
TASKING
Quality Development Tools Worldwide

MA006022–00 / 0107

80C196 v6.1

C COMPILER
USER’S GUIDE

A publication of

TASKING

Documentation Department

Copyright 1999 TASKING, Inc.

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Globetrotter Software, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Intel, MCS and ICE are trademarks of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

E-mail: support@tasking.com

WWW: http://www.tasking.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, TASKING assumes no
liabilities for inaccuracies in this document. Furthermore, the delivery of
this information does not convey to the recipient any license to use or copy
the software or documentation, except as provided in an executed license
agreement covering the software and documentation.

TASKING reserves the right to change specifications embodied in this
document without prior notice.

TASKING
Quality Development Tools Worldwide

TABLE OF
CONTENTS

C
O

N
T

E
N

T
S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION 1-1

1.1 Introduction 1-3.

1.2 Installation for Windows 1-3.

1.2.1 Setting the Environment 1-4.

1.3 Installation for UNIX Hosts 1-6.

1.3.1 Setting the Environment 1-9.

OVERVIEW 2-1

2.1 C196 and the Software Development Process 2-3.

2.2 Customer Support 2-5.

2.2.1 If You Have a Problem Using the Software 2-6.

2.3 Sample Session 2-7.

2.3.1 Using EDE 2-7.

2.3.2 Using the Makefile 2-13.

COMPILING AND LINKING 3-1

3.1 Introduction 3-3.

3.2 Compiler Invocation Syntax 3-3.

3.2.1 How Controls Affect the Compilation 3-3.

3.2.2 Where to Specify Controls 3-4.

3.3 Filename Conventions 3-10.

3.4 Output Files 3-11.

3.4.1 Preprint File 3-12.

3.4.1.1 Macros 3-13.

3.4.1.2 Include Files 3-15.

3.4.1.3 Conditional Compilation 3-15.

3.4.1.4 Propagated Directives 3-16.

3.4.2 Print File 3-16.

3.4.2.1 Print File Contents 3-16.

3.4.2.2 Page Header 3-17.

3.4.2.3 Compilation Heading 3-18.

3.4.2.4 Source Text Listing 3-18.

3.4.2.5 Remarks, Warnings, and Errors 3-20.

Table of ContentsVI
C
O
N
T
E
N
T
S

3.4.2.6 Symbol Table and Cross-reference 3-20.

3.4.2.7 Pseudo-assembly Listing 3-21.

3.4.2.8 Compilation Summary 3-22.

3.4.3 Object File 3-23.

3.5 Automatically Invoking the C196 Compiler 3-24.

3.5.1 Using Make Utility mk196 3-24.

3.5.2 Using Batch Files 3-24.

3.5.3 Using UNIX Scripts 3-25.

3.6 Developing a C196 Application Program 3-25.

3.7 Combining Different OMF96 Formats 3-28.

3.7.1 Global Initialization 3-28.

3.7.2 OMF96 Version 3.0 Limitations 3-29.

3.8 Examples 3-29.

3.8.1 Source Text 3-29.

3.8.2 Setting the Windows Environment 3-32.

3.8.3 Preprocessing 3-33.

3.8.4 Checking Syntax and Semantics 3-39.

3.8.5 Symbolic Debugging 3-41.

3.8.6 Optimizing 3-43.

COMPILER CONTROLS 4-1

STARTUP CODE 5-1

5.1 Contents of cstart.a96 5-3.

5.2 Contents of _main.c 5-4.

5.3 Writing Your Own Startup Code 5-5.

5.4 Writing Your Own _main Routine 5-6.

PROCESSOR REGISTERS 6-1

6.1 Register Memory 6-3.

6.2 Accessing Special Function Registers 6-5.

6.3 TMPREG0 6-6.

Table of Contents VII

• • • • • • • •

6.4 Register Variables 6-6.

6.4.1 Using the extend Control 6-7.

6.4.2 Allocating and Overlaying Registers 6-7.

6.4.3 Support for Vertical Windows 6-10.

6.4.3.1 Using The windows Control 6-12.

6.4.3.2 Using Windowed Parameters 6-15.

ASSEMBLY CODE INSTRUCTIONS 7-1

7.1 In-line Assembly Code Syntax 7-3.

7.2 Pseudo-assembly Instruction Interpretation 7-4.

7.3 Constant Table Declaration 7-6.

7.4 Assembly Instructions 7-6.

7.5 Unsupported Instructions 7-8.

7.6 Examples 7-9.

LIBRARIES 8-1

8.1 Library Files 8-3.

8.1.1 Library Differences and Header File Correlations 8-4.

8.1.2 Linking Library Files 8-6.

8.2 Header Files 8-7.

8.3 Functions 8-14.

8.4 Dynamic Memory Allocation 8-28.

MESSAGES AND ERROR RECOVERY 9-1

9.1 Introduction 9-3.

9.2 Sign-on and Sign-off Messages 9-3.

9.3 Fatal Error Messages 9-5.

9.4 Error Messages 9-12.

9.5 Warnings 9-28.

9.6 Remarks 9-36.

Table of ContentsVIII
C
O
N
T
E
N
T
S

LANGUAGE IMPLEMENTATION 10-1

10.1 Data Representation 10-3.

10.1.1 Data Types 10-3.

10.1.2 Contiguity 10-4.

10.1.3 Alignment 10-5.

10.2 Calling Conventions 10-7.

10.2.1 Passing Arguments 10-8.

10.2.2 Returning a Value 10-9.

10.2.3 Local Variables 10-9.

10.2.4 Reentrant Functions 10-12.

10.2.5 Interrupt Functions 10-13.

10.3 Stack Size Calculation 10-13.

10.4 Implementation-dependent C196 Features 10-14.

10.4.1 Characters 10-14.

10.4.2 Identifiers 10-14.

10.4.3 Extended Semantics and Syntax 10-14.

10.4.4 Initialization 10-15.

10.4.5 Data Type Conversion 10-18.

10.4.6 Bit Fields 10-19.

10.4.7 Division/Remainder Operators 10-19.

10.4.8 Volatile Objects 10-20.

10.4.9 Extended Addressing 10-20.

10.4.9.1 Far and Near Data 10-21.

10.4.9.2 Far and Near Code 10-21.

10.5 Compiler Limits 10-22.

FLEXIBLE LICENSE MANAGER (FLEXLM) A-1

1 Introduction A-3.

2 License Administration A-3.

2.1 Overview A-3.

2.2 Providing For Uninterrupted FLEXlm Operation A-5.

2.3 Daemon Options File A-6.

2.4 License Administration Tools A-8.

3 FLEXlm User Commands A-11.

Table of Contents IX

• • • • • • • •

4 The Daemon Log File A-17.

4.1 Informational Messages A-18.

4.2 Configuration Problem Messages A-21.

4.3 Daemon Software Error Messages A-23.

5 FLEXlm License Errors A-25.

GLOSSARY B-1

INDEX

RELEASE NOTE

Table of ContentsX
C
O
N
T
E
N
T
S

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

PURPOSE

This manual is aimed at users of the TASKING 80C196 C Compiler. It
assumes that you are familiar with the 80C196 architecture and the C
programming language.

INSTALLING THE COMPILER

To install the C196 compiler, see Chapter 1 Software Installation. The

installation utility on the distribution media leads you through installing

the compiler and the utilities on your host system. To automate the

compiling and linking processes, configure the environment variables

listed in the Software Installation chapter, and see Chapter 3 for

instructions on how to create a batch or command file.

RUNNING THE COMPILER

To learn how to invoke the compiler, read Chapter 3. To learn how each

control affects the compilation process, see Chapter 4. Chapter 9 provides

information you can use to interpret a compiler error or warning and

including possible causes and suggested actions to recover from the error.

PROGRAMMING IN C196

To learn about the 80C196 architecture and the C196 data types, calling

conventions, and library functions, read Chapters 6 through 10 and the

example at the end of Chapter 3.

Manual Purpose and StructureXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

MANUAL STRUCTURE

Related Publications

Conventions Used In This Manual

1. Software Installation

Describes the installation of the C196 compiler.

2. Overview

Provides an overview of the TASKING 80C196 toolchain and gives you

some familiarity with the different parts of it and their relationship. A

sample session explains how to build a 80C196 application from your C

file.

3. Compiling and Linking

Deals with C compiler invocation, output files and describes how to

automatically invoke the compiler.

4. Compiler Controls

Contains an alphabetical list of all compiler controls.

5. Startup Code

Describes the C startup code.

6. Processor Registers

Describes the variables declared in the xx _sfrs.h header files (where

xx represents the processor as specified with the model(xx) control)

for using the SFRs and explains how to use the C196 compiler for

efficient register allocation.

7. Assembly Code Instructions

Describes ways to include assembly language instructions inside your

C196 program without requiring a separately written and translated

assembly language routine.

8. Libraries

Contains the library functions supported by the compiler and describes

their interface and 'header' files.

9. Messages and Error Recovery

Describes the error/warning messages of the compiler.

Manual Purpose and Structure XIII

• • • • • • • •

10. Language Implementation

Concentrates on the approach of the 80C196 architecture and describes

the language implementation. The C language itself is not described in

this document. We recommend: "The C Programming Language"

(second edition) by B. Kernighan and D. Ritchie (1988, Prentice Hall).

APPENDICES

A. Flexible License Manager (FLEXlm)

Contains a description of the Flexible License Manager.

B. Glossary

Contains an explanation of terms.

INDEX

RELEASE NOTE

Manual Purpose and StructureXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

• C: A Reference Manual by Harbison and Steele

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ANSI X3.159-1989 standard [ANSI]

• IEEE Standard for Floating-point Arithmetic 754-1985

TASKING publications

• 80C196 C Compiler User's Guide [TASKING, MA006022]

• 80C196 Assembler User's Guide [TASKING, MA006020]

• 80C196 Utilities User's Guide [TASKING, MA006009]

Intel publications

• Embedded Microcontrollers and Processors Handbook [270645]

• 8XC196xx User's Manuals

Only the TASKING publications are included in the C196 manual package.

Intel publications can be ordered from Intel's Literature Center.

Manual Purpose and Structure XV

• • • • • • • •

CONVENTIONS USED IN THIS MANUAL

The notation used to describe the format of call lines is given below:

{} Items shown inside curly braces enclose a list from which

you must choose an item.

[] Items shown inside square brackets enclose items that are

optional.

| The vertical bar separates items in a list. It can be read as

OR.

italics Items shown in italic letters mean that you have to

substitute the item. If italic items are inside square

brackets, they are optional. For example:

filename

means: type the name of your file in place of the word

filename.

... An ellipsis indicates that you can repeat the preceding

item zero or more times.

[,...] You can repeat the preceding item, but you must separate

each repetition by a comma.

screen font Represents input examples, keywords, filenames, controls

and screen output examples.

bold font Represents a command name, an option or a complete

command line which you can enter.

For example

command [option]... filename

This line could be written in plain English as: execute the command

command with the optional options option and with the file filename.

Illustrations

The following illustrations are used in this manual:

This is a note. It gives you extra information.

Manual Purpose and StructureXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

This is a warning. Read the information carefully.

This illustration indicates actions you can perform with the mouse.

This illustration indicates keyboard input.

This illustration can be read as �See also". It contains a reference to

another command, option or section.

TASKING
Quality Development Tools Worldwide

1

SOFTWARE
INSTALLATION

C
H

A
P

T
E

R

Chapter 11–2
IN
S
T
A
L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation 1–3

• • • • • • • •

1.1 INTRODUCTION

This chapter describes how you can install the TASKING 80C196 C

Compiler on Windows 95/NT and several UNIX hosts.

1.2 INSTALLATION FOR WINDOWS

Step 1

Start Windows 95/98 or NT, if you have not already done so.

Step 2

Insert the CD-ROM into the CD-ROM drive.

If the Auto insert notification option is enabled for your CD-ROM

drive, the TASKING Welcome dialog box appears. Now skip to Step 5.

Step 3

Select the Start button and select the Run... menu item.

Step 4

On the command line type:

d:\setup

(substitute the correct drive letter if necessary) and press the <Return> or

<Enter> key or click on the OK button.

The TASKING Welcome dialog box appears.

Step 5

Select a product to install and click on Install a Product .

Step 6

Follow the instructions that appear on your screen.

You can find your serial number on the Certificate of Authenticity,
delivered with the product.

Chapter 11–4
IN
S
T
A
L
L
A
T
IO
N

1.2.1 SETTING THE ENVIRONMENT

The C196 compiler recognizes several environment variables that you can

use to reduce the amount of typing required for a compiler invocation.

These environment variables are as follows:

PATH

PATH is recognized by DOS/Windows as a list of pathnames of directories

containing executable or batch files. If one of the pathnames in this list

specifies the directory containing the C196 compiler, you need not retype

the full pathname each time you invoke the compiler. If you installed the

software under C:\C196 , you can include the executable directory

C:\C196\BIN in your search path. Your PC literature explains how to

define the PATH environment variable.

In EDE, select the EDE | Directories... menu item. Add one or more

executable directory paths to the Executable Files Path field.

C196INC

C196INC is recognized by the compiler as a list of prefix strings, separated

with semicolons, that the compiler can use to locate include files. If you

specify a filename or partial pathname with the include control or the

#include preprocessor directive, the compiler prepends each string in

C196INC in turn and uses each resulting pathname as the name of the

include file.

The compiler uses the pathnames formed from the list in C196INC in

addition to any you specify with the searchinclude control. For

example, the following definition of C196INC locates the files

c:\c196\include\stdio.h and c:\working\kal4.h when the

include (stdio.h,kal4.h) control is specified:

set C196INC=c:\c196\include;c:\working

C96INIT

C96INIT is recognized by the compiler as a prefix string used to form the

pathname of a file named c96init.h . For example, setting C96INIT as

follows causes the compiler to use the c96init.h file in the

c:\working directory:

set C96INIT=c:\working\

Software Installation 1–5

• • • • • • • •

If C96INIT is not defined or is empty, the compiler searches your current

working directory for c96init.h .

The compiler always processes c96init.h , if it exists, as the first source

text to be compiled. You need not specify c96init.h in the compiler

invocation or in a preprocessor directive.

TMPDIR

The compiler creates temporary work files, which it normally deletes when

compilation is complete. If the compilation is interrupted, for example, by

your host system losing power, the work files remain. If you see a file

with a name that looks like cnuma.dat then you can simply remove it.

The TMPDIR environment variable specifies the directory where the

compiler is to put these temporary files. If TMPDIR is not defined or is

empty, the compiler uses your current working directory for the temporary

files. For example, setting TMPDIR as follows causes the compiler to use

the c:\tmp directory for temporary work files:

set TMPDIR=c:\tmp

Chapter 11–6
IN
S
T
A
L
L
A
T
IO
N

1.3 INSTALLATION FOR UNIX HOSTS

Step 1

Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as root.

Step 2

If you are a first time user decide where you want to install the product

(By default it will be installed in /usr/local).

Step 3

For CD-ROM install: insert the CD-ROM into the CD-ROM drive. Mount

the CD-ROM on a directory, for example /cdrom . Be sure to use a ISO

9660 file system with Rock Ridge extensions enabled. See the manual page

for mount on your UNIX platform for details.

Or:

For tape install: insert the tape into the tape unit and create a directory

where the contents of the tape can be copied to. Consider the created

directory as a temporary workspace that can be deleted after installation

has succeeded. For example:

mkdir /tmp/instdir

Step 4

For CD-ROM install: go to the directory on which the CD-ROM is

mounted:

cd /cdrom

For tape install: copy the contents of the tape to the temporary workspace

using the following commands:

cd /tmp/instdir
tar xvf /dev/ tape

where tape is the name of your tape device.

If you have received a tape with more than one product, use the

non-rewinding device for installing the products.

Software Installation 1–7

• • • • • • • •

For HP tape is usually the name update.src .

Step 5

For tape install: remove the installation tape from the device.

Step 6

Run the installation script:

sh install

and follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is / usr/local . On certain sites you may want to select another

location.

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it; otherwise the product will not work on

those hosts. See the Flexible License Manager (FLEXlm) appendix for more

information.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***
SW006022 xxxx . xxxx already installed.
Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Answering y (yes) to this question causes installation to continue. And the

final message will be:

Installation of SW006022 xxxx . xxxx completed.

Step 7

For tape install: remove the temporary installation directory with the

following commands:

cd /tmp
rm –rf instdir

Chapter 11–8
IN
S
T
A
L
L
A
T
IO
N

Step 8

For hosts that need the FLEXlm license manager, each user must define an

environment variable, LM_LICENSE_FILE, to identify the location of the

license data file. If the license file is present on the hosts on which the

installed product will be used, you must set LM_LICENSE_FILE to the

pathname of the license file if it differs from the default:

/usr/local/flexlm/licenses/license.dat

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ':' :

setenv LM_LICENSE_FILE lfpath[:lfpath]...

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the Flexible License Manager (FLEXlm) appendix for detailed

information.

Step 9

Logout.

License Manager (on some hosts)

If your product has the FLEXlm License Manager the following two files

are present:

c196/flexlm/
license.dat Tasking

The file license.dat is a template license file for this product. The file

Tasking is the license daemon for TASKING products. Refer to the

Flexible License Manager (FLEXlm) appendix for detailed information

regarding license management.

Software Installation 1–9

• • • • • • • •

1.3.1 SETTING THE ENVIRONMENT

UNIX and the C196 compiler recognize several environment variables that

you can use to reduce the amount of typing required for a compiler

invocation. These environment variables are as follows:

PATH

PATH is recognized by UNIX as a list of pathnames of directories

containing executable or scripts. If one of the pathnames in this list

specifies the directory containing the C196 compiler, you need not retype

the full pathname each time you invoke the compiler. Your UNIX

literature explains how to define the PATH environment variable.

C196INC

C196INC is recognized by the compiler as a list of prefix strings, separated

with colons, that the compiler can use to locate include files. If you

specify a filename or partial pathname with the include control or the

#include preprocessor directive, the compiler prepends each string in

C196INC in turn and uses each resulting pathname as the name of the

include file.

The compiler uses the pathnames formed from the list in C196INC in

addition to any you specify with the searchinclude control. For

example, the following definition of C196INC locates the files

../include/stdio.h and /proj/working/kal4.h when the include
(stdio.h,kal4.h) control is specified:

 if using the Bourne shell (sh)

C196INC=../include:/proj/working
export C196INC

 or if using the C-shell (csh)

setenv C196INC ../include:/proj/working

C96INIT

C96INIT is recognized by the compiler as a prefix string used to form the

pathname of a file named c96init.h . For example, setting C96INIT as

follows causes the compiler to use the c96init.h file in the

/proj/working directory:

setenv C96INIT /proj/working/

Chapter 11–10
IN
S
T
A
L
L
A
T
IO
N

If C96INIT is not defined or is empty, the compiler searches your current

working directory for c96init.h .

The compiler always processes c96init.h , if it exists, as the first source

text to be compiled. You need not specify c96init.h in the compiler

invocation or in a preprocessor directive.

TMPDIR

The compiler creates temporary work files, which it normally deletes when

compilation is complete. If the compilation is interrupted, for example, by

your host system losing power, the work files remain. If you see a file

with a name that looks like cnuma.dat then you can simply remove it.

The TMPDIR environment variable specifies the directory where the

compiler is to put these temporary files. If TMPDIR is not defined or is

empty, the compiler uses the /tmp directory for the temporary files. For

example, setting TMPDIR as follows causes the compiler to use the /tmp
directory for temporary work files:

setenv TMPDIR /tmp

TASKING
Quality Development Tools Worldwide

2

OVERVIEW
C

H
A

P
T

E
R

Chapter 22–2
O
V
E
R
V
IE
W

2

C
H

A
P

T
E

R

Overview 2–3

• • • • • • • •

This chapter introduces you to the C196 compiler and to the related

80C196 utilities. Intended for the new user, this overview helps you

understand the general function of the compilation system and directs you

to sources of detailed and supplemental information. At the end of this

chapter is a sample session.

2.1 C196 AND THE SOFTWARE DEVELOPMENT

PROCESS

Figure 2-1 shows a development chart using the C196 compiler and other

tools.

With the C196 compiler, you can develop an application using the

following techniques:

• Compile and test the application as separate modules, specifying

only one or some of the source files in each compilation.

• Use the appropriate compiler controls and preprocessor directives

to include source text from several files, or from a set of alternative

files, in a single compilation.

• Call functions written in 80C196 assembly language or include

in-line source assembly language in your C program. See Chapter 7

for further information on including assembly language code in a C

program.

Chapter 22–4
O
V
E
R
V
IE
W

Debug Using an ICE In-circuit Emulator

Link Modules
Together
and Assign
Absolute
Address with

Create and
Maintain
Libraries with

OSD238

Convert to
Hexadecimal with

PROM-loadable Code

Write
Source File

Compile
with

Text Editor

C196

OH196

Source
Code

Object
Code

Linked
Object
Code

LIB196

RL196ASM196

TM

Figure 2-1: 80C196 application development process

To create the source text, use any editor that generates ASCII files. Invoke

the compiler to translate the source text into object code, as shown in

Chapter 3. You can also use several compiler controls to manipulate the

output object file and the output print file. These controls can help you

debug your application by including information such as pseudo-assembly

language listings, symbolic information, line numbers, and diagnostic

messages. You must include symbolic information and line numbers to

use symbolic debuggers and emulators.

