignment, 2-31

as control. See absstack control

ASM196 applications, 1-5

Attribute field, 2-34, 2-35

Audience description, 1-6

B
Base address, 2-4, 2-31

BASED attribute, 2-34

Batch files, 2-39

Binary operations, 6-5

fpadd function, 6-5, 6-9
fpcompq function, 6-5, 6-14
fpcomps function, 6-5, 6-14
fpdiv function, 6-5, 6-16
fpmul function, 6-5, 6-31
fprem function, 6-5, 6-36
fpsub function, 6-5, 6-60

Binary point, 5-4

Binary scientific notation, 5-3

Bit mask, 7-3

bottomup control, 2-48

bu control. See bottomup control

Built-in variables, 1-5, 5-13

Control word, 1-5, 5-13, 5-14
Status word, 1-5, 5-13, 5-16

IndexIndex–4
IN
D
E
X

C
c command, 4-7

C196 applications, 1-5

C196LIB environment variable, 2-27

Calling graph, 2-53, 2-91

Calls relationship. See regoverlay

control

case control, 2-49

Case sensitivity, 2-49, 4-4

case statements, 2-17

CCB (Chip Configuration Byte), 2-17

CCR (Chip Configuration Register),

2-17

ch control. See code2high control

Code segment, 1-4, 2-11, 9-15

Type, 2-34, 2-35, 2-61
code2high control, 2-51

Command file, 2-41

Comparison, 6-14

Compatible mode, 5-10, 5-19

compatible mode, 2-65

Constants, Loading, 6-29

Control file, 2-25

Appending, 2-25
Control Variables, 5-13

Control word, 1-5, 5-14, 6-51, 7-5

Default value, 6-19
Default values, 5-15
Loading values, 5-15, 6-22

Controlling FPAL96, 5-13

Controls

absstack, 2-46
bottomup, 2-48
case, 2-49
code2high, 2-51
dataoverlay, 2-52
farcode, 2-71
farconst, 2-72
fardata, 2-73
heap, 2-56
ignoreabs, 2-57

inittable, 2-58
inst, 2-59
ixref, 2-61
limit_bitno, 2-62
Linking, 2-45
list, 2-63
Listing, 2-45
Locating, 2-45
model, 2-65
name, 2-69
nearcode, 2-71
nearconst, 2-72
neardata, 2-73
np_rsvup6, 2-74
omf, 2-75
pageprint, 2-76
pagewidth, 2-77
print, 2-78
purge, 2-80
quietwarns, 2-82
ram, 2-83
regfirst, 2-88
register, 2-86
regoverlay, 2-90
RL196, 2-22
rom, 2-95
romcode, 2-99
romdata, 2-102
searchlib, 2-105
sfr, 2-106
stacksize, 2-107
typecheck, 2-109
uniquemods, 2-111
warning, 2-112
windowsize, 2-113

Conventions, 1-8, 5-12

Naming, 5-12
Parameter passing, 5-12

Conversions

Controlling, 5-15
Decimal and Floating point, 6-24,

6-53

Index Index–5

• • • • • • • •

Floating point format, 6-49
Long Integer and Floating point,

6-27, 6-56
Long Unsigned Integer and Floating

point, 6-27, 6-56
Creating libraries, 1-4

Cross-reference, 2-61

Listing, 1-4
See also ixref control

cs control. See case control

Customer comments, 1-8

Customer service hotline, 1-8

D
d command, 4-8

Data representation, 5-1

Data segment, Types, 2-34, 2-35, 2-61

entry, 2-34
Data segments, Types

array, 2-34
bit, 2-34
byte, 2-34
entry, 2-34
enum, 2-34
farptr, 2-34
fpl_proc, 2-34
integer, 2-34
label, 2-34
list, 2-34
long, 2-34
longint, 2-34
null, 2-34
pointer, 2-34
procedure, 2-34
ptr, 2-34
real, 2-34
scalar, 2-34
sgn_int, 2-34
shortint, 2-34
structure, 2-34
union, 2-34

unsgn_int, 2-34
vpl_proc, 2-34
whole, 2-34
word, 2-34
wsr_ptr, 2-34

dataoverlay control, 2-52

debug control, 2-37

Debugging, 2-37

with ICE-196PC, 2-107
Decimals, 5-11

Declaration of, 5-11
Exponent, 5-11
Mantissa, 5-11

Declaring functions, 5-18

Definition records, 2-5

External, 2-5
Public, 2-5

Denormal exception, 5-9, 7-8

Denormalization, 7-7

Denormalized floating point numbers,

5-4

Division, 6-16

do control. See dataoverlay control

Double data type, 5-5

Dummy file, 2-15

Dynamic memory allocation, 2-15,

2-46

Dynamic segment type, 2-34, 2-35

E
else, 8-6

endif, 8-6

environment variable

C196LIB, 2-27
HOME, 8-5

Error byte, 5-13, 5-17, 7-7

Clearing, 6-12
Exception flags, 5-17

Error messages, 2-36, 9-1, 9-4

Fatal, 9-3
LIB196, 9-23

IndexIndex–6
IN
D
E
X

Location, 2-36
OH196, 9-22
RL196, 9-14
Warnings, 9-3

Example routines, 5-18, 5-21

fpadd function, 5-25
fplddec function, 5-22
fpst function, 5-24

Exception flags, 5-17

Exception handler, 5-9

Creating an, 7-8
Default, 5-14, 6-19
Setting, 5-14, 6-45
Tasks, 7-8
User-defined, 5-14
Using floating-point functions, 7-10

Exception handling, 7-1

Debugging with operation codes, 7-4
Exceptions, 7-1

Denormal, 5-9, 7-1, 7-8
Invalid Operation, 7-1, 7-5
Invalid-operation exception, 5-9
Operation Codes, 7-3, 7-4
Overflow, 7-1, 7-6
Precision, 7-1, 7-7
Processing, 5-17
Underflow, 7-1, 7-7
Zero divide, 7-1, 7-6

Executable files. See absolute object

file

Exponent, 5-11

Exponent field, 5-3

Extended mode, 5-10, 5-19

extended mode, 2-65

Extensions, 1-7

External data formats, 5-1

Decimals, 5-1, 5-11
Integers, 5-1, 5-11
Real floating point numbers, 5-1

External references, 1-4

extrn directive, 5-19

F
farcode control, 2-71

farconst control, 2-72

fardata control, 2-73

Fatal error messages, RL196, 9-4

fc control. See farcode control

fd control. See fardata control

Filename extensions, 1-7

Finite nonzero number, 7-6

First fit/decreasing size algorithm, 2-12

fk control. See farconst control

Float data type, 5-5

Floating point number, Format

Exponent field, 5-3
Fraction field, 5-3
Sign field, 5-3

Floating point number format, 5-3

Fraction field, Format, 5-9
Relationship between exponent and

fraction, 5-5
Floating point numbers, 5-3

Addition, 6-9
Comparison, 6-14
Denormalized, 5-8
Division, 6-16
Examples, 5-3
Multiplication, 6-31
Normalized, 5-8
Range, 5-5
Remainder, 6-36
Square root, 6-47
Subtraction, 6-60