See Chapter 4 for a detailed description of each compiler control. Chapter

9 describes each diagnostic generated by the compiler.

Overview 2–5

• • • • • • • •

Use RL196 to link object modules from C196, PL/M-96, and ASM196 and to

assign absolute addresses to a module.

If you are linking to an object module from PL/M-96, you must ensure the

calling sequence generated by the C196 compiler for the function call

matches the fixed parameter-list calling sequence generated by the

PL/M-96 translator for the called function. You can declare a

fixed-parameter list function in either of the following ways:

• By using the fixedparams control or the #pragma fixedparams
directive.

• By declaring the function with the alien keyword. To enable the

compiler to recognize this keyword, you must use the extend
control.

Your application can also call functions from the libraries included in the

C196 package or from your own library. You can create your own

libraries using the LIB196 utility.

Use LIB196 to organize frequently used 80C196 object modules into

libraries.

Use OH196 to convert 80C196 object code into hexadecimal format for

PROM programming. You can use an Intel ICE in-circuit emulator to

debug either object module format code or hexadecimal format code.

The C196 implementation of C conforms to the ANSI standard for the C

language (x3.159 - 1989), and also supports applications that use features

specific to 80C196 architecture.

See Chapter 10 for more information on language implementation.

2.2 CUSTOMER SUPPORT

The 80C196 software is under warranty. During the warranty period you

are entitled to the following:

• Free replacement of any defective media upon notification in

writing of the defect and product information.

• Telephone consultation and bug reporting.

• Our best efforts to replace or repair any software that does not meet

the specification described in the 80C196 documentation.

Chapter 22–6
O
V
E
R
V
IE
W

TASKING offers various support contracts that provide benefits as free

product updates, reduced rate upgrades, and telephone support. Contact

your local TASKING sales representative, for information about support

contracts and standard warranties. You will find the addresses and

telephone numbers in the "Read This First" Envelop included with this

package.

2.2.1 IF YOU HAVE A PROBLEM USING THE

SOFTWARE

To help expedite your calls, please have the following information

available when you contact us for help.

• The serial number of your software distribution. This number is

printed on the label of the tape, cassette, or first floppy of your

software distribution. In addition, you may be able to obtain the

serial number by running C196 with option -V, you may wish to

record the serial number here:

Product:

Serial:

• The product name, including host, target processor, and release

number.

• The exact command line that you used to invoke our tools when

you encountered the problem. Please include all switches.

• The exact error message that was printed. A screen dump will often

make this easy to record, and can provide very useful information.

• Any additional information that may be useful in helping to define

the problem.

Overview 2–7

• • • • • • • •

2.3 SAMPLE SESSION

The subdirectories of the examples directory contain demo programs for

the 80C196 toolchain.

In order to debug your programs, you will have to compile, assemble, link

and locate them for debugging using the TASKING 80C196 tools. You can

do this with EDE, the Embedded Development Environment (which uses a

project file and a makefile) or you can call the makefile from the

command line.

2.3.1 USING EDE

EDE stands for "Embedded Development Environment" and is the

Windows oriented Integrated Development Environment you can use with

your TASKING toolchain to design your application.

To use EDE on one of the demo programs in one of the subdirectories in

the examples subdirectory of the 80C196 product tree follow the steps

below. This procedure is outlined as a guide for you to build your own

executables for debugging.

How to Start EDE

You can launch EDE by double-clicking on the appropriate icon in the

program group created by the installation program. Or you can launch

EDE by double-clicking on the EDE shortcut on your desktop.

The EDE screen provides you with a menu bar, a ribbon bar (command

buttons) and one or more windows (for example, for source files), a status

bar and numerous dialog boxes.

Chapter 22–8
O
V
E
R
V
IE
W

How to Select a Toolchain

EDE supports all the TASKING toolchains. When you first start EDE, the

correct toolchain of the product you purchased is selected and displayed

in the title of the EDE desktop window.

If you selected the wrong toolchain or if you want to change toolchains do

the following:

1. Access the EDE menu and select the Select Toolchain... menu item.

This opens the Select Toolchain dialog.

2. Select the toolchain you want. You can do this by clicking on a toolchain

in the Toolchains list box and press OK.

If no toolchains are present, use the Browse... or Scan Disk...
button to search for a toolchain directory. Use the Browse... button if

you know the installation directory of another TASKING product. Use the

Scan Disk... button to search for all TASKING products present on a

specific drive. Then return to step 2.

How to Open an Existing Project

Follow these steps to open an existing project:

1. Access the Project menu and select Open... .

2. Select the project file to open and then click OK. For the LED light program

select the file ea_examp.pjt in the subdirectory ea_examp in the

examples subdirectory of the 80C196 product tree. If you have used the

defaults, the file ea_examp.pjt is in the directory

c:\c196\examples\ea_examp . If you want to build another example,

open the project file in the corresponding subdirectory of the examples
directory.

Overview 2–9

• • • • • • • •

How to Load/Open Files

The next two steps are not needed for the demo program because the

source files and makefile are already open. To load the file you want to

look at.

1. In the Project menu click on Load files... .

This opens the Choose Project Files to Edit dialog.

2. Choose the file(s) you want to open by clicking on it. You can select

multiple files by pressing the <Ctrl> or <Shift> key while you click on

a file. With the <Ctrl> key you can make single selections and with the

<Shift> key you can select everything from the first selected file to the

file you click on. Then press the OK button.

This launches the file(s) so you can edit it (them).

How to Build the Demo Application

The next step is to compile the file(s) together with its dependent files so

you can debug the application.

Steps 1 and 2 are optional. Follow these steps if you want to specify

additional build options such as to stop the build process on errors and to

select a command to be executed as foreground or background process.

1. Access the EDE menu and select the Build Options... menu item.

Chapter 22–10
O
V
E
R
V
IE
W

This opens the Build Options dialog.

Overview 2–11

• • • • • • • •

If you set the Show command line options at the bottom of a
tool tab check box EDE shows the command line equivalent of the

selected tool option.

2. Make your changes and press the OK button.

3. Select the EDE | Directories menu item and check the directory paths

for programs, include files and libraries. You can add your own directories

here, separated by semicolons.

4. Access the EDE menu and select the Scan All Dependencies menu

item.

5. Click on the Execute ’Make’ command button. The following button is

the execute Make button which is located in the ribbon bar.

If there are any unsaved files, EDE will ask you in a separate dialog if you

want to save them before starting the build.

How to View the Results of a Build

Once the files have been processed you can inspect the generated

messages.

1. In the Window menu select the Output menu item.

Chapter 22–12
O
V
E
R
V
IE
W

You can see which commands (and corresponding output captured) which

have been executed by the build process in the Build tab:

c196 lights.c –f c:\tmp\mkdac57a.tmp

C196 Compilation Complete. 0 Remarks, 0 Warnings, 0 Errors

c196 wait_ms.c –f c:\tmp\mkdac57b.tmp

C196 Compilation Complete. 0 Remarks, 0 Warnings, 0 Errors

asm196 –f c:\tmp\mkdac57c.tmp

ASSEMBLY COMPLETED, NO ERROR(S) FOUND.

rl196 –f c:\tmp\mkdac57d.tmp

RL196 COMPLETED, 0 WARNING(S), 0 ERROR(S)

oh196 lights.abs to lights.hex

80C196 program builder v x. y r z SN00000000–003 (c) year TASKING, Inc.

How to Start the Debugger

Once the files have been compiled, assembled, linked, located and

formatted they can be debugged.

To execute the debugger:

1. Click on the Debug application button. The following button is the

Debug application button which is located in the ribbon bar.

Depending on the project file you selected, either the ChipTools simulator

or the Intel AppBuilder is launched. The simulator will automatically

download the compiled file for debugging.

How to Start a New Project

When you first use EDE you need to setup a project:

1. Access the Project menu and select New... .

2. Give your project a name and then click OK.

The Project dialog box appears.

Overview 2–13

• • • • • • • •

3. Add all source files and any other files you want associated with your

application by locating the appropriate directory and selecting the files and

clicking the Add button. When all the files you want associated with your

application appear in the Project Files field , click OK.

If you do not have any source files yet, close the Project dialog and create

the source files. You can create a new file by selecting File | New . Write

your source code and select File | Save As... to save your source

code. Select Project | Properties... from the menu and select the

tab Files . Now go back to step 3.

The new project is now open.

4. Click Project | Load Files to open files you want on your EDE

desktop.

EDE automatically creates a makefile for the project. EDE updates the

makefile every time you modify your project.

2.3.2 USING THE MAKEFILE

The subdirectories in the examples directory each contain a makefile
which can be processed by mk196. The examples directory contains a

readme.txt file with a short description of each example.

To build an example follow the steps below. This procedure is outlined as

a guide for you to build your own executables for debugging.

1. Make the subdirectory ea_examp of the examples directory the current

working directory.

This directory contains a makefile for building the LED light example. It

uses the default mk196 rules.

2. Be sure that the directory of the binaries is present in the PATH

environment variable.

3. Compile, assemble, link and locate the modules using one call to the

program builder mk196:

mk196

This command will build the example using the file makefile .

Chapter 22–14
O
V
E
R
V
IE
W

To see which commands are invoked by mk196 without actually

executing them, type:

mk196 –n

This command produces the following output:

80C196 program builder v x. y r z SN000000–019 (c) year TASKING, Inc.

c:\tmp\mk25495a.tmp:

model(ea–enf) &

type &

debug &

code &

dn(0) &

ot(0) &

ms

c196 lights.c –f c:\tmp\mk25495a.tmp

c:\tmp\mk25495b.tmp:

model(ea–enf) &

type &

debug &

code &

dn(0) &

ot(0) &

ms

c196 wait_ms.c –f c:\tmp\mk25495b.tmp

c:\tmp\mk25495c.tmp:

ea_start.a96 ri model(ea–enf) cmain

asm196 –f c:\tmp\mk25495c.tmp

c:\tmp\mk25495d.tmp:

lights.obj, &

wait_ms.obj, &

ea_start.obj, &

c96.lib &

to lights.abs &

model(ea–enf) ram(01Ah–17Fh) rom(0FF2080h–0FF2FFFh) ss(+6) sfr

rl196 –f c:\tmp\mk25495d.tmp

oh196 lights.abs to lights.hex

The debug control in the makefile (in the CCFLAGS and ASFLAGS macro

definition) is used to instruct the C compiler to generate symbolic debug

information. This information makes debugging an application written in C

much easier to debug.

To remove all generated files type:

mk196 clean

TASKING
Quality Development Tools Worldwide

3

COMPILING AND
LINKING

C
H

A
P

T
E

R

Chapter 33–2
C
O
M
P
IL
IN
G

3

C
H

A
P

T
E

R

Compiling and Linking 3–3

• • • • • • • •

3.1 INTRODUCTION

This chapter provides the information you need to invoke the C196

compiler. You can compile a C196 program, without making any

modifications to the basic environment, simply by specifying the complete

compiler invocation syntax each time you use the compiler. However,

setting environment variables, discussed in the Software Installation
chapter, specifying compiler controls, discussed in detail in Chapter 4,

using makefiles, and using batch files and UNIX shell scripts can greatly

reduce the complexity of a compiler invocation.

3.2 COMPILER INVOCATION SYNTAX

For the following syntax, the square brackets ([]) enclose optional

elements for the command line. If you do not specify an optional

element, do not use an empty pair of parentheses.

The C196 compiler invocation has the following format:

[cpath]c196 [spath]filename [controls]

Where:

cpath is the path to the directory that contains the compiler.

spath is the path to the directory that contains the primary source

file.

filename is the name of the primary source file.

controls are the compiler controls, separated with spaces. For a

complete description of each control, see Chapter 4.

3.2.1 HOW CONTROLS AFFECT THE COMPILATION

Each control affects the compilation in one of three ways:

Source processing controls

specify the names and locations of input files and define macros at

compile time.

Chapter 33–4
C
O
M
P
IL
IN
G

Object file content controls

specify the contents of the object file.

Listing controls

specify the names, locations, contents, and formats of the output listing

files.

3.2.2 WHERE TO SPECIFY CONTROLS

The three types of controls are: primary, general, and invocation-only

controls. You can specify these compiler controls in the source text and

compiler invocation. The type determines where and how often you can

specify any particular control, as follows:

Primary

You can specify this type of control once in the compiler invocation or in

a #pragma preprocessor directive preceding the first executable statement

or data definition statement in the source text. A primary control applies

to the entire module and you cannot change or suspend its effects for any

part of the source text. To override a primary control specified in a

#pragma , specify a contradictory control in the invocation. An example of

a primary control is the model control, which selects the instruction set of

one of the processors for the module.

General

You can specify this type of control as often as necessary in the compiler

invocation and in #pragma preprocessor directives throughout the source

text. A general control applies to the subsequent source text or to the

arguments of the control. Each specification of a general control adds to

or overrides previous specifications of the control. An example of a

general control is the [no]list control, as follows:

#pragma list /* The following lines are listed */
int f1 (int f)
{
 return(f);
}

Compiling and Linking 3–5

• • • • • • • •

#pragma nolist /* The following lines are
 not listed */
long f2 (long i)
{
 return(i);
}

Invocation-only

You can specify this type of control as often as necessary in the

invocation. An invocation-only control applies to the entire module or to

the arguments of the control. Each specification of an invocation-only

control adds to or overrides previous specifications of the control. An

example of an invocation-only control is the define control, which

defines a macro.

To save effort, you can put any controls that you use in the compiler

invocation into a file named c96init.h . The compiler automatically

includes this file before the primary source file and before any include file

specified in the invocation. See the Software Installation chapter under

environment variables for more information on the c96init.h file.

Table 3-1 lists the controls with descriptions, defaults, precedences,

effects, and usage classes. Some controls optionally use one or more

arguments, indicated by [a] , where a represents the argument list. Some

controls require one or more arguments, also indicated by a. Case is not

significant in the controls but can be significant in arguments to the

controls.

Certain controls override other controls even if you explicitly state the

overridden controls. Table 3-1 summarizes these precedences.

Control Abbr. Description and Default Effect Usage

abszero
noabszero

az
noaz

Tells the compiler to zero uninitialized
variables in absolute segments.
Default: noabszero.

Object Primary

bmov
nobmov

bm
nobm

Tells the compiler to use the bmov
instruction to initialize or copy
structures or array elements. Default:
nobmov.

Object Primary

case
nocase

cs
nocs

Tells the compiler to work in a case
sensitive manner. Default: nocase.

Object Primary

ccb cc Specifies the initial CCB value. Object Primary

Chapter 33–6
C
O
M
P
IL
IN
G

UsageEffectDescription and DefaultAbbr.Control

code
nocode

co
noco

Generates or suppresses pseudo–
assembly code listing in the print file.
Default: nocode.

Listing
content

General

cond
nocond

cd
nocd

Includes or suppresses conditionally
uncompiled source code in the print
file. Default: nocond.

Listing
content

General

debug
nodebug

db
nodb

Includes or suppresses debug
information in the object module.
Default: nodebug.

Object Primary

define(a) df Defines an object–like macro. Source Invocation

diagnostic(a) dn Specifies the level of diagnostic
messages.Default: diagnostic level 1.

Listing
content

Primary

divmodopt
nodivmodopt

dm
nodm

Enables generation of efficient DIV
instruction. Default: nodivmodopt.

Object Primary

eject ej Inserts a form–feed in the print file.
Can only be specified in a #pragma
directive.

Listing
content

General

extend
noextend

ex
noex

Recognizes or suppresses Intel
extensions to proposed ANSI C.
Default: extend.

Source Primary

extratmp
noextratmp

et
noet

Allows usage of extra temporary
registers TMPREG8 to TMPREG16.
Default: noextratmp for non 24–bit
models extratmp for 24–bit models.

Object Primary

farcode
nearcode

fc
nc

Tells the compiler to generate code for
the extended (fc) or compatibility (nc)
mode of 24–bit processors. Default:
nearcode.

Object Primary

farconst
nearconst

fk
nk

Tells the compiler to place constant
objects in either the farconst or const
segment. Only valid with 24–bit
processors. Default: nearconst.

Object Primary

fardata
neardata

fd
nd

Tells the compiler to place non–
constant, non–register data in either
the fardata or data segment. Only
valid with 24–bit processors. Default:
neardata.

Object Primary

fastinterrupt
nofastinterrupt

fi
nofi

Specifies the compiler not to save
temporary results on entering the
interrupt routine. Default:
nofastinterrupt.

Object General

fixedparams [(a)]
varparams[(a)]

fp
vp

Specifies the FPL or VPL
function–calling convention. Default:
varparams for non–alien functions.

Object General

Compiling and Linking 3–7

• • • • • • • •

UsageEffectDescription and DefaultAbbr.Control

generatevectors
nogeneratevectors

gv
nogv

Generate interrupt vectors Default:
generatevectors.

Object Primary

hold
nohold

ho
noho

Specifies whether the windowing code
needs to preserve the HOLD/HOLDA
bit in the WSR. Default: nohold

Object Primary

include(a) ic Specifies a file to process before the
primary source file.

Source Invocation

init
noinit

it
noit

Tells the compiler to produce
initialization segments and tables.
Default: init.

Object Primary

inst
noinst

is
nois

Specifies whether the compiler
creates vector tables for switch
statements. Default: noinst

Source Primary

interrupt(a) in Specifies a function to be an interrupt
handler.

Object General

interrupt_piha(a)
interrupt_pihb(a)

Specifies a function to be an interrupt
handler in the piha/pihb block.

Object General

interruptpage(a) ip Specifies an interrupt page number or
base address.

Object Primary

list
nolist

li
noli

Includes or suppresses the source
text listing in the print file. Default:
list. The nolist control overrides cond,
listexpand, and listinclude.

Listing
content

General

listexpand
nolistexpand

le
nole

Includes or suppresses macro
expansion in the print file. Default:
nolistexpand.

Listing
content

General

listinclude
nolistinclude

lc
nolc

Includes or suppresses text from
include files in the print file. Default:
nolistinclude. The nolistinclude control
overrides listexpand and cond for
include files.

Listing
content

General

locate(a,...) lo Locates symbols to absolute
addresses.Can only be specified in a
#pragma directive.

Object General

mixedsource
nomixedsource

ms
noms

Specifies to generate mixed assembly
source in the print file. Default:
nomixedsource.

Listing
content

Primary

model(a) md Selects the processor instruction set.
Default: model(kb).

Object Primary

object [(a)]
noobject

oj
nooj

Generates and names or suppresses
the object file. Default:
sourcename.obj. The noobject control
overrides all object controls except for
their effects on the print file.

Object Primary

Chapter 33–8
C
O
M
P
IL
IN
G

UsageEffectDescription and DefaultAbbr.Control

oldobject
nooldobject

oo
nooo

Tells the compiler to produce an
object file compatible with V2.x (the
16–bit only C196 compiler). Default:
nooldobject.

Object Primary

omf(a) omf Specifies the OMF96 version. Default:
omf(2).

Object Primary

optimize(a) ot Specifies the level of optimization.
Default: optimization level 1.

Object Primary

overlay ov Locates register symbols to absolute
addresses in the overlay register
segments. (Pragmas only)

Object General

pagelength(a) pl Specifies the number of lines per
page in the print file. Default: 60 lines
per page.

Listing
format

Primary

pagewidth(a) pw Specifies the number of characters
per line in the print file. Default: 120
characters per line.

Listing
format

Primary

preprint [(a)]
nopreprint

pp
nopp

Generates and names or suppresses
the preprint file. Default: nopreprint.

Listing
content

Invocation

print [(a)]
noprint

pr
nopr

Generates and names or suppresses
the print file. Default: sourcename.lst.
The noprint control overrides all listing
controls except preprint.

Listing
content

Primary

pts(a) pt Loads a PTS vector with the address
of a PTS control block.

Object General

pts_piha(a)
pts_pihb(a)

Loads a piha/pihab PTS vector with
the address of a PTS control block.

Object General

reentrant [(a)]
noreentrant [(a)]

re
nore

Specifies reentrancy or nonreentrancy
for a function. Default: reentrant.

Object General

regconserve [(a)]
noregconserve

rc
norc

Controls whether non–register, file–
level, and automatic variables are
allocated to registers. Default:
noregconserve.

Object Primary

registers(a) rg Specifies the number of bytes of
register memory available to the
module. Default: registers(220).

Object Primary

relocatabletemps
norelocatabletemps

rt
nort

Tells the compiler to produce external
references to temporary registers
symbols. Default:
norelocatabletemps.

Object Primary

searchinclude(a)
nosearchinclude

si
nosi

Specifies the search path for include
files. Default: nosearchinclude.

Source General

signedchar
nosignedchar

sc
nosc

Causes a char to be treated as a
signed char or an unsigned char.
Default: signedchar.

Object Primary

Compiling and Linking 3–9

• • • • • • • •

UsageEffectDescription and DefaultAbbr.Control

speed(a) sp Tells the compiler to choose between
faster code and less code size.
Default: speed(0).

Object Primary

symbols
nosymbols

sb
nosb

Generates or suppresses the identifier
list in the print file. Default:
nosymbols.

Listing
content.

Primary

tabwidth(a) tw Specifies the number of characters
between tabstops in the print file.
Default: 4 characters between
tabstops.

Listing
format

Primary

title(”a”) tt Places a title on each page of the
print file. Default: ”modulename”.