Floating-point accumulator. See FPACC

accumulator

fpabs function, 6-4, 6-7

FPACC, Setting to negative, 6-34

FPACC accumulator, 1-5, 5-13, 6-3,

7-8

Loading, 6-20

Index Index–7

• • • • • • • •

Setting to positive, 6-7
fpadd function, 6-5, 6-9

FPAL96 library

File, 1-6
Initializing, 5-20, 6-19
Linking, 5-20
Operations, 6-1

FPAL96 library files, fpal96.lib, 5-19

fpcleb function, 5-18, 6-3, 6-12

fpcompq function, 5-13, 5-16, 6-5,

6-14

fpcomps function, 5-13, 5-16, 6-5,

6-14

fpcomps function , 7-5

fpdiv function, 6-5, 6-16

fpinit function, 5-18, 5-20, 6-3, 6-19

fpld function, 6-3, 6-20

fpld1 function, 6-3, 6-29

fpldcw function, 5-15, 6-3, 6-22

fplddec function, 6-3, 6-24

fpldint function, 6-3, 6-27

fplduint function, 6-3, 6-27

fpldz function, 6-3, 6-29

fpmul function, 6-5, 6-31

fpneg function, 6-4, 6-34

fprem function, 6-5, 6-36

fprndint function, 6-4, 6-39

fprstor function, 5-18, 6-3, 6-41, 7-10

fpsave function, 6-3, 6-43, 7-10

fpseteh function, 5-14, 6-3, 6-45, 7-5

fpsqrt function, 6-4, 6-47

fpst function, 6-4, 6-49

fpstcw function, 6-3, 6-51

fpstdec function, 6-4, 6-53

fpstint function, 6-4, 6-56

fpstsw function, 5-17, 6-3, 6-58

fpstuint function, 6-4, 6-56

fpsub function, 6-5, 6-60

Fraction field, 5-3

Format
Address field, 5-9
Exception field, 5-9

Functions, Declaration, 5-18

in ASM196, 5-18
in C196, 5-19

G
Global register variables, 2-21

Global symbols

External, 2-5
Public, 2-5

glossary, A-1

H
he control. See heap control

heap control, 2-15, 2-56

heap space, 2-15, 2-56

hex file, 3-4

High code segment, 2-68

HOME, 8-5

I
ia control. See ignoreabs control

IEEE Standard, 1-5

Format supported, 1-5
ifdef, 8-6

ifndef, 8-6

ignoreabs control, 2-57

in control. See inst control

Include file, 5-18, 5-19

Incremental linking, 2-4, 2-15

Infinity operands, Using, 5-7

Initialization table, 2-58

Initialize variables, 2-9

Initializing FPAL96, 5-20, 6-19, 7-10

inittable control, 2-58

inst control, 2-59

IndexIndex–8
IN
D
E
X

INST pin, 2-16

Behavior, 2-17
Chip Configuration Byte, 2-17
Chip Configuration Register, 2-17
Interrupt vector table, 2-17
Opcode fetch, 2-17
Program constants and variables,

2-17
Vector tables, 2-17

Hardware development guidelines,
2-18

Overlapping memory scheme, 2-17
RL196 invocation example, 2-19

Instruction pin. See INST pin

Integers, 5-11

Intermodule cross-reference listing,

2-35, 2-61

See also ixref control
Interval arithmetic, Implementing, 5-16

Invalid-operation exception, 5-9,

6-34, 7-5

Invocation line

LIB196, 4-3
OH196, 3-3
RL196, 2-22

invocation mk196, 8-3

it control. See inittable control

ix control. See ixref control

ixref control, 2-61

L
l command, 4-10

lb control. See limit_bitno control

li control. See list control

LIB196, Character set, 4-4

LIB196 commands, 4-4

LIB196 error messages, 9-23

LIB196 invocation line, 4-3

Interactive mode, 1-4
Non-interactive mode, 1-4

LIB196 library manager, 1-4, 4-1

LIB196 options, 4-3

Libraries, 2-26

Library files, 1-4

Search path, 2-27
limit_bitno control, 2-62

Line numbers, 2-64, 2-81

lines, 2-63, 2-80

See also list control; purge control
Link summary, 2-30

Link summary information, 2-31

Linkage, 1-4

Linking the FPAL96 library, 5-18, 5-20

list control, 2-31, 2-32, 2-63

ln. See lines

Load operations, 6-3

fpld function, 6-3, 6-20
fpld1 function, 6-3, 6-29
fplddec function, 6-3, 6-24
fpldint function, 6-3, 6-27
fplduint function, 6-3, 6-27
fpldz function, 6-3, 6-29

Loading constants, 6-29

Loading the FPACC, 6-20

Local register variables, 2-21

Local symbols, 2-64, 2-81

Long double data type, 5-5

lp command, 4-10

M
Main module, 2-4, 2-26

maintain programs, 8-3

Make Utility mk196, 2-38, 8-1

Mantissa, 5-11

Map file, Creating a, 2-78

Matching segment type, 2-5, 2-109

Matching symbol type, 2-5, 2-109

md control. See model control

Memory allocation, 2-11, 2-88

Memory segment, 2-11

Code, 2-11
Data, 2-11

Index Index–9

• • • • • • • •

Overlay, 2-11
Register, 2-11

MEMORY symbol, 2-15, 9-3

Messages, 9-1

mk196

.DEFAULT target, 8-11

.DONE target, 8-11

.IGNORE target, 8-11

.INIT target, 8-11

.PRECIOUS target, 8-12

.SILENT target, 8-12

.SUFFIXES target, 8-12
comment lines, 8-6
conditional processing, 8-6
diagnostics, 8-15
dry run, 8-4
example, 8-14
exist function, 8-10
export line, 8-6
functions, 8-9
ifdef, 8-6
implicit rules, 8-13
include line, 8-6
macro definition, 8-5
macro MAKE, 8-7
macro MAKEFLAGS, 8-8
macro PRODDIR, 8-8
macro SHELLCMD, 8-8
macros, 8-7
Makefile, 8-15
makefile, 8-5, 8-15
match function, 8-9
mk196.mk, 8-15
nexist function, 8-10
options, 8-3
protect function, 8-10
question mode, 8-4
rules, 8-12
separate function, 8-9
silent mode, 8-4
special macros, 8-7
special targets, 8-11
targets, 8-10

touch target file, 8-4
mk196 make utility, 8-1

model control, 2-65

Modes

Compatible, 5-10, 5-19
Extended, 5-10, 5-19

Modules, Unique, 2-111

Most-significant digit, 5-4

Multiplication, 6-31

N
na control. See name control

name control, 2-69

Naming conventions, 5-12

NaNs, 5-9, 6-14

Quiet NaNs, 5-9
Signalling NaNs, 5-9

nc control. See nearcode control

nd control. See neardata control

nearcode control, 2-71

nearconst control, 2-72

neardata control, 2-73

nk control. See nearconst control

noabsstack control, 2-9, 2-46

noas control. See noabsstack control

nobottomup control, 2-48

nobu control. See nobottomup control

nocase control, 2-49

noch control. See nocode2high control

nocode2high control, 2-51

nocs control. See nocase control

nodataoverlay control, 2-52

nodo control. See nodataoverlay

control

nohe control. See noheap control

noheap control, 2-56

noia control. See noignoreabs control

noignoreabs control, 2-57

noin control. See noinst control

noinittable control, 2-58

IndexIndex–10
IN
D
E
X

noinst control, 2-59

noit control. See noinittable control

noix control. See noixref control

noixref control, 2-61

nolb control. See nolimit_bitno control

noli control. See nolist control

nolimit_bitno control, 2-62

nolist control, 2-63

nonp_rsvup6 control, 2-74

noov control. See noregoverlay control

nopr control. See noprint control

noprint control, 2-78

nopu control. See nopurge control

nopurge control, 2-37, 2-80

noquietwarns control, 2-82

noqw control, 2-82

noregfirst control, 2-88

noregoverlay control, 2-90

norf control. See notypecheck control

Normalized floating point, 5-3, 5-8

nosfr control, 2-106

Not-a-Number. See NaNs

notc control. See notypecheck control

notypecheck control, 2-5, 2-109

noum control. See nouniquemods

control

nouniquemods control, 2-111

nowa control. See notypecheck control

nowarning control, 2-112

np_rsvup6 control, 2-74

null

Segment type, 2-34, 2-61
Symbol type, 2-34, 2-61

O
Object library file, 2-26, 2-28

OH object-to-hexadecimal converter,

1-7

OH196 converter, Error messages, 9-22

OH196 object-to-hexadecimal

converter, 3-1

Invocation line, 3-3
Output file, 3-4
Record type, 3-5

omf control, 2-10, 2-75

OMF96

combining formats, 2-10
global initialization, 2-10
version 3.0 limitations, 2-11