Listing
format

Primary

tmpreg(a) tr Locates the temporary registers at a
different memory location. Default:
1CH.

Object Primary

translate
notranslate

tl
notl

Completes or stops the compilation
after preprocessing. Default:
translate. The notranslate control
overrides all object and listing controls
except preprint.

Object Invocation

type
notype

ty
noty

Generates or suppresses type
information in the object module.
Default: type.

Object Primary

warning_true_false
nowarning_true_false

wt
nowt

Enables or disables the ’comparison
always returns TRUE’ and
’comparison always returns FALSE’
warnings Default: warning_true_false.

Object Primary

win1_32
win1_64

v3
v6

Combination of pragma locate and
pragma overlay. Only if WSR1 is
present in processor.

Object General

win32
win64
win128

w3
w6
w1

Combination of pragma locate and
pragma overlay.

Object General

windowram(a) wr Specifies the area(s) of memory from
which to allocate windowed variables.

Object General

windows[(a)]
nowindows

wd
nowd

Specifies that the whole application
uses the vertical windows of the
80C196KC, 80C196KR, or 80C196NT
Default: nowindows.

Object Primary

wordalign
nowordalign

wa
nowa

Tells the compiler to align long
register objects on word boundaries
rather than restricting them to
longword boundaries. Default:
nowordalign.

Object Primary

Chapter 33–10
C
O
M
P
IL
IN
G

UsageEffectDescription and DefaultAbbr.Control

xref
noxref

xr
noxr

Adds or suppresses the identifier
cross–reference listing in the print file.
Default: noxref. The xref control
overrides nosymbols.

Listing
content

Primary

zero
nozero

zr
nozr

Tells the compiler to zero uninitialized
variables in relocatable segments.
Default: zero. (same as init)

Object Primary

Table 3-1: Compiler controls summary

The following example compiles the primary source file serial.c in the

examples directory, with the model(kb) , optimize(0) , and debug
controls specified:

c196 examples/serial.c md(kb) ot(0) db

You can eliminate repetitive typing of the invocation line by using mk196,

batch files or command files.

See Section 3.5 for a complete explanation of automating compiler

invocations.

3.3 FILENAME CONVENTIONS

We suggest to use the following filename extensions. This naming

convention is not required, but it allows utilities (like mk196) to execute

so-called 'suffix rules'. Note that all names and extensions are in lower

case, because on UNIX systems it is case sensitive.

Extension Description

.c

.c96
C file (.c is preferred, no extension is forced or assumed by
the compiler).

.h

.h96
Include files for C (.h is preferred, the compiler does not look
for .h96 by itself).

.a96

.asm

.src

Assembly source files (mk196 uses .a96).

.inc Include file for assembly.

.cmd Command file for asm196 or c196.

.obj OMF96 object file produced by c196 or asm196 .

Compiling and Linking 3–11

• • • • • • • •

DescriptionExtension

.lst LIST files from c196 or asm196 .

.lnk Linker command control file.

.out File containing linked object with unresolved externals.

.abs File containing absolute object of application, no remaining
unresolved externals.

.m96 MAP file

.mak For Makefiles other than ’Makefile’ or ’makefile’.

.hex Hexadecimal output file by oh196 .

Table 3-2: Filename extensions

Programmers who at present work on MS-DOS but are thinking of future

migration to other platforms (UNIX, Windows NT, etc.) are advised to use

lower case characters and forward slashes where possible. This will

smoothen the future transition and it will not hurt right now. All the tools

are able to find files if forward slashes are used. (Note however that

MS-DOS still does not like you to say: c:/c196/bin/c196)

3.4 OUTPUT FILES

The compiler creates and deletes temporary work files during the

compilation process and can produce an object file and two listing files, as

shown in Table 3-3.

File type Filename 1 Contents Compiler Controls Defaults

object file source.obj object module object or translate object,
translate

preprint file source.i preprocessed
source text

preprint or
notranslate

nopreprint,
translate

print file source.lst listings, com-
pilation results

print print

1 source is the filename of the primary source file, without the filename
extension.

Table 3-3: Compiler output files

Figure 3-1 shows the input and output files of the C196 compiler.

Chapter 33–12
C
O
M
P
IL
IN
G

Included
File(s)

Primary
Source

File

96 or 196
Object

File

Preprint
File

Print
File

 C196
COMPILER

Work
Files

Input

Output
OSD239

Figure 3-1: C196 input and output files

The two optional listing files produced by the compiler, the preprint file

and the print file, embody two aspects of compilation. The preprint file

contains the source text after textual preprocessing such as including files

and expanding macros. The print file contains information about the

results of compiling the source text into an object module. By default, the

compiler generates a print file but not a preprint file. The following

sections describe the two listing files in detail.

3.4.1 PREPRINT FILE

In generating a preprint file from a source text file, the compiler completes

the following operations:

• expands macros by substituting the body, or textual value, of each

macro for each occurrence of its name.

• inserts source text from files specified with the include compiler

invocation control or the #include preprocessor directive and

inserts the #line preprocessor directive to bracket sections of

included source text in the preprint file.

Compiling and Linking 3–13

• • • • • • • •

• eliminates parts of the source text based on the #if , #ifdef ,

#ifndef , #else , #elif , and #endif conditional compilation

directives.

• propagates the preprocessor directives #line , #error , and

#pragma from the source text to the preprocessed source text.

The preprint file contains the preprocessed source text after all of these

operations are completed. The preprint file is especially useful for

observing the results of these operations. Compiling the preprint file

produces the same results as compiling the source file.

The compiler generates a preprint file only when the preprint or

notranslate control is in effect. The default name for the preprint file is

the same as the primary source filename with the .i extension substituted

for the original extension, as shown in Table 3-3. The compiler places the

preprint file by default in the same directory that contains the source file.

To override the defaults, use the preprint control. If a file with the

same name already exists, the compiler writes over it.

3.4.1.1 MACROS

You can see the results of macro expansion in the preprint file. The

preprocessor substitutes the body of a macro everywhere a macro name

appears in the subsequent source text. To define a macro, use the

define control or the #define preprocessor directive. See the book

C: A Reference Manual, listed in Related Publications, for details on how

to use the #define preprocessor directive.

The C196 compiler provides several predefined macros for your

convenience. Table 3-4 shows these macros and their values.

Name Value

__LINE__ current source line number

__FILE__ current source filename

__DATE__ date of compilation

__TIME__ time of compilation

__STDC__ conformance to ANSI C 1 indicates conformance

_16_BITS_ defined (set to 1) when using a 16–bit model

_24_BITS_ defined (set to 1) when using a 24–bit model

Chapter 33–14
C
O
M
P
IL
IN
G

ValueName

ARCHITECTURE processor model compiler uses for object module.
See the model() control.

C196 always set to 1

DEBUG level of debug and type information included in object
code:
0 if using the nodebug and notype controls
1 if using the nodebug and type controls
2 if using the debug and notype controls
3 if using the debug and type controls

DIAGNOSTIC level of diagnostics reported:
2 if only errors are reported
1 if warnings and errors are reported
0 if all diagnostics are reported

_FAR_CODE_ operating mode for 24–bit model:
1 if using the farcode control
0 if using the nearcode control

_FAR_CONST_ default placement of constant objects:
1 if using the farconst control
0 if using the nearconst control

_FAR_DATA_ default placement of non–constant objects:
1 if using the fardata control
0 if using the neardata control

_FUNCS_H_ name of processor specific xx_funcs.h include file, xx
is one of the processor models as specified by the
model() control.

_HAS_PTS_ only defined as 1 if the processor has a PTS unit

_OMF96_VERSION_ OMF version:
0 V2.0
1 V3.0
2 V3.2

OPTIMIZE current optimization level as set by the optimize
control: 0, 1, 2, or 3

REGISTERS number of bytes of register memory available for
register variable allocation, as specified by the
registers control

Compiling and Linking 3–15

• • • • • • • •

ValueName

SIGNEDCHAR signed or unsigned default of char variables:
1 if using the signedchar control
0 if using the nosignedchar control

_SFR_H_ name of processor specific xx_sfrs.h include file, xx is
one of the processor models as specified by the
model() control.

Table 3-4: C196 predefined macros

3.4.1.2 INCLUDE FILES

The preprint file also shows the source text files inserted from file

inclusions. To include files in the source text, use the include control in

the compiler invocation or the #include preprocessor directive. The

preprocessor inserts the contents of a file included with the include
control before the first line of the source file. The preprocessor inserts the

contents of a file included with the #include preprocessor directive into

the source text in place of the line containing the #include directive.

Paired occurrences of the #line preprocessor directive bracket the

included text. The compiler inserts the #line directive in the preprint

listing file at the beginning of the included text and another #line
directive at the end of the included text. C: A Reference Manual, listed in

Related Publications, provides more information on preprocessor

directives.

3.4.1.3 CONDITIONAL COMPILATION

Conditional preprocessor directives delimit sections of source text to be

compiled only if the conditional expression evaluates to true. The

preprocessor evaluates the conditions and determines which sections of

source text are compiled. The source text that is not compiled does not

appear in the preprint file.

The conditional directives are #if , #else , #elif , #endif , #ifdef , and

#ifndef . The #if directive can take a special defined operator. See

the book C: A Reference Manual, listed in Related Publications, for

explanations on how to write a program using conditional compilation.

Chapter 33–16
C
O
M
P
IL
IN
G

3.4.1.4 PROPAGATED DIRECTIVES

The preprocessor propagates the directives #line , #error , and #pragma
from the source text to the preprint file to ensure that the preprint text is

equivalent to the source text after preprocessing. See the book C: A
Reference Manual, listed in Related Publications, for more information on

preprocessor directives.

3.4.2 PRINT FILE

The print file can contain source text and pseudo-assembly code listings,

messages, symbolic information, and summary information about the

compilation. The compiler generates the print file by default. Use the

noprint control to suppress the print file.

The default name for the print file is the same as the primary source

filename with the .lst extension substituted for the original extension, as

shown in Table 3-3. The compiler places the print file by default in the

directory that contains the source file. If a file with the same name already

exists, the compiler writes over it. To override the defaults, use the print
control.

The following sections describe the print file generated by the compiling

phase of the compiler. The print file contains information about the

source text read into the compiler and the object code generated by the

compiler.

3.4.2.1 PRINT FILE CONTENTS

The print file contains the following sections:

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Page header ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

identifies the compiler, shows the title of
the print listing, and gives the date and
time of compilation.ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Compilation heading
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

identifies the host operating system, the
compiler version, the object module name,
and the controls used in the invocation.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Source text listing ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

lists the C program. Remarks, warnings,
and error messages, generated by the
compiler, are listed with the source text.

Compiling and Linking 3–17

• • • • • • • •

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Symbol table and
cross-reference

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

provides symbolic information and
cross-reference information.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Pseudo-assembly listing ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

lists the assembly language object code
produced by the compiler. The code does
not contain all the assembler directives
necessary for a complete assembly
language program but shows the
instructions generated by the compiler.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Compilation summary ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

tabulates the size of the output module,
the number of diagnostic messages, and
the completion status (successful
termination or fatal error) of the
compilation.

You can use compiler controls and #pragma preprocessor directives to

produce, suppress, or partially suppress the source text listing, messages,

pseudo-assembly listing, and cross-referenced symbol table. The

following controls affect the format and contents of the print file:

[no]code [no]listexpand [no]symbols
[no]cond [no]listinclude tabwidth
diagnostic pagelength title
[no]list pagewidth [no]xref

3.4.2.2 PAGE HEADER

Each page of the output listing file begins with a page header. The page

header describes the compiler, identifies the module compiled, and shows

the date and page number. The page header in Figure 3-2 shows the

C196 compiler compiling the module CTYPE on 01/29/99 at approximately

2:26 p.m. Page numbers range from 1 to 999, then start over at 0. The

example in Figure 3-2 is from the first page of the print file.

C196 Compiler CTYPE 01/29/99 14:26:30 Page 1

Figure 3-2: Print file page header

Chapter 33–18
C
O
M
P
IL
IN
G

3.4.2.3 COMPILATION HEADING

The compilation heading is on the first page of the print file. The

compilation heading gives the name of the object module, the pathname

of the object module file, and the compiler controls specified in the

compiler invocation. The heading also identifies the compiler version and

host system. Figure 3-3 shows a compilation heading produced by the

C196 compiler running on Windows 95.

80C196 C compiler v x. y r z SN00000000–004 (c) year TASKING, Inc.
Object module placed in ctype.obj
Compiler invoked by: c:\c196\bin\c196.exe ctype.c sb co le lc xr

Figure 3-3: Print file compilation heading

3.4.2.4 SOURCE TEXT LISTING

The source text listing contains a formatted image of the source text, as

shown in Figure 3-4. This listing also gives the line number, block nesting

level, and include nesting level of each statement in the source text. If a

source line is too long to fit on one line, it continues on as many following

lines as are needed. Continued lines start with a hyphen (-).

Line Level Incl

1 #include <ctype.h>

1 1 /* ctype.h

.

.

.

58 1

59 1 #endif /* _ctypeh */

2

3 unsigned char upcx(unsigned char input)

4 {

5 1 if (isascii(input) && input >= ’a’ && input <= ’f’)

+ if (((unsigned)(input) < 0x80) && input >= ’a’ && input <= ’f’)

6 1 return input – (’a’ – ’A’);

7 1 else

8 1 return input;

9 1 }

Figure 3-4: Print file source text listing

Compiling and Linking 3–19

• • • • • • • •

Line numbers range from 1 to 99999. Each error, warning, and remark

message, when present, refers to the line numbers in the source text

listing. Line numbers do not always correspond to the sequence of lines

in the source text: source text lines that end in a backslash (\) are

continued on the following line. The listing's line numbers are not

incremented for continuation lines.

The block nesting level ranges from 0, for a statement outside of any

function definition, loop, or other control block, to 99. When its value is

0, this field is blank.

The include nesting level describes how many #include preprocessor

directives or instances of the include control the preprocessor

encountered to include the statement in the source text. For the primary

source file, the nesting depth is 0, and this field is blank. Each nested

#include preprocessor directive or include control increments the

include nesting level. The include nesting level column has a value only if

the listinclude control is in effect. The maximum nesting of include

files depends on the number of files open simultaneously during

compilation and can vary with the operating system. Table 3-5 shows the

compiler controls that affect the source text listing portion of the print file.

Control Effect

[no]cond generates or suppresses uncompiled conditional code.

diagnostic determines class of messages that appear.

[no]list generates or suppresses source text listing.

[no]listexpand generates or suppresses macro expansion listing.

[no]listinclude generates or suppresses text of include files.

Table 3-5: Controls that affect the source text listing

Chapter 33–20
C
O
M
P
IL
IN
G

3.4.2.5 REMARKS, WARNINGS, AND ERRORS

Compiler messages indicate fatal errors, errors, warnings, and remarks.

The compiler prints each message referring to syntax, such as a misplaced

keyword, on a separate line immediately following the offending

statement. All messages referring to semantics, such as too many register

variables, appear at the end of the source text listing. If the offending

statement is not printed, the compiler prints the messages in the listing as

the compiler generates them. To suppress the generation of remarks and

warning messages, use the diagnostic control. Figure 3-5 shows a

syntax error message.

See Chapter 9 for a complete list of error messages generated by the

compiler.

 Line Level Incl

 1 #include ctype.h

*** Error at line 1 of ctype_x.c: illegal syntax in a directive line

 2

 3 unsigned char upcx(unsigned char input)

 4 {

 5 1 if (isascii(input) && input >= ’a’ && input <= ’f’)

 6 1 return input – (’a’ – ’A’);

 7 1 else

 8 1 return input;

 9 1 }

Figure 3-5: Print file source text listing with error message

3.4.2.6 SYMBOL TABLE AND CROSS-REFERENCE

The symbol table lists all objects and their attributes from the compiled

code. The table includes the name, type, size, and address of each object.

The table can optionally include source text cross-reference information.

The compiler generates the table in alphabetical order by identifier. A

source module may declare a particular identifier more than once, but

each object, even if named by a duplicate identifier, appears as a separate

entry in the symbol table.

The symbol table shown in Figure 3-6 contains cross-reference

information in the ATTRIBUTES column. The cross-reference numbers for

each symbol are line numbers containing references to the symbol. The

line number marked with an asterisk (*) declares the symbol. Use the

[no]symbols control to generate or suppress the symbol table. Use the

xref control to add cross-reference information to the symbol table.

Compiling and Linking 3–21

• • • • • • • •

C196 Compiler CTYPE 01/29/99 14:26:30 Page 3

 Symbol Table

Name Size Class Address Attributes

input 1 Auto 0 overlayable register unsigned char in

 function(upcx)

 *3, 5, 5, 5, 6, 8

upcx Public reentrant VPL function returning unsigned char

 3

Figure 3-6: Print file cross-referenced symbol table

3.4.2.7 PSEUDO-ASSEMBLY LISTING

The pseudo-assembly listing, shown in Figure 3-7, is an assembly

language equivalent to the object code produced in compilation. The

listing shows the object code produced by the compiler and is useful for

noticing program variations, such as those that result from changing

optimization levels. The assembler cannot assemble the pseudo-assembly

language listing because it is not a complete program. The generated

pseudo-assembly language lacks the proper assembly directives to define

the module and the variables used inside the program. This listing

contains a location counter, a source line number, and the equivalent

assembly code. The location counter is a hexadecimal value that

represents an offset address relative to the start of the object code. Use

the [no]code control to generate or suppress the pseudo-assembly

listing.

Chapter 33–22
C
O
M
P
IL
IN
G

C196 Compiler CTYPE 01/29/99 14:26:30 Page 4
 Assembly Listing of Object Code
 cseg
 ; Statement 4
 0000 upcx:
 0000 C800 R push ?OVRBASE
 0002 B3180400 R ldb input,4[SP]
 ; Statement 5
 0006 AC001C R ldbze Tmp0,input
 0009 8980001C cmp Tmp0,#80H
 000D DB10 bc @0002
 000F 996100 R cmpb input,#61H
 0012 D30B bnc @0002
 0014 996600 R cmpb input,#66H
 0017 D906 bh @0002
 ; Statement 6
 0019 5920001C R subb Tmp0,input,#20H
 001D 2005 br @0001
 ; Statement 7
 001F @0002:
 ; Statement 8
 001F B0001C R ldb Tmp0,input
 0022 2000 br @0001
 ; Statement 9
 0024 @0001:
 0024 CC00 R pop ?OVRBASE
 0026 F0 ret
 ; Function Statistics for: upcx
 ; Code Size : 39 Parameter Count: 1
 ; Stack Size: 0 Parameter Size : 2
 ; OReg Size : 1 Stack Depth : 2
 end

Figure 3-7: Print file pseudo-assembly listing

3.4.2.8 COMPILATION SUMMARY

The final line of the compilation summary in the print file is identical to

the sign-off message displayed on the screen when the compilation is

complete. Before this final line, the compiler lists information about the

compiled object module. Figure 3-8 shows a compilation summary from a

successful compilation. If the compilation ends with a fatal error, the

following line replaces the normal compilation summary:

COMPILATION TERMINATED

Compiling and Linking 3–23

• • • • • • • •

Module Information:

 Code Area Size = 0027H 39D
 Constant Area Size = 0000H 0D
 Data Area Size = 0000H 0D
 Static Regs Area Size = 0000H 0D
 Overlayable Regs Area Size = 0002H 2D
 Maximum Stack Size = 0002H 2D

C196 Compilation Complete. 0 Warnings, 0 Errors

Figure 3-8: Print file compilation summary

3.4.3 OBJECT FILE

The compiler produces an object file by default, as shown in Table 3-3.

The object file contains the relocatable code and data generated by the

compiler as a result of a successful compilation. To suppress the object

file, you must specify one of the following controls:

notranslate

notranslate stops compilation after preprocessing. The compiler can

produce a preprint file but no print file. Use notranslate to find the

effects on the source text of macro expansion, conditional compilation,

and file inclusion, without a full compilation.

noobject

noobject suppresses the object file, although compilation completes.

The compiler can produce both a preprint file and a print file. Use

noobject to find statement numbers and scope information, any

diagnostic messages, symbolic information, and the size of the compiled

object code without generating a new object file.

The default name for the object file is the same as the primary source file

name with the .obj extension substituted for the original extension, as

shown in Table 3-3. The compiler places the object file in the directory

containing the source file. To override the defaults, use the object
control. If a file with the same name already exists, the compiler writes

over it.

Chapter 33–24
C
O
M
P
IL
IN
G

3.5 AUTOMATICALLY INVOKING THE C196 COMPILER

TASKING offers two ways of automatically invoking a series of commands:

makefiles, batch files, shell scripts, command procedure files. This section

describes how to use these files to automatically invoke the C196 compiler.

3.5.1 USING MAKE UTILITY MK196

mk196 takes a file of dependencies (a 'makefile') and decides what

commands have to be executed to bring the files up-to-date. These

commands are either executed directly from mk196 or written to the

standard output without executing them.

For a detailed discription of this utility, see Chapter MK196 Make Utility of

the 80C196 Utilities User's Guide.

3.5.2 USING BATCH FILES

Batch files are a facility within DOS whereby one or more commands can

be executed from within a file.