Opcode fetch, 2-16

Operations

Administrative, 1-5, 6-1
Load and store, 1-5, 6-1
Unary and binary, 1-5, 6-1

Options

LIB196, 4-3
mk196, 8-3
RL196, 2-23
Table, 2-23
Turning off/on, 2-23

Order of allocation, 2-11

Ordinary object file, 2-22, 2-27, 4-6

Output object module, Naming, 2-69

ov control. See regoverlay control

Overflow exception, 7-6

Rounding results, 7-6
Overlapping memory scheme, 2-17

Overlapping ROM and RAM, 2-16,

2-59

Overlay segment, 2-14, 2-22, 2-52,

2-90

Type, 2-34, 2-35, 2-61
Overlaying segments, 2-52, 2-90

Overview, 1-1

P
pageprint control, 2-76

pagewidth control, 2-77

Index Index–11

• • • • • • • •

Parameter passing conventions, 5-12

Performing fixups, 2-9

pl. See publics

PLMREG register, 5-12, 5-19

pp control. See pageprint control

pr control. See print control

Precision exception, 7-7

print control, 2-78

Print file, 2-63

PROM programmer, 1-7

Loading, 1-7
pu control. See purge control

Public symbol, 2-5, 2-16, 2-80

publics, 2-63, 2-80

See also list control; purge control
Publicsonly object file, 1-4, 2-26, 2-29

purge control, 2-80

Conserving space, 2-38
pw control. See pagewidth control

Q
Quasi-absolute object file, 2-4, 2-38,

2-46

Creating an, 2-38
Quiet NaNs, 5-9

Address field, 5-9
Exception field, 5-9
Operands, 5-10

quietwarns control, 2-82

qw control, 2-82

R
r command, 4-11

ra control. See ram control

ram control, 2-11, 2-12, 2-83

RAM memory, 1-4, 2-11, 2-15, 9-6,

9-7

Designating, 2-83

rc control. See rom control

rd control. See rom control

Real data type, 5-5

reconstruct programs, 8-3

Reg. See Register segment

regfirst control, 2-11, 2-88

Register, Allocation, 2-20

Overlay segment, 2-20
Register segment, 2-20

Register overlaying, 2-14

Register segment, 1-4, 2-11, 2-22,

2-86

Type, 2-34, 2-35, 2-61
Registers

16-bit direct addressing mode, 2-20
8-bit direct addressing mode, 2-20
Range, 2-86

registers control, 2-11, 2-22, 2-86

regoverlay control, 2-11, 2-12, 2-14,

2-88, 2-90, 9-21

Relocatable segment, 2-4, 2-12

Relocatable symbol, 2-9

Relocation, 1-4

Remainder, 6-36

Resolving external references, 2-5

Restoring FPAL96 status, 6-41

return statement, 7-10

rf control. See typecheck control

rg control. See registers control

RL196 controls, 2-22, 2-43

Linking, 2-43
Listing, 2-43
Locating, 2-43

RL196 error messages, 9-3, 9-14

Fatal, 9-4
Warning messages, 9-18

RL196 input modules

Object library file, 2-26, 2-28
Conditional processing, 2-28
Syntax, 2-28

Ordinary object file, 2-27
Publicsonly object file, 2-26, 2-29

IndexIndex–12
IN
D
E
X

Selecting, 2-26
RL196 invocation line, 2-22

Input list, 2-22
Object library file, 2-28
Ordinary object file, 2-27
Publicsonly object file, 2-29