Assume that the following sequence of calls is frequently used:

c196 ifile .c
rl196 –f projfile .ltx

The files ifile and projfile may vary from one call to the next. To reduce

the number of calls you can make a batch file, for example, proj.bat .

Note that whatever the batch file is called it must end with the file

extension .bat . The file should contain:

c196 %1.c
rl196 –f %2.ltx

On invocation %1 and %2 will be replaced by the first and second

parameters after the batch file name. Using the name mentioned above

(proj - note that the file extension .bat is not needed for invocation) the

call becomes:

proj ifile projfile

DOS will return on the screen the actual command line executed, with all

the parameters expanded to the values used.

Compiling and Linking 3–25

• • • • • • • •

3.5.3 USING UNIX SCRIPTS

Scripts are a facility within UNIX whereby one or more commands can be

executed from within a file.

Assume that the following sequence of calls is frequently used:

c196 ifile .c
rl196 –f projfile .ltx

The files ifile and projfile may vary from one call to the next. To reduce

the number of calls you can make a script, for example, proj . The file

should contain:

c196 $1.c
rl196 –f $2.ltx

On invocation $1 and $2 will be replaced by the first and second

parameters after the script file name. Using the name mentioned above

(proj) the call becomes:

sh proj ifile projfile

3.6 DEVELOPING A C196 APPLICATION PROGRAM

The C196 compiler supports modular, structured development of

applications. You can compile and debug application modules separately,

then link them together to create an executable file. Use the RL196 linker

and locator utility to combine separately translated object modules into a

single program and assign absolute addresses to all relocatable addresses.

Use the LIB196 utility to place an object module into a library for later

combination, using RL196, into a program. Use the OH196 utility to

convert an object module into the standard hexadecimal format that can

be loaded into PROM.

Your C196 application programs can contain many separately translated

modules. The applications can call functions from a library. The C196

product includes several libraries. You can also create your own libraries

using the LIB196 utility.

To create a complete program, the RL196 utility must link all translated

code and libraries together. Selecting the correct libraries for linking

depends on whether the program does any of the following:

• uses floating-point numbers.

Chapter 33–26
C
O
M
P
IL
IN
G

• uses either the printf or the sprintf function to write

floating-point formatted output.

• uses either the scanf or the sscanf function to read floating-point

formatted input.

• uses the model(nt) or farcode controls.

Figure 3-9 shows how to specify libraries and object files in the correct

order for linking with C196 compiled modules.

The following is an example RL196 invocation:

rl196 cstart.obj, newmod.obj, my_utils.lib, c96fp.lib,
 c96.lib, fpal96.lib to newmod.out

Compiling and Linking 3–27

• • • • • • • •

Program Object Modules

cstart.obj

START

c96fp.lib

YesNo

YesNo

YesNo

fpal96.lib

c96.lib

c96fp.lib

STOP OSD241

Print
Floating-point

Format?

Read
Floating-point

Format?

Any
Floating-point
Operation?

Figure 3-9: Choosing libraries and object files for linking

Chapter 33–28
C
O
M
P
IL
IN
G

3.7 COMBINING DIFFERENT OMF96 FORMATS

As of version 5.0, you can specify three different OMF96 formats for the

196 tools. See the omf control on how to specify a specific OMF96 format.

By default our tools use the OMF96 version 3.2 format. This format

contains extra debugging info and support for using initialized global

variables. We recommend that you use this default OMF96 format. You can

specify the different OMF96 formats with the omf control:

omf(2) OMF96 version 3.2

omf(1) OMF96 version 3.0

omf(0) OMF96 version 2.0

3.7.1 GLOBAL INITIALIZATION

It is necessary to use OMF96 version 3.2 if you want to use global

initialization. However, it is possible to create an .abs file which is OMF

3.0 compatible, but still contains global initialization. This might be

necessary for certain third party tools which do not (yet) recognize the

new OMF96 format. To do so, you have to use the (default) omf(2) for

both the compiler and the assembler, and use omf(1) for the linker. The

resulting .abs file has the OMF96 version 3.0 format, but contains all

necessary code for global initialization. The same is true for using the

libraries. The libraries provided with our tools are compiled with the

default omf(2) control. If you want to get an OMF96 version 3.0

compatible .abs file, just specify omf(1) in the linker controls and you

can use our default libraries.

A word of caution: if you specify omf(1) in your linker controls and if

you have any unresolved externals in your application, it is possible that

the linker will give a fatal OMF96 error. This is caused by the fact that you

have specified OMF96 version 3.0, but the linker needs to write

information about the unresolved externals in OMF96 version 3.2 format.

You will see a warning about the unresolved externals before you get the

fatal omf error. So, do not have any unresolved externals when you

convert from OMF96 3.2 format to OMF96 3.0 format.

Compiling and Linking 3–29

• • • • • • • •

3.7.2 OMF96 VERSION 3.0 LIMITATIONS

OMF96 version 3.0 has the following limitations compared to OMF96

version 3.2:

- Limited support for functions.

- Limited support for structures.

- Limited support for unions.

- Limited support for bit fields.

- No support for vertical windowing.

- Restricted line number information.

3.8 EXAMPLES

This section contains an example C196 program showing how to use

compiler controls and environment variables for:

• compiling interrupt functions.

• finding include and header files in directories other than the current

directory.

• debugging the preprocessor directives.

• specifying print file content.

• preparing the object code for symbolic debugging.

• optimizing the object code.

This example also demonstrates the use of the 80C196 processor's special

function registers (SFRs) and header file.

3.8.1 SOURCE TEXT

The program used in this example is a digital filter application designed to

run on the 80C196KB processor. This program demonstrates the use of

the following variables defined in the kb_sfrs.h header file for accessing

the special function registers (SFRs):

ad_commandis the command register for the analog to digital converter.

hso_command
is the command register for the high-speed output.

hso_time is the timer for the high-speed output.

Chapter 33–30
C
O
M
P
IL
IN
G

timer1 is one of the hardware timers.

ad_result_hi
is the high-order byte of the analog to digital converter

output.

ad_result_lo

is the low-order byte of the analog to digital converter

output.

ioport0 is one of the input/output (I/O) ports.

ioport1 is one of the input/output (I/O) ports.

Figures 3-10 through 3-12 list the contents of the primary source text file,

including comments explaining how the program works. In this example,

the initialization routine is in dsfinit.h and the interrupt and main

routines are in dsf.c , both in the directory /project/working .

The material contained in this chapter on the Digital Filter application is

based on Experiment 9-17 of the book The 16-Bit 8096: Programming,
Interfacing, Applications-- 122 Experiments by R. Katz and H. Boyet

(permission granted by the publisher, H. Boyet, 14 E. 8th St., NY, NY).

/***/

/* */

/* This is the initialization code for the digital signal filter. */

/* */

/***/

#pragma model(kb) /* Select instruction set for the 80C196KB processor. */

#pragma interrupt (software_timer = 5)

#pragma interrupt (analog_conversion_done = 1)

#include <kb_sfrs.h> /* Include header file that declares variables to */

 /* access analog to digital (A/D) channel, high speed */

 /* output (HSO), software timer 0, input/output (I/O) */

 /* ports, and interrupt flags. This header file also */

 /* declares enable() to enable interrupts. */

#define K (unsigned char) 0x71 /* Scaling factor for input */

#define M (unsigned char) 0x71 /* Scaling factor for history */

#define MSB (unsigned char) 0x80 /* Mask for low byte of input */

#define Full_Scale (unsigned char) 0x71 /* Mask for high byte of input */

register unsigned char input;

register unsigned int word_value;

#define byte_value (*((unsigned char *) &word_value + 1))

 /* byte_value is the high–order bit of word_value */

Compiling and Linking 3–31

• • • • • • • •

#define high_byte(x) (*((unsigned char *) & x + 1))

/***/

Figure 3-10: Digital filter source text (initialization) in dsfinit.h

/***/

/* */

/* This program implements a digital signal filter with the following */

/* equation: V(new) = K * input + M * V(old) */

/* */

/***/

/***/

/* */

/* software_timer is the interrupt routine for HSO software timer 0: */

/* */

/***/

void software_timer(void)

{

 ad_command = 8; /* Start A/D channel 0. */

 hso_command = 0x18; /* Give command to HSO. */

 hso_time = timer1 + 64; /* Set HSO command to occur in 126 microseconds.*/

}

/***/

/***/

/* */

/* analog_conversion_done is the interrupt routine for A–to–D conversion. */

/* */

/***/

void analog_conversion_done(void)

{

 input = ad_result_hi;

 if ((ad_result_lo & MSB) && (ad_result_hi != Full_Scale))

 input++;

 if (ioport0 & MSB) /* Bypass filter if P0.7 is set. */

 ioport1 = input;

 else

 {

 word_value = input * K + ioport1 * M;

 ioport1 = byte_value;

 }

}

/***/

Figure 3-11: Digital filter source text (interrupt routines) in dsf.c

Chapter 33–32
C
O
M
P
IL
IN
G

/***/

/* */

/* main initializes the system and clears flags between interrupts. */

/* */

/***/

main()

{

 ioport1 = 0; /* Initialize A/D converter. */

 int_mask = 0x22; /* Enable software timer and A/D conversion */

 /* interrupt routine. */

 int_pending = 0; /* Clear any pending interrupts. */

 hso_command = 0x18; /* Give command to HSO. */

 hso_time = timer1 + 64; /* Set HSO command to occur in 126 microseconds.*/

 enable(); /* Enable interrupts. */

 while(1); /* Loop forever, waiting for interrupt. */

}

/***/

Figure 3-12: Digital filter source text (main routine) in dsf.c

3.8.2 SETTING THE WINDOWS ENVIRONMENT

The directory structure of this example is as follows:

• The c:\c196\bin directory contains the c196.exe compiler.

• The c:\c196\include directory contains the kb_sfrs.h include

file.

• The c:\project\working directory contains the following files:

- The dsf.c source text file, used as the primary source file in

this example. This file contains the source text shown in Figures

3-11 and 3-12.

- The dsfinit.h source text file, to be included at the beginning

of the primary source text by the default initialization file. This

file contains the source text shown in Figure 3-10.

- The c96init.h default initialization file, containing the

following preprocessor directives used for all compilations of

this example:

#include <dsfinit.h>
#pragma pagelength(30)
#pragma pagewidth(72)

Compiling and Linking 3–33

• • • • • • • •

Specify these directories by giving the following DOS commands before

invoking the compiler:

set C196INC=c:\c196\include;c:\project\working
set C96INIT=c:\project\working

Setting the c196inc environment variable provides the default search path

prefixes that the compiler uses for include files in all subsequent

compilations. Setting the c96init environment variable provides the

path prefix that the compiler uses for the c96init.h initialization file in

all subsequent compilations. You need to set these environment variables

only once each time you reset your host system before compiling the

program.

3.8.3 PREPROCESSING

Before compiling the source text into object code, you can check the

preprocessing performed in your program to verify all your macro

expansions and conditional compilation expressions. Macro expansion,

file inclusion, and conditional compilation are all shown in the preprint

file. Diagnostic messages appear on your console, not in the preprint file,

and you can redirect these messages to a log file. To generate a preprint

file without generating object code, redirecting any messages to

dsf_pre.log , specify the preprint and notranslate controls, as

follows:

C:> c196 dsf.c preprint notranslate > dsf_pre.log

#define macro definitions do not appear in the preprint file. The

compiler substitutes the body of the macro wherever the macro name

appears in the source text.

Since no errors occurred during preprocessing, dsf_pre.log contains

only the following sign-on message:

80C196 C compiler v x. y r z SN000000–004 (c) year TASKING, Inc.
(C)1980,1990,1992,1993 Intel Corporation

When errors occur during preprocessing, dsf_pre.log contains, in

addition to the sign-on message, lines such as the following:

*** Error at line 12 of c:\project\working\dsfinit.h:
illegal constant expression

Chapter 33–34
C
O
M
P
IL
IN
G

Figure 3-13 shows the resulting dsf.i preprint file. Compiling this file

has the same result as compiling the dsf.c file.

#line 1 ”c96init.h”

#line 1 ”dsfinit.h”

/**/

/* */

/* This is the initialization code for the digital signal filter. */

/* */

/**/

#pragma model(kb) /* Select instruction set for the 80C196KB processor. */

#pragma interrupt(software_timer = 5)

#pragma interrupt(analog_conversion_done = 1)

#line 1 ”c:/c196/kb_sfrs.h”

/* kb_sfrs.h

 *

 * kb_sfrs.h – declarations for 80C196 SFRs (a superset of

 * 8096 registers) and 80C196–specific library

 * function declarations

 */

extern volatile register unsigned short r0; /* at 0x00: r */

extern volatile register unsigned char ad_command; /* at 0x02: w */

extern volatile register unsigned char ad_result_lo;/* at 0x02: r */

extern volatile register unsigned char ad_result_hi;/* at 0x03: r */

extern volatile register unsigned char hsi_mode; /* at 0x03: w */

extern volatile register unsigned short hso_time; /* at 0x04: w */

extern volatile register unsigned short hsi_time; /* at 0x04: r */

extern volatile register unsigned char hso_command; /* at 0x06: w */

extern volatile register unsigned char hsi_status; /* at 0x06: r */

extern volatile register unsigned char sbuf; /* at 0x07: r/w */

extern volatile register unsigned char int_mask; /* at 0x08: r/w */

extern volatile register unsigned char int_pending; /* at 0x09: r/w */

extern volatile register unsigned char watchdog; /* at 0x0a: w */

extern volatile register unsigned short timer1; /* at 0x0a: r */

extern volatile register unsigned short timer2; /* at 0x0c: r */

extern volatile register unsigned char baud_rate; /* at 0x0e: w */

extern volatile register unsigned char ioport0; /* at 0x0e: r */

extern volatile register unsigned char ioport1; /* at 0x0f: r/w */

extern volatile register unsigned char ioport2; /* at 0x10: r/w */

extern volatile register unsigned char sp_con; /* at 0x11: w */

extern volatile register unsigned char sp_stat; /* at 0x11: r */

extern volatile register unsigned char ioc0; /* at 0x15: w */

extern volatile register unsigned char ios0; /* at 0x15: r */

extern volatile register unsigned char ioc1; /* at 0x16: w */

extern volatile register unsigned char ios1; /* at 0x16: r */

extern volatile register unsigned char pwm_control; /* at 0x17: w */

Figure 3-13: Digital signal filter preprint file

Compiling and Linking 3–35

• • • • • • • •

/***/

/* */

/* Additional SFRs of the 80C196KB */

/* */

/***/

extern volatile register unsigned char ioc2; /* at 0x0b: w */

extern volatile register unsigned char ipend1; /* at 0x12: r/w */

extern volatile register unsigned char imask1; /* at 0x13: r/w */

extern volatile register unsigned char wsr; /* at 0x14: r/w */

extern volatile register unsigned char ios2; /* at 0x17: r */

/***/

/* */

/* Additional SFRs of the 80C196KC */

/* */

/***/

extern volatile register unsigned char ad_time; /* at 0x03: r/w */

extern volatile register unsigned short ptssel; /* at 0x04: r/w */

extern volatile register unsigned short ptssrv; /* at 0x06: r/w */

extern volatile register unsigned char t2control; /* at 0x0c: r/w */

extern volatile register unsigned char pwm1_control;/* at 0x16: r/w */

extern volatile register unsigned char pwm2_control;/* at 0x17: r/w */

/***/

/* Define typedefs for PTS Control Blocks of 80C196KC. */

/***/

/*

 * Single Transfer PTS Control Block

 */

typedef struct STran_ptscb_t {

 unsigned char ptscount;

 struct {

 unsigned int di : 1,

 si : 1,

 du : 1,

 su : 1,

 b_w : 1,

 mode : 3;

 } ptscon;

 void *ptssrc;

 void *ptsdst;

 int :16; /* unused */

 } STran_ptscb;

Figure 3-13: Digital signal filter preprint file (continued)

Chapter 33–36
C
O
M
P
IL
IN
G

/*

 * Block Transfer PTS Control Block

 */

typedef struct BTran_ptscb_t {

 unsigned char ptscount;

 struct {

 unsigned int di : 1,

 si : 1,

 du : 1,

 su : 1,

 b_w : 1,

 mode : 3;

 } ptscon;

 void *ptssrc;

 void *ptsdst;

 unsigned char ptsblock;

 int :8; /* unused */

 } BTran_ptscb;

/*

 * A/D Mode PTS Control Block

 */

typedef struct AD_ptscb_t {

 unsigned char ptscount;

 struct {

 unsigned int const1 : 3,

 updt : 1,

 const2 : 1,

 mode : 3;

 } ptscon;

 unsigned int s_d;

 unsigned int reg;

 int :16; /* unused */

 } AD_ptscb;

/*

 * HSI Mode PTS Control Block

 */

typedef struct HSI_ptscb_t {

 unsigned char ptscount;

 struct {

 unsigned int const1 : 3,

 updt : 1,

 const2 : 1,

 mode : 3;

 } ptscon;

 unsigned int :16;

 unsigned int ptsdst;

 unsigned char ptsblock;

 int : 8; /* unused */

 } HSI_ptscb;

Figure 3-13: Digital signal filter preprint file (continued)

Compiling and Linking 3–37

• • • • • • • •

/*

 * HSO Mode PTS Control Block

 */

typedef struct HSO_ptscb_t {

 unsigned char ptscount;

 struct {

 unsigned int const1 : 3,

 updt : 1,

 const2 : 1,

 mode : 3;

 } ptscon;

 unsigned int ptssrc;

 unsigned int :16;

 unsigned char ptsblock;

 int : 8; /* unused */

 } HSO_ptscb;

/*

 * PTS A/D Table

 */

typedef struct AD_tab_t {

 unsigned char AD_command;

 unsigned int AD_result;

 } AD_tab;

/*

 * PTS HSI Table

 */

typedef struct HSI_tab_t {

 unsigned char HSI_status_lo;

 unsigned char HSI_status_hi;

 unsigned int HSI_time;

 } HSI_tab;

/*

 * PTS HSO Table

 */

typedef struct HSO_tab_t {

 unsigned char HSO_command;

 unsigned int HSO_time;

 } HSO_tab;

/***/

/* */

/* Additional C96.LIB functions supported by the 80C196 only */

/* */

/***/

void enable(void);

void disable(void);

Figure 3-13: Digital signal filter preprint file (continued)

Chapter 33–38
C
O
M
P
IL
IN
G

void power_down(void);

void idle(void);

void enable_pts(void);

void disable_pts(void);

#line 12 ”dsfinit.h”

/* access analog–to–digital (A/D) channel, high speed */

/* output (HSO), software timer 0, input/output (I/O) */

/* ports, and interrupt flags. This header file also */

/* declares enable() to enable interrupts. */

register unsigned char input;

register unsigned int word_value;

 /* byte_value is the high order bit of word_value */

/**/

#line 2 ”c96init.h”

#pragma pagelength(30)

#pragma pagewidth(72)

#line 1 ”dsf.c”

/**/

/* */

/* This program implements a digital signal filter with the following */

/* equation: V(new) = K * input + M * V(old) */

/* */

/**/

/**/

/* */

/* software_timer is the interrupt routine for HSO software timer 0. */

/* */

/**/

void software_timer(void)

{

 ad_command = 8; /* Start A/D channel 0 */

 hso_command = 0x18; /* Give command to HSO */

 hso_time = timer1 + 64; /* Set HSO command to occur in 126 microsecs. */

}

/**/

/**/

/* */

/* analog_conversion_done is the interrupt routine for A–to–D conversion. */

/* */

/**/

Figure 3-13: Digital signal filter preprint file (continued)

Compiling and Linking 3–39

• • • • • • • •

void analog_conversion_done(void)

{

 input = ad_result_hi;

 if (ad_result_lo & (unsigned char)0x80 && ad_result_hi != (unsigned

char)0x71)

 ++input;

 if (ioport0 & (unsigned char)0x80) /* Bypass filter if P0.7 is set */

 ioport1 = input;

 else

 {

 word_value = input * (unsigned char)0x71 + ioport1 * (unsigned

char)0x71;

 ioport1 = (*((unsigned char *)&word_value + 1));

 }

}

/**/

/**/

/* */

/* main initializes the system and clears flags between interrupts. */

/* */

/**/

void main(void)

{

 ioport1 = 0; /* Initialize A/D convertor */

 int_mask = 0x22; /* Enable software timer and A/D conversion */

 /* interrupt routine */

 int_pending = 0; /* Clear any pending interrupts */

 hso_command = 0x18; /* Give command to HSO */

 hso_time = timer1 * 64; /* Set HSO command to occur in 126 microsecs. */

 enable(); /* Enable interrupts */

 while (1) ; /* Loop forever, waiting for interrupt */

}

/**/

Figure 3-13: Digital signal filter preprint file (continued)

3.8.4 CHECKING SYNTAX AND SEMANTICS

You can check your source text for syntax and semantic errors without

generating an object file. To generate a print file containing information

about the compilation without generating any object code, use the

noobject control. The same source text listed in the preprint file can be

listed in the print file, with additional diagnostic messages that result from

the translation. You can also generate a cross-referenced symbol table to

verify the symbols defined and referenced in the program.

Chapter 33–40
C
O
M
P
IL
IN
G

To generate a print file containing a cross-referenced symbol table such as

the one shown in Figure 3-14, invoke the compiler as follows:

C:> c196 dsf.c noobject listexpand listinclude xref

The listexpand and listinclude controls expand macros and list

include files, respectively, in the source text listing. The xref control

generates the cross-referenced symbol table.