RL196 linker, 1-5, 5-20

Invocation line, 5-20
RL196 linker and locator, 2-1

Major functions, 2-3
RL196 linker/locator, 1-4

RL196 options, 2-23

-?, 2-25
-as, 2-46
-bu, 2-48
-case, 2-49
-ch, 2-51
-f, 2-25
-he, 2-56
-ia, 2-57
-in, 2-59
-ix, 2-61
-L, 2-105
-lb, 2-62
-M, 2-78
-md, 2-65
-omf, 2-75
-pw, 2-77
-QW, 2-82
-rf, 2-88
-S, 2-106
-ss, 2-107
-tc, 2-109
-um, 2-111
-V, 2-25
-W, 2-112
-ws, 2-113

RL196 outputs

Console display, 9-3
Object file, 2-30
Print file, 2-30

ro control. See rom control

rom control, 2-11, 2-12, 2-95

ROM memory, 1-4, 2-11, 9-6, 9-7

Designating, 2-95, 2-99, 2-102
ROM/RAM overlapping, 2-59

romcode control, 2-11, 2-12, 2-99

romdata control, 2-11, 2-12, 2-102

Round to integer, 6-39

Rounding Modes, 5-14

Rounding modes, 5-15

Default, 5-15
Directed, 5-16
Most accurate, 5-15
Round down, 5-15
Round to the nearest, 5-15
Round up, 5-15
Truncate, 5-15

S
Saving FPAL96 status, 6-43

sb. See symbols

searchlib control, 2-105

Segment

Map, 1-4, 2-31
Option, 2-31
Type, 2-109
Type matching, 2-109
Types, 2-34, 2-35

Segment placement, 2-4

Segment type matching, 2-6

Segment types, 2-61

farcode, 2-34, 2-68
farconst, 2-34
fardata, 2-34
highcode, 2-51, 2-68

segments, 2-63, 2-80

See also list control; purge control
Selecting FPAL96 library, 5-19

sfr control, 2-106

Sign field, 5-3

Sign-off message, 9-4

Sign-on message, 9-3

Index Index–13

• • • • • • • •

Signalling NaNs, 5-9

sl control. See searchlib control

sm. See segments

Software development process, 1-3

Special floating point numbers, 5-5

Denormal, 5-5
Denormalized Numbers, 5-8
Infinity, 5-5, 5-7
NaN, 5-5, 5-9
Zero, 5-5

Square root, 6-47

ss control. See stacksize control

st. See stack segment

Stack

_BOTTOM_OF_STACK_, 2-13
_TOP_OF_STACK_, 2-13

Stack overflow, 2-13

Stack segment, 2-12

See also absstack control; stacksize
control

Size, 2-107
Type, 2-34, 2-35, 2-61

stack segment, 2-26

stacksize control, 2-107, 9-19

static storage type, 2-22

Status word, 1-5, 5-16, 6-14, 6-58, 7-5

Default value, 6-19
Error byte, 5-17

Clearing, 6-12
Format, 5-16

STAT field, 5-16
Processing exceptions using, 5-17

Store operations, 6-4

fpst function, 6-4, 6-49
fpstdec function, 6-4, 6-53
fpstint function, 6-4, 6-56
fpstuint function, 6-4, 6-56

Suffix rules, 1-7

Summary of options, 2-23

switch statements, 2-17

Symbol

?MEMORY_SIZE, 2-15
_HEAP_END_, 2-15

_HEAP_START_, 2-15
MEMORY, 2-15

Symbol base, 2-34

Symbol references, 2-5

Symbol table, 1-4, 2-32

Value, 2-32
Symbol type matching, 2-6

Symbol types, 2-61

symbols, 2-63, 2-80

See also list control; purge control

T
tc control. See typecheck control

Two's complement, 5-11

Type checking, 2-5, 2-109

Type matching

Segment, 2-6
Symbol, 2-6

Type mismatch, 2-8

Output of RL196, 2-8
Warning, 2-8

typecheck control, 2-5, 2-109

U
um control. See uniquemods control

Unallocated segments, 2-12

Unary operations, 6-4

fpabs function, 6-4, 6-7
fpneg function, 6-4, 6-34
fprndint function, 6-4, 6-39
fpsqrt function, 6-4, 6-47