C196 Compiler DSF 01/29/99 15:14:37 Page 6

 Symbol Table

 Name Size Class Address Attributes

 ad_command 1 Extern register volatile unsigned char

 *13, 17

 ad_result_hi 1 Extern register volatile unsigned char

 *15, 33, 34

 ad_result_lo 1 Extern register volatile unsigned char

 *14, 34

 analog_conversion_done

 Public interrupt function returning void

 *9

 enable Extern VPL function returning void

 *193, 63

 hso_command 1 Extern register volatile unsigned char

 *19, 18, 60

 hso_time 2 Extern register volatile unsigned short

 *17, 19, 61

 input 1 Public 2 register unsigned char

 *23, 33, 35, 37, 40

 Symbol Table

 int_mask 1 Extern register volatile unsigned char

 *22, 57

 int_pending 1 Extern register volatile unsigned char

 *23, 59

 ioport0 1 Extern register volatile unsigned char

 *28, 36

 ioport1 1 Extern register volatile unsigned char

 *29, 37, 40, 41, 56

 main Public reentrant VPL function returning void

 *54

 software_timer Public interrupt function returning void

 timer1 2 Extern register volatile unsigned short

 *25, 19, 61

 word_value 2 Public 0 register unsigned int

 *24, 40, 41

Figure 3-14: Digital signal filter symbol table

Compiling and Linking 3–41

• • • • • • • •

3.8.5 SYMBOLIC DEBUGGING

You can configure the object code for type checking and symbolic

debugging and you can list the generated code in a format similar to

ASM196 source text in the print file. By default, the compiler puts

symbolic information for type checking in the object code. The debug
control generates additional symbolic information for symbolic debugging

by in-circuit emulators.

A useful feature of symbolic debuggers is the ability to list the line of

source text corresponding to the instruction being executed. However, the

optimization that occurs at optimization levels 2 and 3 can rearrange or

eliminate code resulting from specific source statements. To ensure that

the debugger correctly matches the source text and object code, use the

optimize(0) control.

The code control generates the pseudo-assembly language (code) listing.

Figure 3-15 contains the code listing generated by the following compiler

invocation:

C:> c196 dsf.c debug code optimize(0)

C196 Compiler DSF 01/29/99 15:14:37 Page 13

 Assembly Listing of Object Code

 cseg

 ; Statement 16

 0000 software_timer:

 0000 F4 pusha

 ; Statement 17

 0001 B10800 E ldb ad_command,#8

 ; Statement 18

 0004 B11800 E ldb hso_command,#18H

 ; Statement 19

 0007 4540000000 E add hso_time,timer1,#40H

 ; Statement 20

 000C F5 popa

 000D F0 ret

 ; Statement 32

 000E analog_conversion_done:

 000E F4 pusha

 000F C81C push Tmp0

 0011 C81E push Tmp2

 ; Statement 33

 0013 B00002 E ldb input,ad_result_hi

 ; Statement 34

 0016 5180001C E andb Tmp0,ad_result_lo,#8

 – 0H

Figure 3-15: Digital signal filter code listing (level 0 optimization)

Chapter 33–42
C
O
M
P
IL
IN
G

 001A 981C00 cmpb R0,Tmp0

 001D DF07 be @0003

 001F 997100 E cmpb ad_result_hi,#71H

 0022 DF02 be @0003

 ; Statement 35

 0024 1702 R incb input

 0026 @0003:

 ; Statement 36

 0026 5180001C E andb Tmp0,ioport0,#80H

 002A 981C00 cmpb R0,Tmp0

 002D DF05 be @0004

 ; Statement 37

 002F B00200 E ldb ioport1,input

 ; Statement 38

 0032 200F br @0005

 0034 @0004:

 ; Statement 40

 0034 5D71021C R mulub Tmp0,input,#71H

C196 Compiler DSF 01/29/99 15:14:37 Page 14

 Assembly Listing of Object Code

 0038 5D71001E E mulub Tmp2,ioport1,#71H

 003C 441E1C00 R add word_value,Tmp0,Tmp2

 ; Statement 41

 0040 B00100 E ldb ioport1,word_value+1

 0043 @0005:

 ; Statement 43

 0043 CC1E pop Tmp2

 0045 CC1C pop Tmp0

 0047 F5 popa

 0048 F0 ret

 ; Statement 55

 0049 main:

 ; Statement 56

 0049 1100 E clrb ioport1

 ; Statement 57

 004B B12200 E ldb int_mask,#22H

 ; Statement 59

 004E 1100 E clrb int_pending

 ; Statement 60

 0050 B11800 E ldb hso_command,#18H

 ; Statement 61

 0053 A0001C E ld Tmp0,timer1

 0056 09061C shl Tmp0,#6

 0059 A01C00 E ld hso_time,Tmp0

 ; Statement 63

 005C EF0000 E call enable

 ; Statement 64

 005F 2000 br @0008

Figure 3-15: Digital signal filter code listing (level 0 optimization)
(continued);

Compiling and Linking 3–43

• • • • • • • •

 0061 @0007:

 0061 @0008:

 0061 27FE br @0007

 0063 @0009:

 ; Statement 65

 0063 F0 ret

 end

Figure 3-15: Digital signal filter code listing (level 0 optimization)
(continued);

3.8.6 OPTIMIZING

When you have finished debugging, you can compile the program for

both memory and execution efficiency. By specifying the notype control

and not specifying the debug control, you can eliminate all symbolic

information that is not needed for execution. By specifying the highest

level of optimization, optimize(3) , you can reorganize the object code

to occupy less space and to use the fewest instructions.

Chapter 33–44
C
O
M
P
IL
IN
G

TASKING
Quality Development Tools Worldwide

4

COMPILER
CONTROLS

C
H

A
P

T
E

R

Chapter 44–2
C
O
N
T
R
O
L
S

4

C
H

A
P

T
E

R

Compiler Controls 4–3

• • • • • • • •

This chapter describes the C196 compiler controls. Use compiler controls

to specify options such as the location of source text files, the amount of

debug information in the object module, and the format and location of

the output listings. Since most of the controls have default settings, you

need not specify any of the controls if the defaults match your application

needs. Table 3-1 lists default settings and a brief description of each

control.

The entries in this section describe in detail the syntax and function of

each compiler control.

Square brackets ([]) enclose optional arguments for controls. If you do

not specify optional arguments for a particular control, do not use an

empty pair of parentheses either.

Some controls use an optional list of arguments. Separate multiple

argument definitions with commas. Brackets surrounding a comma and an

ellipsis ([,...]) indicate an optional list.

See the Conventions Used In This Manual, listed at the beginning of this

manual, for special meanings of type styles used in this manual.

With controls that can be set from within EDE, you will find a mouse icon

that describes the corresponding action.

Chapter 44–4
C
O
N
T
R
O
L
S

abszero

Function

Specifies whether the compiler zeroes uninitialized variables in absolute

segments.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Clear unititialized RAM
variables in absolute segments check box in the Code tab.

abszero | noabszero

Abbreviation

az | noaz

Class

Primary control

Default

noabszero

Description

Use the abszero control/pragma enable the generation of zeroing entries

in the initialization tables for absolute segments (variables positioned by

either #pragma locate or the _reg storage class modifier). This control

is only valid for the (default) OMF version 3.2.

Use the noabszero control/pragma to prevent the generation of zeroing

entries in the initialization tables for absolute segments.

noinit forces noabszero .

init
zero

Compiler Controls 4–5

• • • • • • • •

bmov

Function

Tells the compiler to use the bmov instruction to initialize or copy

structures or array elements.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Use the uniterruptable ’bmov’
instead of ’bmovi’ check box in the Object tab.

bmov | nobmov

Abbreviation

bm | nobm

Class

Primary control

Default

nobmov

Description

Use this control to tell the compiler to use the bmov instruction when

initializing or copying structures or array elements. This control is valid for

all models. Use the model() control to specify the specific instruction set.

The compiler generally does not generate the bmov instruction because of

its interrupt latency. The bmov instruction is uninterruptable. See the

Embedded Microcontrollers and Processors Handbook, listed in Related
Publications, for more information on the bmov and ebmov instruction.

Without the bmov control the compiler automatically generates the bmovi
instruction for the same process. The bmovi instruction is interruptable.

You can specify the bmov control in the compiler invocation or in a

#pragma preprocessor directive preceding the first line of data definition

or executable source text.

model

Chapter 44–6
C
O
N
T
R
O
L
S

case

Function

Tells compiler to act case sensitive.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Operate in case sensitive mode
check box in the Code tab.

case | nocase

Abbreviation

cs | nocs

Class

Primary control

Default

case

Description

Use this control to tell the compiler to work in a case sensitive manner.

However, some general rules regarding case sensitivity must be

considered:

1. Options supplied on the command line (-? and -V) are always handled

case sensitive.

2. Controls supplied on the command line are always handled case

insensitive.

3. Keywords are always handled case insensitive.

When you use the nocase control:

4. All module names, public and external symbols are converted to upper

case.

5. All filenames are converted to lower case.

Compiler Controls 4–7

• • • • • • • •

When you use the default case control:

6. None of the conventions mentioned in (4) or (5) is performed.

Chapter 44–8
C
O
N
T
R
O
L
S

ccb

Function

Specifies the initial chip configuration byte value.

Syntax

Select the EDE | C Compiler Options | Options file ... menu

item. Enter a single or multiple byte value in the Specify Chip
Configuration (one module only) field in the Object tab.

ccb(value)

where:

value is a single or multiple byte value.

Abbreviation

cc

Class

Primary control

Description

Use this control to initialize the value of up to four chip configuration

bytes (CCB), located at 2018H, or at 0FF2018H , 0FF201AH, and

0FF201CH for the 80C196NT. The 80C196 processor reads the CCB on

reset to initialize the value of the chip configuration register (CCR). See

the Embedded Microcontrollers and Processors Handbook, llisted in Related
Publications, for a detailed explanation of the contents of the CCR.

To specify more than one byte, the value should be given as a

hexadecimal string. The bytes specified will be placed in successive even

addresses, as required by the processor, with a byte of 20H automatically

placed in the intervening odd addresses. For example, if you specified

ccb(0x010203) the compiler would place 0120022003 in addresses

0FF2018H through 0FF201CH.

You can specify the ccb control in the compiler invocation or in a

#pragma preprocessor directive preceding the first line of data definition

or executable source text.

Compiler Controls 4–9

• • • • • • • •

It is better to use #pragma than to use the control on invocation. Can only

be used once in the whole application.

Chapter 44–10
C
O
N
T
R
O
L
S

code

Function

Generates or suppresses pseudo-assembly language code listing in print

file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate pseudo–assembly
language check box in the Listing tab.

code | nocode

Abbreviation

co | noco

Class

General control

Default

nocode

Description

Use this control to produce a pseudo-assembly language listing equivalent

to the object code generated by the compiler. The compiler places this

listing in the print file below the source text listing. Use the default

nocode control to suppress the pseudo-assembly language listing.

You can use the pseudo-assembly language listing while debugging to

view the following:

• The effects of different levels of optimization set by the optimize
control.

• The difference in code the compiler generates under the various

arguments to the model control.

• The differences in calling sequences the compiler generates under

the fixedparams , varparams , noreentrant , and reentrant
controls.

Compiler Controls 4–11

• • • • • • • •

The noprint and notranslate controls suppress the pseudo-assembly

language listing specified by the code control, but the noobject control

does not.

You can specify these controls in the compiler invocation and in #pragma
preprocessor directives throughout the source text. If the code or nocode
control is embedded within the source text, the control only affects the

source text that follows the control line until the compiler encounters the

opposite control or the end of the source text.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

debug
extend
fixedparams
model

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

object

optimize

print

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

reentrant

translate

varparams

Chapter 44–12
C
O
N
T
R
O
L
S

cond

Function

Includes or suppresses uncompiled conditional code in source text listing.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Include conditionally
uncompiled source code check box in the Listing tab.

cond | nocond

Abbreviation

cd | nocd

Class

General control

Default

nocond

Description

Use this control to include in the program listing code that is not compiled

because of conditional preprocessor directives. Use the default nocond
control to suppress listing of source text eliminated by conditional

compilation.

Whether you specify the cond control or not, the conditional preprocessor

directive lines appear in the print file. They only affect the source text

listing in the print file.

If you specify notranslate or noprint , the source text listing is

completely suppressed and cond has no effect. Also, in any part of the

source text listing suppressed by nolist or nolistinclude , the cond
control has no effect.

Compiler Controls 4–13

• • • • • • • •

You can specify these controls in the compiler invocation and in #pragma
preprocessor directives throughout the source text. If the cond or nocond
control is embedded within the source text, the control only affects the

source text that follows the control line until the compiler encounters the

opposite control or the end of the source text.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

list

listinclude

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

print

translate

Chapter 44–14
C
O
N
T
R
O
L
S

debug

Function

Includes or suppresses debug information in the object module.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate symbolic debug
information check box in the Debug tab.

debug | nodebug

Abbreviation

db | nodb

Class

Primary control

Default

nodebug

Description

Use this control to place information used by symbolic debuggers, in the

object module. Use the default nodebug control to suppress symbolic

debug information. Suppressing symbolic debug information reduces the

size of the object module.

If you specify the noobject or notranslate control, the compiler does

not generate an object module and debug has no effect.

Choose one of the following combinations of controls to aid debugging:

type debug

for both type checking (by RL196) and symbolic debugging. RL196

also uses the debug information to produce link maps. This

combination of controls includes all possible debug and type

information in the object code.

Compiler Controls 4–15

• • • • • • • •

type nodebug

for type checking by the linker. This combination of controls includes

type definition information for external and public symbols only. You

can use this combination to reduce the size of the object module when

you are not using a symbolic debugger.

notype nodebug

to suppress all debug and type information. This combination reduces

the size of the object module by omitting information not necessary for

execution.

Use optimize(0) with debug when you use a symbolic debugger. Since

higher levels of optimization can result in rearranged or eliminated object

code, optimizing can reduce the ability of most symbolic debuggers to

accurately correlate debug information to the source text. Even with

optimize(0) however, some source statements may generate no code.

The predefined macro _DEBUG_ indicates which of type , notype , debug ,

or nodebug have been specified, as in Table 4-1:

Debug and Type Controls Value of _DEBUG_

notype nodebug 0

type nodebug 1

notype debug 2

type debug 3

Table 4-1: Values for the _DEBUG_ macro

The debug and nodebug controls affect the entire object module. You

can specify either of these controls in the compiler invocation or in a

#pragma preprocessor directive preceding the first line of data definition

or executable source text. To override a #pragma debug or #pragma
nodebug specified in the source text, specify the opposite control

(nodebug or debug , respectively) in the compiler invocation.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

object

optimize
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

translate

type

Chapter 44–16
C
O
N
T
R
O
L
S

define

Function

Defines a macro

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Define a macro (syntax: macro[=def]) in the Define user
macros field in the Misc tab. You can define more macros by separating

them with commas.

define(name [= body] [,...])

where:

name is the name of a macro.

body is the text (that is, value) of the macro. If the body contains

spaces or punctuation, surround the entire body with

quotation marks (”).

Abbreviation

df

Class

Invocation

Default

body = 1

Description

Use this control to create object-like macros in the compiler invocation.

The entire module (primary source file and all include files) is within the

scope of a macro defined in the compiler invocation. The body of an

object-like macro contains no formal parameters. Use the #define
preprocessor directive in the source text instead of the define control for

function-like macros. C: A Reference Manual, listed in Related
Publications, describes the #define preprocessor directive.

Compiler Controls 4–17

• • • • • • • •

If the definition contains no body , the macro expands to the value 1. The

default value of a macro defined with the define control differs from that

of a macro defined with the #define preprocessor directive. A macro

defined without a body using #define has no value and expands to

nothing, although a test for existence of the macro returns a true value.

If you remove the macro definition with a #undef preprocessor directive,

the macro is no longer defined for source text subsequent to the #undef
preprocessor directive. You must remove a macro definition before

redefining the macro name unless the body of the redefinition exactly

matches the body of the original definition. An attempt to redefine a

macro without first removing it causes an error.

You can use the define control on the invocation line but not in a

#pragma preprocessor directive. To define a macro within the source

text, use the #define preprocessor directive. You can abbreviate the

define control but not the #define preprocessor directive.

Examples

1. In this example, using the define control in the invocation determines

the result of conditional compilation in the source file ex.c . The macro

SYS expands to the value 1 since its definition is in the compiler

invocation, so PATHLENGTH gets the value 128 and 80C196 is defined

with an empty value. Since 80C196 is defined, NUMINTR gets the value

16 .

The invocation is as follows:

c196 ex.c define(SYS)

The ex.c source text contains the following lines:

#if SYS
#define PATHLENGTH 128
#define 80C196
#else
#define PATHLENGTH 45
#endif

#ifdef 80C196
#define NUMINTR 16
#else
#define NUMINTR 8
#endif

Chapter 44–18
C
O
N
T
R
O
L
S

2. The following compiler invocation suppresses the alien keyword by

defining it as a macro that expands to nothing:

c196 ex.c define(alien=””) preprint

The ex.c source text contains:

alien int f();

After preprocessing, the ex.i preprint file contains:

int f();

Compiler Controls 4–19

• • • • • • • •

diagnostic

Function

Specifies level of diagnostic messages.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Select one of the Diagnostics message level (0–2)
options in the Listing tab.

diagnostic(level)

where:

level is the value 0, 1, or 2. The values correspond to remarks,

warnings, and errors, respectively.

Abbreviation

dn

Class

Primary control

Default

diagnostic(1)

Description

Use this control to specify the level of diagnostic messages that the

compiler produces. A remark points out a questionable construct, such as

using an undeclared function name. A warning reports a suspicious

condition that you might want to change. A warning does not terminate

the compilation process. Warnings and remarks usually provide

information and do not necessarily indicate a condition affecting the object

module. An error also does not terminate the compilation process, but

causes the compiler not to produce an object file. A fatal error, on the

other hand, terminates the compilation process immediately.

Chapter 44–20
C
O
N
T
R
O
L
S

Use the different levels of the diagnostic control as follows:

dn(0) for the compiler to issue all remarks, warnings, and error

messages.

dn(1) (the default) for the compiler to issue warnings and error

messages but no remarks.

dn(2) for the compiler to issue only error messages.

The predefined macro _DIAGNOSTIC_ has the value specified for the

diagnostic control.

The compiler also reports the number of remark, warning and error

situations in the termination message, according to the diagnostic level

which also determines the compiler's exit status. For example, if the

diagnostic level is 2, the compiler can issue only error messages and the

exit status is zero if no errors occurred, even if warning or remark

situations occurred. The diagnostic and termination messages usually

appear in the print file. If the print file is suppressed, the messages appear

on the console instead.

The diagnostic control affects the entire compilation. You can specify

this control in the compiler invocation or in a #pragma preprocessor

directive preceding the first line of data definition or executable source

text. To override a diagnostic level set in a #pragma preprocessor

directive, specify a different diagnostic level in the compiler invocation.

Messages (see Chapter 9)

print

Compiler Controls 4–21

• • • • • • • •

divmodopt

Function

Enables generation of efficient DIV instruction.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate efficient DIV
instruction and don’t care about overflow check box in the

Optimization tab.

divmodopt | nodivmodopt

Abbreviation

dm | nodm

Class

Primary control

Default

nodivmodopt

Description

Use the divmodopt control to enable generatation of an efficient DIV

instruction even if there are chances for overflow. Normally, the run-time

routine ??DIVL does a better job in case of overflow, but the code is less

efficient. If you do not care about the overflow you can now generate the

instruction with the divmodopt control.

Chapter 44–22
C
O
N
T
R
O
L
S

eject

Function

Inserts a form-feed into the print file.

Syntax

eject

Abbreviation

ej

Class

Primary control

Description

Use this control to insert a form-feed into the print file. You can only

specify the eject control in a #pragma directive. The page breaks after

the control line and the compiler generates a header at the top of the

page. This control does not have any effect if the noprint or nolist
control is in effect.

list
print

Compiler Controls 4–23

• • • • • • • •

extend

Function

Recognizes or suppresses Intel C196 extensions.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Select the Enable all language extensions or Disable
language extensions (strict ANSI mode) radio button in the

Language tab.

extend | noextend

Abbreviation

ex | noex

Class

Primary control

Default

extend

Description

Use this control to direct the compiler to accept file-scope register
variables and the alien , far , near , reentrant , and nonreentrant
keywords in the source text. This control also ensures compatibility

between prototype and non-prototype function declarations. Use the

noextend control to suppress recognition of these extensions. These

extensions provide compatibility with earlier versions of C196.

When extend is in effect, the register storage class and allocation of

registers work as follows:

• You can declare file-scope variables with the register storage

class.

• The regconserve and noregconserve controls determine

whether file-scope non-register variables, as well as block-scope

non-register variables, are allocated to registers.

Chapter 44–24
C
O
N
T
R
O
L
S

• You can combine the static and extern storage classes with

register declarations at both block and file scope, for example:

 static register int sri;
 extern register int cri;

When noextend is in effect, the C196 compiler uses ANSI semantics for

the register storage class. The ANSI semantics allow register storage

class variables within blocks only, not at the file-scope level, and do not

allow combining static or extern with register storage class.

The extension keywords that the compiler recognizes when extend is in

effect are redundant with some of the compiler controls and are provided

for compatibility with earlier versions of C196. The reentrant ,

nonreentrant , and alien keywords have the same effect as the

reentrant , noreentrant , and fixedparams controls, respectively.

The extend and noextend controls have no effect on the reentrant ,

noreentrant , and fixedparams controls.

The extend control also extends the way C196 performs parameter type

checking between prototype function declarations and old-style function

definitions. The ANSI C standard specifies that, in old-style function

definitions, char and short parameters are promoted to int , and float
parameters are promoted to double . When a prototype declaration and

an old-style definition exist for a function, the parameters of the prototype

must be compatible with the promoted parameters of the old-style

definition. With noextend in effect, C196 conforms to the ANSI standard.

For example, with noextend in effect, the following combination causes

an invalid redeclaration error for the function f :

int f(char); /* prototype declaration */

int f(c) /* old–style definition: */
char c; /* char promoted to int */
{}

With extend in effect, the compiler allows exact type matching between

parameters in a prototype declaration and parameters in the associated

old-style definition. The above example is accepted with extend in

effect.

Compiler Controls 4–25

• • • • • • • •

The extend and noextend controls affect the entire object module. You

can specify either of these controls in the compiler invocation or in a

#pragma preprocessor directive preceding the first line of data definition

or executable source text. To override a #pragma extend or #pragma
noextend specified in the source text, specify the opposite control

(noextend or extend , respectively) in the compiler invocation.

alien
fixedparams
regconserve
varparams

Chapter 44–26
C
O
N
T
R
O
L
S

extratmp

Function

Enable or disable usage of extra temporary registers TMPREG8 to

TMPREG16.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Use 16 TMPREG bytes instead of
8 (for 16 bit models) check box in the Optimization tab.

extratmp | noextratmp

Abbreviation

et | noet

Class

Primary control

Default

noextratmp for non 24-bit models

extratmp for 24-bit models

Description

The compiler uses a maximum of 8 TMPREG bytes for non 24-bit models,

and a maximum of 16 TMPREG bytes for 24-bit models. If you specify one

of the controls you get what you specify, ET or NOET. For non 24-bit

models the extratmp control can be used to let the compiler use more

than 8 TMPREG bytes (for example, when the program is too complex).

For 24-bit models you can also use noextratmp (only recommended for

nearcode/neardata).

tmpreg

Compiler Controls 4–27

• • • • • • • •

farcode

Function

Specifies that the whole application uses the extended addressing mode of

24-bit processors for all functions.

Syntax

Select the Far Code radio button in the EDE | CPU Model... menu

item.

farcode

Abbreviation

fc

Class

Primary control

Default

nearcode

Description

Use this control to use the extended addressing mode of 24-bit processors.

This control causes the compiler to generate extended calls between

modules and make all function pointers four bytes long. In addition to

user-defined function pointers, the compiler allows four bytes for switch

table entries and return addresses. All executable code will be placed in

the farcode segment of the object module.

The 24-bit processors are configured by the CCB at reset. One of the

settings controlled by the CCB is whether to run in the extended mode or

the compatibility mode. Once the CCB is loaded into the chip

configuration register, the mode is locked, and all of your code will run in

the chosen mode. Therefore, if you use the farcode control for one

module, you must use it for all modules.

The compiler does not generate extended calls within a module, since

such local calls are assumed to be within the 32K range of a normal call.

Note that in extended mode, all return addresses are four bytes long,

regardless of the type of call instruction used.

Chapter 44–28
C
O
N
T
R
O
L
S

The farcode control can only be used with 24-bit models.

farconst fardata model
nearcode nearconst neardata

Compiler Controls 4–29

• • • • • • • •

farconst

Function

Specifies that the default placement of constant data is the far const

segment.

Syntax

Select the Far Const radio button in the EDE | CPU Model... menu

item.

farconst

Abbreviation

fk

Class

Primary control

Default

nearconst

Description

Use this control to allow constant data to be placed anywhere in the 24-bit

extended address space of the 24-bit processors. This control causes the

compiler to place switch table constants in the farconst segment of the

object module, as well as any user-defined constant data that is not

qualified with the near keyword. The generated code will use extended

addressing to access these constants.

When you link your program module(s) with RL196, you can locate the

farconst segment anywhere you have ROM.

The farconst control can only be used with 24-bit models (NT-CNF or

NT-ENF).

farcode fardata model
nearcode nearconst neardata

Chapter 44–30
C
O
N
T
R
O
L
S

fardata

Function

Specifies that the default placement of variable data is the far data

segment.

Syntax

Select the Far Data radio button in the EDE | CPU Model... menu

item.

fardata

Abbreviation

fd

Class

Primary control

Default

neardata

Description

Use this control to allow non-register, non-constant data to be placed

anywhere in the 24-bit extended address space of the 24-bit processors.

This control causes the compiler to place in the fardata segment of the

object module all user-defined variable data that has not been assigned to

registers, and that you have not qualified with the near keyword. The

generated code will use extended addressing to access these objects.

When you link your program module(s) with RL196, you can locate the

fardata segment anywhere you have RAM.

The fardata control can only be used with 24-bit models.

farcode farconst model
nearcode nearconst neardata

Compiler Controls 4–31

• • • • • • • •

fastinterrupt

Function

Specifies whether the compiler saves temporary registers on entering the

interrupt routine.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Fast interrupt code (do not
save temporary registers) check box in the Object tab.

fastinterrupt | nofastinterrupt

Abbreviation

fi | nofi

Class

Primary control

Default

nofastinterrupt

Description

Use this control to prevent the C196 compiler from saving temporary

registers on entering the interrupt rountine. This results in faster execution

of the interrupt.

generatevectors
interrupt
interruptpage

Chapter 44–32
C
O
N
T
R
O
L
S

fixedparams

Function

Specifies fixed-parameter list calling convention

Syntax

fixedparams[(function [,...])]

where:

function is the name of a function defined in the source text.

Abbreviation

fp

Class

General control

Default

varparams

Description

Use this control to cause functions to use the fixed parameter list (FPL)

calling convention. The variable-parameter list (VPL) calling convention is

the default used by the C196 compiler. When calling a PL/M-96 function

from a C196 program, specify fixedparams for the PL/M-96 function in

the C196 compilation.

A function's calling convention dictates the sequence of instructions that

the compiler generates to manipulate the stack and registers during a call

to the function. Code generated for the FPL calling convention performs

the following sequence of operations:

1. The calling function pushes the arguments onto the stack with the leftmost

argument pushed first.

2. The calling function transfers control to the called function.

3. The called function executes.

4. The called function removes the arguments from the stack.

Compiler Controls 4–33

• • • • • • • •

5. The called function returns control to the calling function.

See the varparams control for more information on how the VPL calling

convention differs from the FPL calling convention.

The calling convention specification must precede the function declaration.

The first declaration or definition of a function sets the calling convention

for that function based on the fixedparams or varparams control in

effect for the function, or based on the alien keyword or the comma and

ellipsis (,...), if specified for the function. The comma and ellipsis

indicate that the number of parameters to the function has no limit. In this

case, varparams is in effect.

The notranslate and noobject controls suppress the object file,

causing fixedparams to have no effect. However, if you specify the

code control with the noobject control, the effect of fixedparams does

appear in the pseudo-assembly code listing.

You can specify fixedparams in the compiler invocation and in

#pragma preprocessor directives throughout the source text. When

specified without arguments, this control affects all functions in the

subsequent source text and remains in effect until the compiler encounters

the opposite control (varparams) or the end of the source text. The

fixedparams control specified with an argument list affects only the

functions in the argument list.

More than one explicit calling convention specification for any one

function causes a warning. A warning occurs if a function in the source

text is explicitly declared with a variable parameter list and is named in the

function list for the fixedparams control.

#pragma fixedparams(x)

int x (int i,...)
{
}

In this example, varparams is in effect.

Examples

1. The following control in the compiler invocation specifies the default

variable parameter list convention (VPL) for all functions in the source text

except the plm_fcn function:

fixedparams(plm_fcn)

Chapter 44–34
C
O
N
T
R
O
L
S

2. The following #pragma preprocessor directive has the same effect as the

control in the first example:

#pragma fixedparams(plm_fcn)

3. The following combination of controls in the compiler invocation specifies

the fixed parameter list convention (FPL) for all functions in the source

text except the native function:

fixedparams varparams(native)

4. The following #pragma preprocessor directives have the same effect as

the controls in the above example:

#pragma fixedparams
#pragma varparams(native)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

code

extend

object

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

translate

varparams

Compiler Controls 4–35

• • • • • • • •

generatevectors

Function

Generates or suppresses the generation of interrupt vectors.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate code for interrupt
vector check box in the Object tab.

generatevectors | nogeneratevectors

Abbreviation

gv | nogv

Class

Primary control

Default

generatevectors

Description

Use the nogeneratevectors control to specify that the compiler must

not generate the interrupt vectors for the interrupt functions.

By default the compiler generates interrupt vectors.

You can specify the generatevectors and nogeneratevectors
controls in the compiler invocation and in #pragma preprocessor

directives at the beginning of the source text.

interrupt
interruptpage

Chapter 44–36
C
O
N
T
R
O
L
S

hold

Function

Specifies whether the windowing code needs to preserve the

HOLD/HOLDA bit in the WSR.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable the Support Vertical Windowing check box and

enable or disable the Save/restore HOLDEN bit of WSR at
function entry/exit check box in the Code tab.

hold | nohold

Abbreviation

ho | noho

Class

Primary control

Default

nohold

Description

If you are using the HOLD/HOLDA protocol along with vertical

windowing, specify the hold control. This control causes the compiler to

generate additional code to preserve the HOLDEN bit of the Window

Select Register (WSR). If you are not using the HOLD/HOLDA protocol,

specify the nohold control to reduce the amount of overhead code.

This control provides the same function as the hold and nohold
parameter keywords in the windows control, but without the need to use

the windows control.

The hold control is not a substitute for the windows control. The hold
control is merely to be used with the windowed parameter method for

vertical windows (using the keywords _reg and _win or _win1 and the

windowram control).

Compiler Controls 4–37

• • • • • • • •

The WSR management code allows access to local and static register

variables located in the mapped area of the register file and above (from

80H or 0C0H or 0E0H depending on the window size). Public register

variables allocated in the register segment are restricted to the registers

below the mapped area (below 80H or 0C0H or 0E0H depending on the

window size). This allocation scheme allows access to these variables

without swapping the wsr .

See Section 6.4.3 for more information on vertical windows.

If you specify the hold control, the compiler produces the following WSR

management code in the prolog:

ldbze Tmp0,WSR
push Tmp0
andb WSR,#80H /* to retain hlden in wsr */
orb WSR,?WSR

Otherwise, with the nohold control, the following code is produced:

ldbze Tmp0,WSR
push Tmp0
ldb WSR,?WSR

The compiler produces the following code in the epilog, with or without

the hold parameter:

ldb WSR,[SP]
pop R0

The hold control can only be used with processors that support vertical

windows. Otherwise the compiler generates a fatal error.

model
reentrant
regconserve
registers
windowram

Chapter 44–38
C
O
N
T
R
O
L
S

include

Function

Inserts text from specified file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enter a filename in the First #include file(s) field in

the Misc tab. You can enter multiple filenames by separating them with

commas.

include(filename [,...])

where:

filename is the file to be included and compiled before the primary

source file.

Abbreviation

ic

Class

Invocation control

Description

Use this control to insert and compile text from files other than the

primary source file. These files are called include files. The compiler

processes include files in the order specified in the filename list before

processing the primary source file.

Files included by the include control on the invocation line can use all

macros defined by the define control on the invocation line, regardless

of the order of the controls. Files included by the include control on the

invocation line precede the scope of macros defined by the #define
preprocessor directive in source text from the primary source file and from

all subsequent include files. Files included by the #include preprocessor

directive in source text are within the scope of previously defined macros

and precede the scope of subsequently defined macros.

Compiler Controls 4–39

• • • • • • • •

You can use the listinclude control to include the contents of the

include files in the print file. The compiler lists the files specified with the

include control in the order specified before the first line of source

listing. To specify a search path for include files, use the searchinclude
control. To view names of include files and the order of their inclusion

without compilation, use the preprint and notranslate controls.

You can use the include control on the invocation line but not in a

#pragma preprocessor directive. To include a file from within the source

text, use the #include preprocessor directive. You can abbreviate the

include control but not the #include preprocessor directive.

Example

This invocation line tells the compiler to include the file kb_sfrs.h in its

C source:

c196 file1.c include(kb_sfrs.h)

listinclude
preprint
searchinclude

Chapter 44–40
C
O
N
T
R
O
L
S

init

Function

Specifies whether the compiler produces the initialization segments and

tables.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Support initialized and cleared
RAM variables check box in the Code tab.

init | noinit

Abbreviation

it | noit

Class

Primary control

Default

init

Description

Use the init control to allow the compiler to produce the initialization

segments and tables. This control is only valid for the (default) OMF

version 3.2. At startup (reset), library module cstart processes the

initialization table: it copies the initial constant data to the corresponding

variables, and zeroes the uninitialized variables.

Use the noinit control/pragma to prevent the generation of initializing

data and tables, even though you have used initializers in your source

code (noinit also prevents zeroing of uninitialized variables).

abszero
zero

Compiler Controls 4–41

• • • • • • • •

inst

Function

Specifies whether the compiler generates vector tables for switch

statements.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate jump table for switch
statement check box in the Code tab.

inst | noinst

Abbreviation

is | nois

Class

Primary control

Default

noinst

Description

Use this control to prevent the C196 compiler from generating vector

tables for switch statements. You must use this control if you are

overlapping ROM and RAM memory because the processor reads data

from these tables rather than fetching code from them. When inst is in

effect, the compiler generates a series of compare instructions instead of

the vector table.

See the 80C196 Utilities User's Guide, listed in Related Publications, for

more information on overlapping ROM and RAM memory.

Chapter 44–42
C
O
N
T
R
O
L
S

Note that the inst control may be somewhat confusing. It has to do with

the fact that in an older version of OMF96 (v2.0) all rommable information

(i.e. code and constant data) went into the CODE segment. However, in

case the INST pin of the processor is used, the constant data should not be

mixed with the code instructions. The Intel iC-96 had the inst control to

prevent the compiler to generate constant data in the middle of code

instructions. With the newer definitions of OMF96 a better solution is

available; all constant data in collected in a separate segment. In other

words, this inst control is only useful if the output format of the compiler

is OMF96 v2.0 (see the oldobject and omf controls).

Compiler Controls 4–43

• • • • • • • •

interrupt

Function

Specifies a function to be an interrupt handler.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Add the control to the Additional options field in the

Misc tab.

interrupt(function [= n] [,...])

where:

function is the name of a function defined in the source text.

n is the interrupt number or the interrupt address.

Abbreviation

in

Class

General control

Description

Use this control to specify a function in the source text to handle some

condition signaled by an interrupt. An interrupt function must be of type

void and cannot take arguments. The interrupt designation must precede

the function definition.

You can specify the same interrupt function for multiple interrupts. For

example, the following #pragma directive is valid:

#pragma interrupt(int_log=1, int_log=2,
int_log=0x2006)

However, you cannot specify multiple interrupt function handlers for one

interrupt. The following example generates a fatal error:

#pragma interrupt(int_log=1, rst_func=1)

Chapter 44–44
C
O
N
T
R
O
L
S

The interrupt control causes the compiler to generate prolog and

epilog code to save and restore registers. The compiler takes into

consideration the differences between the selected processor models when

generating the call and return sequences. The exact sequence generated

depends on the argument to the model control.

Note that the compiler does not automatically saves/restores the state of

the floating point library (see fpsave() and fprstor() in the 80C196
Utilities User's Guide).

The compiler also creates an interrupt vector entry for each interrupt

function. If the code being generated is for the 8096, the interrupt number

must be in the range 0 to 7. If the code being generated is for the 80C196

microcontrollers, the interrupt number must be in the range 0 to 9 or 24
to 31 . The interrupt numbers correspond to positions in the interrupt

vector table calculated as follows:

the interrupt number (n) multiplied by 2 and added to the base of the

vector table. For 8096 and most 80C196 parts the base is 2000h . For

80C196NT/NP the base is FF2000h .

With the interruptpage control you can override the default base of

the vector table.

If you specify an interrupt address instead of an interrupt number, you

must check your processor specific manual for valid addresses. It is not

necessary to specify the page when you use addresses. For example,

address 0x2008 and address 0xFF2008 are the same on an extended

model.

The interrupt priority determines interrupt sequencing when several

interrupts are pending. You can allow any priority of interrupt to occur by

explicitly enabling it using int_mask and imask1 . Since an interrupt

function prolog includes either pushf (for 8096 code) or pusha (for

80C196 code), which disable interrupts, the execution of the interrupt

handler cannot be interrupted unless you reenable and unmask interrupts

within the interrupt, using int_mask and imask1 . See the processor

specific manual for a list of interrupts with their corresponding interrupt

numbers.

You can specify the interrupt control in the compiler invocation and in

#pragma preprocessor directives.

In certain cases it is useful to have 'indirect' interrupt vectors.

Compiler Controls 4–45

• • • • • • • •

Two examples. The first example uses an interrupt vector table in register

memory. It can be updated at run time. The second example can be used

if the 196 vector table and some basic code is in some permanent ROM (at

address 2000h), and the interrupt handler and other code is in an EPROM

which can be replaced in the target.

First the example with a table in register memory.

JMPVEC MODULE
 RSEG
vector0: DSW 1
vector1: DSW 1
vector2: DSW 1
vector3: DSW 1

 KSEG at 2000h
 DCW IntHand0
 DCW IntHand1
 DCW IntHand2
 DCW IntHand3

 CSEG
IntHand0: PUSHA
 PUSH #$+5
 BR [vector0]
 POPA
 RET

IntHand1: PUSHA
 PUSH #$+5
 BR [vector1]
 POPA
 RET

IntHand2: PUSHA
 PUSH #$+5
 BR [vector2]
 POPA
 RET

IntHand3: PUSHA
 PUSH #$+5
 BR [vector3]
 POPA
 RET

Chapter 44–46
C
O
N
T
R
O
L
S

Of course now you must fill in the table before the first interrupt occurs. If

functions in C are called you need to determine if it is necessary to still

declare them as 'interrupt'. The example above does not take any

precaution to save and restore the TMPREG registers.

The 196 processor requires that the first instruction in the interrupt must

be a PUSHA. See the processor User's Manual for details on interrupt

servicing.

The next example. The first section (say 2000h–23FFh) is permanently in

ROM, the second section (say 0C000h–0FFFFh) can be in RAM

(downloading) or in some EPROM (that can be replaced).

 KSEG at 2000h
 DCW IntHand0
 DCW IntHand1
 DCW IntHand2
 DCW IntHand3

 CSEG at 0C000h
IntHand0: PUSHA
 LCALL IntFunc0
 POPA
 RET

IntHand1: PUSHA
 LCALL IntFunc1
 POPA
 RET

IntHand2: PUSHA
 LCALL IntFunc2
 POPA
 RET

IntHand3: PUSHA
 LCALL IntFunc3
 POPA
 RET

Example

The following is an example of a valid interrupt control, specified on

the invocation line:

interrupt(int_handle_1=1, int_handle_24=0x2030)

Compiler Controls 4–47

• • • • • • • •

The source text compiled using this control contains the following

declarations:

void int_handle_1(void)
{...}

void int_handle_2(void)
{...}

fastinterrupt
generatevectors
interrupt_piha
interrupt_pihb

interruptpage
model

Chapter 44–48
C
O
N
T
R
O
L
S

interrupt_piha /

interrupt_pihb

Function

Specifies a function to be an interrupt handler in the piha block or pihb

block respectively.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Add the control to the Additional options field in the

Misc tab.

interrupt_piha(function [= n] [,...])
interrupt_pihb(function [= n] [,...])

where:

function is the name of a function defined in the source text.

n is the piha/pihb interrupt number or the absolute interrupt

address.

Class

General control

Description

These controls are only valid for those models which have a piha and pihb

block.

Use this control to specify a function in the source text to handle some

condition signaled by an interrupt. An interrupt function must be of type

void and cannot take arguments. The interrupt designation must precede

the function definition.

See the interrupt control for more information.

fastinterrupt , generatevectors ,

interrupt , interruptpage ,

model

Compiler Controls 4–49

• • • • • • • •

interruptpage

Function

Specifies an interrupt page or base address.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enter a value in the Specify the Interrupt page
(0–0FFH) or base address field in the Object tab.

interruptpage(num| base)

where:

num is the page number (0..0xFF) for interrupt vectors.

base is the base address.

Abbreviation

ip

Class

Primary control

Default

ip(0x0) for non 24-bit models

ip(0xFF) for 24-bit models

Description

Use this control to specify the page number or base address for interrupt

vectors. By default the interrupt vectors are put in the 0xFF page for

24-bit models and in page 0 for other models. Values 0..0xFF are taken

as page numbers (and shifted 16 bits), other values are taken as the base

address.

You can specify the interruptpage control in the compiler invocation

and in #pragma preprocessor directives.