Underflow exception, 7-7

Uninitialized variables, Detecting, 5-9

uniquemods control, 2-111

Unresolved external symbols, 2-5

Unresolved references, 1-4

update programs, 8-3

IndexIndex–14
IN
D
E
X

Utilities

LIB196, 4-1
mk196, 8-1
OH196, 3-1
RL196, 2-22

V
Value field, 2-34

Variable initialization, 2-9

Vector tables, 2-17

Vertical windows, 2-20, 2-86, 2-113

Register allocation scheme, 2-21
Size, 2-113
Using, 2-20

VWindows. See Vertical windows

W
wa control. See typecheck control

warning control, 2-112

Warning messages, 2-108

RL196, 9-18
Set to non-zero, 2-112

Windows

Horizontal, 2-20
Mapping, 2-20
Vertical, 2-20

windowsize control, 2-22, 2-113

ws control. See windowsize control

WSR management code, 2-21

X
x command, 4-9

Z
Zero operands, Using, 5-5

Zero-divide exception, 7-6

	TABLE OF CONTENTS
	OVERVIEW
	80C196 Utilities and the Development Process
	Relocation and Linkage
	Use of Libraries
	FPAL96 Functions
	Audience Description
	ROM and PROM Versions
	Keeping Track of Files

	Conventions
	Customer Support
	If You Have a Problem Using the Software

	RL196 LINKER
	Overview
	Resolving External References
	Type Checking
	Segment Type Matching
	Symbol Type Matching
	Mismatched Types

	Performing Fix-ups

	Variable Initialization
	Combining Different OMF96 Formats
	Global Initialization
	OMF96 Version 3.0 Limitations

	Memory Allocation
	Stack Segment
	Stack Overflow
	Register Overlaying
	Providing Means for Dynamic Memory Allocation
	Overlapping ROM and RAM Memory Using the INST Pin
	INST Pin Behavior
	Overlapping Memory Scheme Example
	Guidelines for Hardware Development
	Linker/Locator Example Invocation Line
	Summary of RL196 INST Usage

	Support for Vertical Windows

	Invoking RL196
	Options
	Input List
	Ordinary Object File
	Object Library File
	Publicsonly Object File

	Output Files
	Print File
	Output Object File

	Automatically Invoking Multiple Commands
	Using Make Utility mk196
	Using Batch Files
	Using Command Files

	RL196 Controls

	OH196 CONVERTER
	Invocation Syntax
	Examples
	Output File

	LIB196 LIBRARIAN
	Invoking LIB196
	Options
	Character Set

	LIB196 Commands
	Command Descriptions

	USING THE FPAL96 LIBRARY
	Data Formats Supported
	Floating Point Numbers
	Special Floating Point Numbers

	Integers
	Decimals

	Conventions
	Naming Conventions
	Parameter Passing

	FPAL96 Control Variables
	Floating-point Accumulator
	Built-in Variables
	Control Word
	Status Word

	Declaration and Linkage
	Declaring Floating-point Functions
	In an ASM196 Program
	In an C196 Program

	Selecting the Correct Library
	Initializing the Floating-point Library
	Linking the Floating-point Library

	Examples Using FPAL96 Routines

	FPAL96 FUNCTIONS REFERENCE
	Introduction
	Administrative Operations
	Load Operations
	Store Operations
	Unary Operations
	Binary Operations
	Functions List

	EXCEPTIONS AND EXCEPTION HANDLING
	Introduction
	Invalid-operation Exception
	Zero-divide Exception
	Overflow Exception
	Underflow Exception
	Precision Exception
	Denormalized-number Exception
	Creating Your Own Exception Handler

	MK196 MAKE UTILITY
	Invocation Syntax
	Description
	Usage
	Example
	Files
	Diagnostics

	MESSAGES AND ERROR RECOVERY
	RL196 Messages
	Console Messages
	Fatal Errors
	RL196 Error Messages
	Argument Error Messages
	Memory Error Messages
	I/O Error Messages

	Error Messages
	Warnings

	OH196 Error Messages
	LIB196 Error Messages

	GLOSSARY
	INDEX