Chapter 44–50
C
O
N
T
R
O
L
S

Example

The following is an example of a valid interruptpage control, specified

on the invocation line:

interruptpage (0x0F)

Here are some #pragma examples:

#pragma model(’nt–e’)
#pragma interruptpage(0x0F)
#pragma interrupt(int1=1)
void int1(void){} /* Vector at 0x0F2002 */

#pragma model(’nt–e’)
#pragma interruptpage(0xFE0000)
#pragma interrupt(int1=1)
void int1(void){} /* Vector at 0xFE2002 */

#pragma model(kc)
#pragma interruptpage(0xD000)
#pragma interrupt(int1=1)
void int1(void){} /* Vector at 0xD002 */

interrupt
model

Compiler Controls 4–51

• • • • • • • •

list

Function

Specifies or suppresses source text listing in print file.

Syntax

list | nolist

Abbreviation

li | noli

Class

General control

Default

list

Description

Use this control to generate a listing of the source text. The compiler

places the source listing in the print file. Use the nolist control to

suppress the source listing.

Several other controls affect the contents of the listing, as follows:

• The cond control causes uncompiled conditional code to appear in

the listing.

• The listexpand control causes macros to be expanded in the

listing.

• The listinclude control causes text from include files to appear

in the listing.

The noprint and notranslate controls suppress the entire print file,

even if list is specified. The nolist control suppresses the source text

listing, even if cond , listexpand , and listinclude are specified.

The list and nolist controls affect only the subsequent source text and

remain in effect until the compiler encounters the opposite control or the

end of the source text. You can specify these controls in the compiler

invocation and in #pragma preprocessor directives throughout the source

text.

Chapter 44–52
C
O
N
T
R
O
L
S

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

cond
listexpand
listinclude

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pagelength

pagewidth

print

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

tabwidth

title

translate

Compiler Controls 4–53

• • • • • • • •

listexpand

Function

Includes or suppresses macro expansion in listing.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Include macro expansion check

box in the Listing tab.

listexpand | nolistexpand

Abbreviation

le | nole

Class

General control

Default

nolistexpand

Description

Use this control to include the results of macro expansion in the source

text listing in the print file. Use the nolistexpand control (default) to

suppress the results of macro expansion.

The compiler marks the macro expansion lines with a plus (+) in the Line
column of the source text listing. Macro expansions only appear in the

source text listing of compiled code and do not appear in the source text

listing of uncompiled code even when you use the cond control to list

uncompiled conditional code.

If nolist , notranslate , or noprint is specified, the print file is

suppressed and listexpand has no effect. If nolistinclude is in

effect, listing of include files is suppressed and listexpand has no effect

on the included source text.

Chapter 44–54
C
O
N
T
R
O
L
S

The listexpand and nolistexpand controls affect only the subsequent

source text and remain in effect until the compiler encounters the opposite

control or the end of the source text. You can specify these controls in the

compiler invocation and in #pragma preprocessor directives throughout

the source text.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

cond

list

listinclude

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

print

translate

Compiler Controls 4–55

• • • • • • • •

listinclude

Function

Includes or suppresses text from include files in listing.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Add text from include files
check box in the Listing tab.

listinclude | nolistinclude

Abbreviation

lc | nolc

Class

General control

Default

nolistinclude

Description

Use this control to list the text of include files in the source text listing in

the print file. Use the default nolistinclude control to suppress the

listing of include files.

The compiler lists files included with the include control in the order

they are specified before the first line of source listing and lists the text of

files included with the #include preprocessor directive after the line with

the #include directive.

Included files can themselves include files. The nesting level of the

included file appears in the Level column of the source text listing.

When nolistinclude is in effect, diagnostic messages for include files

appear in the print file as follows:

• For files included with the include control, diagnostic messages

precede the first line of source text.

Chapter 44–56
C
O
N
T
R
O
L
S

• For files included with the #include preprocessor directive,

diagnostic messages appear on the lines immediately after the

#include directive.

If nolist , notranslate , or noprint is specified, the print file is

suppressed and listinclude has no effect.

The listinclude and nolistinclude controls affect only the

subsequent source text and remain in effect until the compiler encounters

the opposite control or the end of the source text. You can specify these

controls in the compiler invocation and in #pragma preprocessor

directives throughout the source text.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

include

list

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

print

translate

Compiler Controls 4–57

• • • • • • • •

locate

Function

Locates symbols to absolute addresses.

Syntax

#pragma locate(var1 =addr [+|– value],...)

where:

var1 is a valid symbol name.

addr is a valid absolute address.

value is a valid offset value.

Abbreviation

lo

Class

General control

Description

Use this pragma control to locate one or more symbols to absolute

addresses. Use this control only in a #pragma preprocessor directive.

This control must follow the declaration of the symbols. For example, the

following pragma control line locates i1 and i2 to addresses 1F00H and

1F02H respectively:

int i1, i2;
#pragma locate(i1=0x1F00,i2=0x1F02)

You can also use the #define preprocessor directive to define the

absolute address. Then, you can use the macro symbol as a base address

and the + and – signs to indicate the offset. For example, assume the

previous example but with a macro definition:

#define abs_addr 0x1F00

int i1, i2;
#pragma locate (i1=abs_addr, i2=abs_addr+2)

Chapter 44–58
C
O
N
T
R
O
L
S

This example has the same effect as the previous example.

You cannot locate non-static block-scope variables because they are

allocated on the stack or in register overlay segments, which are located

by RL196 at link time. The following example generates an error:

main()
{ int i2;

#pragma locate(i2=0x1F02); /* This line generates an
 error. */
}

Compiler Controls 4–59

• • • • • • • •

mixedsource

Function

Includes or suppresses mixed assembly source in listing.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Merge C–source code with
assembly check box in the Listing tab.

mixedsource | nomixedsource

Abbreviation

ms | noms

Class

Primary control

Default

nomixedsource

Description

Use this control to include mixed assembly source text in the print file.

Use the nomixedsource control (default) to suppress the generation of

mixed assembly source in the print file.

By default the compiler lists the C source at the beginning of the print file

and generates lines with ; Statement num to indicate a C source line.

With the mixedsource control the compiler does not list the C source at

the beginning of the print file but mixes the C source lines with the

assembly source. So, the line with ; Statement num are replaced by

the source line itself.

You can specify the mixedsource and nomixedsource control in the

compiler invocation and in #pragma preprocessor directives at the

beginning of the source text.

list
listinclude
print

Chapter 44–60
C
O
N
T
R
O
L
S

model

Function

Specifies the processor/instruction set.

Syntax

Choose a cpu from the EDE | CPU Model... menu item. Optionally

select one or more of the radio buttons Near Code /Far Code , Near
Const /Far Const , Near Data /Far Data .

model(processor)

where:

processor Selects the instruction set the compiler uses in generating

code for a specific member of the 80C196 processor family.

Abbreviation

md

Class

Primary control

Default

model(kb)

Description

This control allows you to specify which processor/instruction set you are

using. The cb , ea , np , nt and nu arguments of the model control also

enable the compiler to recognize the nearcode , farcode , nearconst ,

farconst , neardata , and fardata controls.

Specify the processor as one of the following:

61 to select the 8096-61.

90 to select the 8096-90.

Compiler Controls 4–61

• • • • • • • •

196 to select the 80C196KB. This argument to model is available

for backward compatibility and is equivalent to specifying

kb . For future compatibility, use the model(kb) control

specification instead of model(196) .

bh to select the 8096BH.

ca to select the 80C196CA. Specifying ca is equivalent to

specifying kr .

cb to select the 80C196CB. This argument can have an extra

suffix as described in the note below.

ea to select the 80C196EA. This argument can have an extra

suffix as described in the note below.

ec to select the 80C196EC. This argument can have an extra

suffix as described in the note below.

jq to select the 80C196JQ. Specifying jq is equivalent to

specifying kr .

jr to select the 80C196JR. Specifying jr is equivalent to

specifying kr .

js to select the 80C196JS. Specifying js is equivalent to

specifying kr .

jt to select the 80C196JT. Specifying jt is equivalent to

specifying kr .

jv to select the 80C196JV. Specifying jv is equivalent to

specifying kr .

kb to select the 80C196KB. Specifying kb is equivalent to

specifying 196 .

kc to select the 80C196KC.

kd to select the 80C196KD.

kl to select the 80C196KL. Specifying kl is equivalent to

specifying kr .

kq to select the 80C196KQ. Specifying kq is equivalent to

specifying kr .

Chapter 44–62
C
O
N
T
R
O
L
S

kr to select the 80C196KR.

ks to select the 80C196KS. Specifying ks is equivalent to

specifying kr .

kt to select the 80C196KT. Specifying kt is equivalent to

specifying kr .

lb to select the 80C196LB.

mc to select the 80C196MC.

md to select the 80C196MD.

mh to select the 80C196MH.

np to select the 80C196NP. This argument can have an extra

suffix as described in the note below.

nt to select the 80C196NT. This argument can have an extra

suffix as described in the note below.

nu to select the 80C196NU. This argument can have an extra

suffix as described in the note below.

The cb , ea , ec , np , nt and nu arguments of the model control can have

an additional suffix. Without a suffix, specifying xx is the same as

specifying xx –c , where xx is one of cb , ea , ec , np , nt or nu . The

following six suffixes are possible:

xx –c to select the compatible mode and to use near code

addressing and near data/near const addressing.

xx –cnf to select the compatible mode and to use near code

addressing and near data/far const addressing.

xx –cf to select the compatible mode and to use near code

addressing and far data/far const addressing.

xx –e to select the extended mode and to use far code addressing

and near data/near const addressing.

xx –enf to select the extended mode and to use far code addressing

and near data/far const addressing.

xx –ef to select the extended mode and to use far code addressing

and far data/far const addressing.

Compiler Controls 4–63

• • • • • • • •

The predefined macro _ARCHITECTURE_ has the value 61 , 90 , 'BH', 'CA',
'CB', 'EA', 'EC', 'KB', 'KC', 'KD', 'KR', 'LB', 'MC', 'MD', 'MH', 'NP', 'NT', or 'NU'
depending on the value specified for the model control.

The predefined macro _SFR_H_ has the value 'bh_sfrs.h ',

'ca_sfrs.h ', 'cb_sfrs.h ', 'ea_sfrs.h ', 'ec_sfrs.h ', 'kb_sfrs.h ',

'kc_sfrs.h ', 'kd_sfrs.h ', 'kr_sfrs.h , 'lb_sfrs.h ', 'mc_sfrs.h ',

'md_sfrs.h ', 'mh_sfrs.h ', 'np_sfrs.h ', 'nt_sfrs.h ', or 'nu_sfrs.h '

depending on the value specified for the model control. You can use this

predefined macro in your C source instead of the name of the xx _sfrs.h
include file:

#include <stdio.h>
#include _SFR_H_

The predefined macro _FUNCS_H_ has the value xx _sfrs.h depending

on the value specified for the model control.

If notranslate or noobject is in effect, the compiler does not generate

an object module and model has no effect. However, specifying model
with noobject and code can still affect the pseudo-assembly listing in

the print file.

The model control affects the entire object module. You can specify this

control in the compiler invocation or in a #pragma preprocessor directive

preceding the first line of data definition or executable source text. To

override a #pragma model(processor) preprocessor directive specified

in the source text, specify model with a different processor in the

compiler invocation.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

farcode

farconst

fardata

interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

nearcode

nearconst

neardata

registers

Chapter 44–64
C
O
N
T
R
O
L
S

nearcode

Function

Specifies that the whole application uses the compatibility addressing

mode of 24-bit processors for all functions.

Syntax

Select the Near Code radio button in the EDE | CPU Model... menu

item.

nearcode

Abbreviation

nc

Class

Primary control

Default

nearcode

Description

Use this control to use the compatibility addressing mode of 24-bit

processors. This control causes the compiler to generate 16-bit calls

between modules and make all function pointers two bytes long. In

addition to user-defined function pointers, the compiler allows two bytes

for switch table entries and return addresses. All executable code will be

placed in the highcode segment of the object module.

The 24-bit processors are configured by the CCB at reset. One of the

settings controlled by the CCB is whether to run in the extended mode or

the compatibility mode. Once the CCB is loaded into the chip

configuration register, the mode is locked, and all of your code will run in

the chosen mode. Therefore, if you use the nearcode control for one

module, you must use it for all modules.

The nearcode control can only be used with 24-bit models.

farcode farconst fardata
model nearconst neardata

Compiler Controls 4–65

• • • • • • • •

nearconst

Function

Specifies that the default placement of constant data is the constant

segment.

Syntax

Select the Near Const radio button in the EDE | CPU Model... menu

item.

nearconst

Abbreviation

nk

Class

Primary control

Default

nearconst

Description

Use this control to place constant data in the lowest 64K of the address

space of 24-bit processors. This control causes the compiler to place

switch table constants in the const segment of the object module, as well

as any user-defined constant data that is not qualified with the far
keyword. The generated code will use normal data addressing to access

these constants.

When you link your program module(s) with RL196, you must provide

sufficient ROM for the const segment somewhere within the lowest 64K

of the address space.

The nearconst control can only be used with 24-bit models (NT-CNF or

NT-ENF).

farcode farconst fardata
model nearcode neardata

Chapter 44–66
C
O
N
T
R
O
L
S

neardata

Function

Specifies that the default placement of variable data is the data segment.

Syntax

Select the Near Data radio button in the EDE | CPU Model... menu

item.

neardata

Abbreviation

nd

Class

Primary control

Default

neardata

Description

Use this control to place non-register, non-constant data in the lowest 64K

of the address space of 24-bit processors. This control causes the

compiler to place in the data segment of the object module all

user-defined variable data that has not been assigned to registers, and that

you have not qualified with the far keyword. The generated code will

use normal data addressing to access these objects.

When you link your program module(s) with RL196, you must provide

sufficient RAM for the data segment somewhere within the lowest 64K of

the address space.

The neardata control can only be used with 24-bit models.

farcode farconst fardata
model nearcode nearconst

Compiler Controls 4–67

• • • • • • • •

object

Function

Generates and names or suppresses object file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Add the control to the Additional options field in the

Misc tab.

object[(filename)] | noobject

where:

filename is the file, including the path, if necessary, in which the

compiler places the object code.

Abbreviation

oj | nooj

Class

Primary control

Default

object

Description

Use this control to specify a non-default filename or directory for the

object file. By default, the compiler places the object file in the directory

containing the primary source file. If you do not provide a filename, the

compiler composes the default object filename from the primary source

filename. For example, the compiler creates an object file named

main.obj for the primary source file main.c.

Use the noobject control to suppress creation of an object file. The

notranslate control suppresses all translation of source text to object

code and suppresses the object file and the print file. The noobject
control does not suppress translation and does not prevent the compiler

from producing a print file. The noobject control overrides other object

file controls except for their effects on the print file.

Chapter 44–68
C
O
N
T
R
O
L
S

If a file already exists for either the default or the specified filename, the

compiler writes over the existing file with the new object file.

The object and noobject controls affect the entire compilation. You

can specify these controls in the compiler invocation or in a #pragma
preprocessor directive preceding the first line of data definition or

executable source text. To override a #pragma object(filename) or

#pragma noobject preprocessor directive specified in the source text,

specify the opposite control (noobject or object with a different

filename , respectively) in the compiler invocation.

code
oldobject
translate

Compiler Controls 4–69

• • • • • • • •

oldobject

Function

Produces an object file compatible with the OMF96 V2.x.

Syntax

oldobject | nooldobject

Abbreviation

oo | nooo

Class

Primary control

Default

nooldobject

Description

Use this control to produce an object file compatible with earlier versions

of the C196 compiler. This control causes the compiler to place all

constants, including switch tables, in the code segment. No constant

segment is produced.

You may need to use the inst control when you use oldobject if your

system overlaps RAM and ROM. Also, if you want your data allocated the

same way previous versions of the compiler allocated data, you may need

to use the wordalign control.

The oldobject control is incompatible with 24-bit models.

inst
model
wordalign

Chapter 44–70
C
O
N
T
R
O
L
S

omf

Function

Specify OMF96 version.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Select an OMF96 Version radio button in the Object tab.

omf(num)

where:

num is a number representing the OMF96 version:

0 – OMF96 V2.0

1 – OMF96 V3.0

2 – OMF96 V3.2 (default)

Abbreviation

omf

Class

Primary control

Default

omf(2)

Description

Use this control to produce an object file compatible with a specific

OMF96 version.

Specifying omf(0) is the same as specifying oldobject .

Example

This invocation line tells the compiler to use the old OMF96 version V2.0.

c196 file1.c omf(0)

oldobject , model

Compiler Controls 4–71

• • • • • • • •

optimize

Function

Specifies the level of optimization.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Choose an Optimization level in the Optimization
tab.

optimize(level)

where:

level is 0, 1, 2, or 3. The values correspond to the levels of

optimization; 0 causes the least amount of optimization and 3
causes the most optimization.

Abbreviation

ot

Class

Primary control

Default

optimize(1)

Description

Use this control to improve the space usage and execution efficiency of a

program. Use level 0 when debugging with a symbolic debugger to

ensure the closest match between a line of source text and the object code

generated for that line. Each optimization level performs all the

optimizations of all lower levels. Figure 4-1 summarizes the optimizations

performed at each level.

The predefined macro _OPTIMIZE_ has the value specified for the

optimize control.

Chapter 44–72
C
O
N
T
R
O
L
S

The optimize control affects the entire object module. You can specify

this control in the compiler invocation or in a #pragma preprocessor

directive preceding the first line of data definition or executable source

text. To override a #pragma optimize(level) preprocessor directive

specified in the source text, specify optimize with a different level in

the compiler invocation.

OSD244

Optimization Level 3

optimizing indeterminate storage operations

Optimization Level 2

Optimization Level 1

Optimization Level 0

peephole optimization

eliminating common subexpressions

register history

strength reduction

folding constant expressions

short/long jump resolution

more peephole optimization

reversing branch conditions

removing unreachable code

re-using duplicate code

eliminating superfluous branches

Figure 4-1: Summary of optimization levels

Folding of Constant Expressions at All Levels

The compiler recognizes the operations involving constant operands, then

the compiler removes or combines them to save memory space or

execution time. Addition of 0, multiplication by 1 or 0, and operations on

two or more constants fall into this category. For example, the expression

a+2+3 becomes a+5 .

Compiler Controls 4–73

• • • • • • • •

The following constant operations are detected and reduced for all integral

values except unsigned longs, including signed and unsigned bit fields

(and, in case you were wondering, a one-bit signed field has the range

–1..0):

Comparisons involving constants

Comma operators involving constants

Multiplication by zero

There may be some surprises that come from code being eliminated, and

also from the warning messages telling you that a comparison always

returns TRUE or it always returns FALSE. However, if the part of the

expression being eliminated contains a function call, the function will be

called but its result will not be used -- a constant will be used instead of

the operation involving the function. For example, in the following

program:

 1 extern unsigned uns_func(void);
 2
 3 void main(void)
 4 {
 5 int i;
 6 unsigned u;
 7
 8 if (i > 84000 || u < 0)
 9 i = 6;
10 if (uns_func() < 0)
11 i = 7;
12 i = uns_func() * 0;
13 }

the only code generated for the body of main will be the two calls to

uns_func() (needed because the function might have useful side

effects), and the clearing of i . This is because an integer can never be

greater than 84000 , and an unsigned value can never be less than zero.

Here is the generated body of main :

 ; Statement 10
0009 EF0000 E call uns_func
 ; Statement 12
000C EF0000 E call uns_func
000F 0100 R clr i

Chapter 44–74
C
O
N
T
R
O
L
S

Optimizing Short Jumps and Moves at All Levels

The compiler saves space in the object code by using shorter forms for

identical machine instructions.

Reducing Operator Strength at All Levels

The compiler substitutes quick operations for slower ones, such as shifting

left by one instead of multiplying by 2. The substituted instruction

requires less space and executes faster.

Eliminating Common Subexpressions at Levels 1, 2, and 3

If an expression reappears in the same basic block of source text, the

compiler generates object code to reuse rather than recompute the value

of the expression. The generated code saves the intermediate results

during expression evaluation in registers and on the stack for later use.

The compiler also recognizes commutative forms of subexpressions. For

example, in the following block of code, the compiler generates code to

compute the value of c*d/3 for the first expression and to save and

retrieve it for the second expression:

a = b + c*d/3;
c = e + d*c/3;

Eliminating Superfluous Branches at Levels 2 and 3

The compiler combines consecutive or multiple branches into a single

branch.

Reusing Duplicate Code at Levels 2 and 3

Duplicate code can be identical code at the ends of two converging paths,

or it can be machine instructions immediately preceding a loop identical

to those ending the loop. In the first case, the compiler inserts code on

only one path and inserts a jump to that path in the other path. In the

second case, the compiler generates a branch to reuse the code generated

at the beginning of the loop.

Removing Unreachable Code at Levels 2 and 3

The compiler eliminates code that can never be executed. During the

second pass of the compiler, the optimization that removes the

unreachable code goes through the generated object code and finds areas

which can never be reached due to the control structures created in the

first pass.

Compiler Controls 4–75

• • • • • • • •

Reversing Branch Conditions at Levels 2 and 3

The compiler optimizes the evaluation of Boolean expressions, so only the

shorter of two mutually exclusive conditions is evaluated. For example, in

Figure 4-2, the if statement on the left has the execution order of its

branches reversed as shown on the right:

Original Source Text Effect of Optimization

if (!a) if (a)
{ {
 /* (block 1) */ /* (block 2) */
} }
else else
{ {
 /* (block 2) */ /* (block 1) */
} }

Figure 4-2: Reversing branch conditions

Optimizing Indeterminate Storage Operations at Level 3

The indeterminate storage operations involve pointer indirection. When

code assigns a pointer to refer to a variable, it creates an alias for that

variable. A variable referenced by a pointer has two aliases: the pointer

and the name of the variable itself. Use optimization level 3 only when

the compiler need not insert code to guard against aliasing.

The compiler performs this optimization as follows:

• When the code assigns an expression to a variable, the compiler

generates code to evaluate the expression and assign the result to

the variable. The result also remains in the register used in

evaluating the expression.

• When the code subsequently uses the same alias for the variable,

the compiler does not generate code to gain access to the variable;

instead, it inserts a reference to the register.

• The compiler refers to the same register each time the code uses the

alias. This use of registers improves run-time performance since

the processor can access the register faster than the variable stored

in memory.

Chapter 44–76
C
O
N
T
R
O
L
S

This optimization can introduce errors when the code uses multiply aliased

variables. The compiler does not insert code to check for intermediate

references to a variable using a different alias. If the code modifies a

variable using a different alias, the value in the variable is not necessarily

the same as the value in the register referenced by the compiler. For

example, in the following code under optimization level 3, y erroneously

acquires the value 1 instead of 2. If the optimization level is less than 3,

the compiler codes the assignment correctly:

int x,y;
int *a = &x; /* *a is aliasing x */
x = 1; /* put a value in x */
a = 2; / x now has value 2 */
y = x; /* TROUBLE at level 3! */

Use the volatile modifier to prevent the compiler from optimizing any

reference to a variable.

volatile

Compiler Controls 4–77

• • • • • • • •

overlay

Function

Locates register symbols to absolute addresses in the overlay register

segment.

Syntax

#pragma overlay(var1 =addr [+|– value],...)

where:

var1 is a valid symbol name.

addr is a valid absolute address.

value is a valid offset value.

Abbreviation

ov

Class

General control

Description

Use this pragma control to locate one or more register symbols to absolute

addresses, and mark them as overlayable. This control must follow the

declaration of the symbols. For example, the following pragma control

line locates both int1 and long1 to address C0H:

int int1;
long long1;
#pragma overlay(int1=0xC0,long1=0xC0)

You can also use the #define preprocessor directive to define the

absolute address. Then, you can use the macro symbol as a base address

and the + and - signs to indicate the offset. For example, assume the

previous example, but with a macro definition:

#define WIN_BASE 0xC0
int int1;
long long1;
#pragma overlay(int1=WIN_BASE,long1=WIN_BASE)

Chapter 44–78
C
O
N
T
R
O
L
S

This example has the same effect as the previous example.

If you are handling the WSR yourself, you can use this control to arrange

your data in a vertical window (you should not use the windows control).

Since the specified symbols are marked overlayable, the linker will not

issue warnings about more than one of these symbols overlapping. You

must still allocate space under a different name for the windowed data,

and locate it with the locate control.

Only register variables can be located with this control.

locate
windows

Compiler Controls 4–79

• • • • • • • •

pagelength

Function

Specifies lines per page in the print file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enter the page length in the Page length (lines per
page) field in the Listing tab.

pagelength(lines)

where:

lines is the length of a page in lines. This value can range from

10 to 32767 .

Abbreviation

pl

Class

Primary control

Default

pagelength(60)

Description

Use this control to specify the maximum number of lines printed on a

page of the print file before a form feed is printed. The number of lines

on a page includes the page headings.

The noprint and notranslate controls suppress the print file, causing

the pagelength control to have no effect.

The pagelength control affects the entire print file. You can specify this

control in the compiler invocation or in a #pragma preprocessor directive

preceding the first line of data definition or executable source text. To

override a #pragma pagelength(lines) specified in the source text,

specify pagelength with a different lines in the compiler invocation.

Chapter 44–80
C
O
N
T
R
O
L
S

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pagewidth
print
tabwidth

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

title

translate

Compiler Controls 4–81

• • • • • • • •

pagewidth

Function

Specifies line width in the print file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enter the number of characters in the Page width
(characters per line) field in the Listing tab.

pagewidth(chars)

where:

chars is the line length in number of characters. This value can

range from 72 to 255 .

Abbreviation

pw

Class

Primary control

Default

pagewidth(120)

Description

Use this control to specify the maximum width, in characters, of lines in

the print file.

The noprint and notranslate controls suppress the print file, causing

the pagewidth control to have no effect.

The pagewidth control affects the entire print file. You can specify this

control in the compiler invocation or in a #pragma preprocessor directive

preceding the first line of data definition or executable source text. To

override a #pragma pagewidth(chars) specified in the source text,

specify pagewidth with a different chars in the compiler invocation.

Chapter 44–82
C
O
N
T
R
O
L
S

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pagelength

print

tabwidth

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

title

translate

Compiler Controls 4–83

• • • • • • • •

preprint

Function

Generates or suppresses a preprocessed source text listing file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Add the control to the Additional options field in the

Misc tab.

preprint[(filename)] | nopreprint

where:

filename is the filename, including a device name and directory name

or pathname, if necessary, in which the compiler places the

preprint information.

Abbreviation

pp | nopp

Class

Invocation control

Default

nopreprint

Description

Use this control to create a file containing the text of the source after

preprocessing. Use the default nopreprint control to suppress creation

of a preprint file. Preprocessing includes file inclusion, macro expansion,

and elimination of conditional code. The preprint file is the intermediate

source text after preprocessing and before compilation. This file is not

related to the print file created by the print control.

The preprint file is useful for observing the results of macro expansion,

conditional compilation, and the order of include files. If the preprint file

contains no errors, compiling the preprint file produces the same results as

compiling the primary source file and any files included in the compiler

invocation.

Chapter 44–84
C
O
N
T
R
O
L
S

By default, the compiler places the preprint file in the directory containing

the source file. If you do not provide a filename, the compiler composes

the default preprint filename from the source filename with the .i
extension. For example, the compiler creates a preprint file named

proto.i for the source file proto.c .

The preprint and nopreprint controls affect the entire source text.

You can specify one of these controls once in the compiler invocation.

Do not use these controls in a #pragma preprocessor directive.

translate

Compiler Controls 4–85

• • • • • • • •

print

Function

Generates or suppresses the print file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate a listing file (.lst)
check box in the Listing tab.

print[(filename)] | noprint

where:

filename is the file, including a device name and directory name or

pathname, if necessary, in which the compiler places the

print information.

Abbreviation

pr

Class

Primary control

Default

print

Description

Use this control to produce a text file of information about the source and

object code. The print file is not the same as the preprint file. By default,

the compiler places the print file in the directory containing the source file.

If you do not provide a filename, the compiler composes the default print

filename from the source filename with the .lst extension. For example,

the compiler creates a print file named main.lst for the source file

main.c .

The noprint control suppresses the print file. The compiler then displays

all diagnostic messages at the console. The noprint control overrides all

other listing controls. Only the notranslate control can override the

print control.

Chapter 44–86
C
O
N
T
R
O
L
S

The print and noprint controls affect the entire source text. You can

specify either of these controls in the compiler invocation or in a #pragma
preprocessor directive preceding the first line of data definition or

executable source text. To override a #pragma print or #pragma
noprint in the source text, specify the opposite control, noprint or

print , respectively, in the compiler invocation.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

code
cond
diagnostic
list
listexpand

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

listinclude

pagelength

pagewidth

symbols

tabwidth

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

title

translate

xref

Compiler Controls 4–87

• • • • • • • •

pts

Function

Loads a PTS vector with the address of a PTS control block.

Syntax

#pragma pts(struct–name =vector)

where:

struct–name is a name assigned to the control block.

vector is an interrupt vector number or an interrupt vector address.

Abbreviation

pt

Class

General control

Description

Use this pragma control, combined with the locate pragma control, to

load the peripheral transaction server (PTS) vectors with the addresses of

the PTS control blocks. You must use the locate pragma control to

locate the PTS control blocks in internal RAM space (1AH–1FFH) at an

address evenly divisible by eight (8). The xx _funcs.h header files,

where xx is one of the processor models (for example kc_funcs.h),

contain type definitions for the various PTS control blocks.

Example

The following example demonstrates the use of the pts pragma control.

#pragma model(kc)
#include <stdio.h>
#include _SFR_H_
#include _FUNCS_H_

STran_ptscb single;

#pragma locate(single=0x50) /* Address divisible by 8. */
#pragma pts(single=0) /* Assign control block to
 vector 0*/
#pragma interrupt(timer1=0) /* Interrupt vector zero. */

Chapter 44–88
C
O
N
T
R
O
L
S

int count;
const char src[] = ”This is a pts test.”;
 char dst[20];

main()
{

unsigned char save_wsr;

init_serio();
count = 0;
strcpy(dst, ”This should not be.”);
single.ptscount = 20;
single.ptscon.di = 1;
single.ptscon.si = 1;
single.ptscon.du = 1;
single.ptscon.su = 1;
single.ptscon.b_w = 1;
single.ptscon.mode = 4;
single.ptssrc = (void *) src;
single.ptsdst = (void *) dst;
save_wsr = wsr;
wsr = 1; /* Hwindow 1 */
ptssel = 1; /* Enable pts timer overflow. */
wsr = save_wsr;
int_mask = 0x01; /* Enable timer overflow. */
ioc1 = 0x04; /* Enable timer1 overflow interrupt. */
enable();
asm epts; /* Enable PTS. */
while (count < 1); /* Wait for timer ovfl interrupt. */
printf(”src = %s\n\r”, src);
printf(”dst = %s\n\r”, dst);
}

void timer1(void) /* Interrupt Handler for vector 0. */
{
 count ++;
}

interrupt
locate
pts_piha
pts_pihb

Compiler Controls 4–89

• • • • • • • •

pts_piha / pts_pihb

Function

Loads a piha/pihb PTS vector with the address of a PTS control block.

Syntax

#pragma pts_piha(struct–name =vector)
#pragma pts_pihb(struct–name =vector)

where:

struct–name is a name assigned to the control block.

vector is an interrupt vector number or an interrupt vector address.

Class

General control

Description

These controls are only available for those models which support the piha

and pihb interrupt blocks.

Use these pragma controls, combined with the locate pragma control, to

load the peripheral transaction server (PTS) vectors with the addresses of

the PTS control blocks. You must use the locate pragma control to

locate the PTS control blocks in internal RAM space (1AH–1FFH) at an

address evenly divisible by eight (8). The xx _funcs.h header files,

where xx is one of the processor models (for example kc_funcs.h),

contain type definitions for the various PTS control blocks.

interrupt
locate
pts

Chapter 44–90
C
O
N
T
R
O
L
S

reentrant

Function

Specifies attributes for called functions.

Syntax

reentrant[(function [,...])] | noreentrant

where:

function is the name of a function declared in the source text.

Abbreviation

re | nore

Class

General control

Default

reentrant

Description

Use this control to define functions in the module as reentrant. A

reentrant function can call itself or be called again through a call loop so

the function is activated more than once simultaneously. When the

reentrant control is in effect, the compiler generates additional code in

a function's prolog and epilog to save and restore registers modified by

the function. Since registers are preserved, functions can reuse the same

locations in register memory even if multiple instances of the functions are

active simultaneously.

Specifying the reentrant control for a function has the same effect as

defining the function with the reentrant keyword. The reentrant
keyword is available for compatibility with earlier versions of C196. The

default extend control must be in effect for the compiler to recognize the

reentrant keyword.

Compiler Controls 4–91

• • • • • • • •

You cannot reactivate a nonreentrant function if it is currently active. Use

the noreentrant control to define the functions in the module as

nonreentrant. In this case, the compiler allocates a set of registers for the

local variables of the function. After the function exits, the compiler then

reuses the same register space for another nonreentrant function

depending on the call graph. The compiler generates no additional code

to save and restore the registers modified by the function.

Specifying the noreentrant control for a function has the same effect as

defining the function with the nonreentrant keyword. The

nonreentrant keyword is available for compatibility with earlier versions

of C196. The extend control must be in effect for the compiler to

recognize the nonreentrant keyword.

The noobject and notranslate controls suppress the object file,

causing reentrant and noreentrant to have no effect. However, if

you specify code with noobject , the effects of reentrant and

noreentrant appear in the pseudo-assembly listing of the print file.

The reentrancy specification for a function must precede the function

declaration. The first declaration or definition of a function sets the

reentrancy specification for that function based on the [no]reentrant
control in effect for the function or based on the [non]reentrant
keyword, if specified for the function.

You can specify reentrant and noreentrant in the compiler

invocation and in #pragma preprocessor directives throughout the source

text. When specified without arguments, these controls affect all functions

in the subsequent source text and remain in effect until the compiler

encounters the opposite control (noreentrant or reentrant ,

respectively) or the end of the source text. Either of these controls

specified with an argument list affects only the functions in the argument

list.

extend
registers

Chapter 44–92
C
O
N
T
R
O
L
S

regconserve

Function

Disallows file-scope and automatic non-register variables in registers.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Allow allocation of block–scope
variables to registers and/or Allow allocation of
file–scope variables to registers check box in the

Optimization tab.

regconserve[(scope ,...)] | noregconserve

where:

scope can be bscope , indicating block-scope variables or fscope ,

indicating file-scope variables.

Abbreviation

rc | norc

Class

Primary control

Default

noregconserve

Description

Use this control to specify whether the compiler can allocate file-scope

and automatic (block-scope) non-register variables to registers. If unused

register memory remains after all explicit register variables have been

allocated, the compiler can put frequently used non-register variables in

the unused register locations.

Compiler Controls 4–93

• • • • • • • •

You can prevent the compiler from using the remaining register memory

for file-scope, block-scope, or all non-register variables. Specifying

regconserve without arguments keeps all non-register variables out of

register memory. The bscope argument restricts block-scope

non-register variables to the stack and the fscope argument restricts

file-scope non-register variables to the data segment. Table 4-2 lists

where non-register variables can be allocated for each variation of

[no]regconserve .

The regconserve and noregconserve controls affect the entire object

module. You can specify either of these controls in the compiler

invocation or in a #pragma preprocessor directive preceding the first line

of data definition or executable source text. To override a #pragma
regconserve or #pragma noregconserve specified in the source text,

specify a different [no]regconserve(scope) control in the compiler

invocation.

Control File–scope
Variables

Block–scope
Variables

regconserve data segment stack

regconserve(bscope, fscope) data segment stack

regconserve(bscope) data segment or
registers

stack

regconserve(fscope) data segment stack or
registers

noregconserve data segment or
registers

stack or
registers

Table 4-2: Allocation of non-register variables to registers

The registers(all) control conflicts with the regconserve control.

The use of these two controls results in a fatal error because the compiler

cannot both conserve registers and allocate all program variables to

registers. In conserving registers, the compiler does not allocate

non-register variables to registers.

registers

Chapter 44–94
C
O
N
T
R
O
L
S

registers

Function

Allocates register space for variables.

Syntax

Select the EDE | C Compiler Options | Options file ... menu

item. Enter the maximum number of bytes for registers in the Module
limit for register memory field in the Object tab.

registers(num)

where:

num is a number from 0 to 220 or the keyword all .

Abbreviation

rg

Class

Primary control

Default

registers(220)

Description

Use this control to limit the number of bytes of register memory the

module can use. 80C196 microcontrollers have 256 bytes of register space

except for the 80C196KC that has an additional 256 bytes of registers, and

the 80C196KR and 80C196NT/NP that have an additional 512 bytes of

registers.

Compiler Controls 4–95

• • • • • • • •

The argument to the registers control can be a number from 0 to 220
or the all keyword. For example, registers(145) limits the module

being compiled to 145 bytes of register memory for register variables

allocated in the register segment and the overlayable register segment. If

you specify registers(all) , the compiler uses the on-chip registers

only and allocates all variables in the module to register memory. The

registers(all) control is not the same as the registers(220)
control. The predefined macro _REGISTERS_ has the value specified for

the registers control.

The C196 compiler does not use the additional register space of the

80C196KC or the 80C196KR even if you compile with the

registers(all) control. The compiler only allows a module to use up

to 220 bytes of register space. So in order to use the additional register

space, you must have multiple modules and your modules must have

enough register variables to occupy the additional register space. The

compiler then accesses the additional register space through the use of

vertical windowing.

See Section 6.4.3 for additional information on vertical windows.

If you declare more register variables than available registers, the compiler

issues a diagnostic message, as follows:

error if too many file-scope registers are requested or if

registers(all) is specified and the number of program

variables is greater than the size of the register file.

warning if too many block-scope registers are requested.

This error or warning condition can occur, for example, if you specify

registers(all) and your module contains more than 220 register

variables.

The registers control affects the entire object module. You can specify

this control in the compiler invocation or in a #pragma preprocessor

directive preceding the first line of data definition or executable source

text. To override a #pragma registers(num) specified in the source

text, specify registers with a different argument in the compiler

invocation.

Chapter 44–96
C
O
N
T
R
O
L
S

The overlay segment the compiler generates for the module is

word-aligned (at least). The compiler adds one more byte to the size of

the overlay segment if it has an odd number of bytes. If you specified a

limit to the number of registers the module can use, the compiler can use

one more byte than what you have specified because of the additional

byte.

The registers(all) control conflicts with the regconserve control.

The use of these two controls results in a fatal error because the compiler

cannot both conserve registers and allocate all program variables to

registers. In conserving registers, the compiler does not allocate

non-register variables to registers.

reentrant
regconserve
windows

Compiler Controls 4–97

• • • • • • • •

relocatabletemps

Function

Tells the compiler to produce external references to temporary register

symbols.

Syntax

relocatabletemps | norelocatabletemps

Abbreviation

rt | nort

Class

Primary control

Default

norelocatabletemps

Description

Use this control to tell the compiler to produce external references to

temporary register symbols, instead of absolute addresses.

Use the relocatabletemps control/pragma to allow the placing of the

temporary registers at a non-standard location. References to these

registers will then be resolved by the linker.

The size of your object file can increase significantly when you use the

control, since there are a great many references to the temporary registers

in the generated code. Once resolved b the linker, though, your

executable file should be the same size as it would be without this control.

If you use the tmpreg control in conjunction with the

relocatabletemps control, only the names of the temporary registers

and frame pointer are changed, and the names corresponding to the

tmpreg argument will be generated as external references for resolution

by the linker.

Chapter 44–98
C
O
N
T
R
O
L
S

The argument to the tmpreg control must still give an address that is a

multiple of four, since the temporary registers must be longword aligned,

and the compiler will report an error if this requirement is not met in the

tmpreg argument. However, when the relocatabletemps control is

used, the argument to the tmpreg control does not have to be accurate, as

it otherwise would.

tmpreg

Compiler Controls 4–99

• • • • • • • •

searchinclude

Function

Specifies or suppresses search paths for include files.

Syntax

Select the EDE | Directories... menu item. Add one or more

directory paths to the Include Files Path field.

searchinclude(pathprefix [,...]) | nosearchinclude

where:

pathprefix is a string of characters that the compiler prepends to an

include file's filename. This string must include any special

characters that the operating system expects in a path prefix.

Abbreviation

si | nosi

Class

General control

Default

nosearchinclude

Description

Use this control to specify a list of possible path prefixes for include files.

Each pathprefix argument is a string that, when concatenated to a

filename, specifies the relative or absolute path of a file (including a

device name and directory name, if necessary). The compiler tries each

prefix in the order in which they are specified, until a legal filename is

found. If a legal filename is not found, the compiler issues an error.

An include file is a source text file specified with the include control in

the compiler invocation or with the #include preprocessor directive in

the source text. The contents of each include file are inserted into the

source text during preprocessing.

Chapter 44–100
C
O
N
T
R
O
L
S

The order in which the compiler uses the searchinclude and default

path prefixes depends on how the include file is specified. When

searching for a file specified with the include(filename) control or

with the #include ”filename” preprocessor directive, the compiler

tests the prefixes in the following order:

1. The source directory.

2. The directories specified by the searchinclude list.

3. The directories in the C196INC environment variable, if defined.

4. The include directory, one directory higher than the directory containing

the c196 binary. For example, c196 is installed in

/usr/local/c196/bin , then the directory searched for include files is

/usr/local/c196/include .

5. The current directory (no prefix).

When searching for a file specified with the #include < filename >
preprocessor directive, the compiler tests the prefixes in the following

order:

1. The directories specified by the searchinclude list.

2. The directory in the C196INC environment variable, if defined.

3. The include directory, one directory higher than the directory containing

the c196 binary.

4. The source directory.

5. The current directory (no prefix).

The searchinclude and nosearchinclude controls affect only the

subsequent source text and remain in effect until the compiler encounters

a contradictory control. Specifying the searchinclude control more

than once adds to the search path prefix list. Specifying the

nosearchinclude control after the searchinclude control suppresses

the search path prefix list until the next occurrence of searchinclude .

You can specify these controls in the compiler invocation and in #pragma
preprocessor directives throughout the source text.

Compiler Controls 4–101

• • • • • • • •

Example

This example demonstrates the paths searched by the compiler when a

C196INC environment variable is defined and the searchinclude
control is specified.

The C196INC environment variable is defined as follows:

PC:

set C196INC=\proj001;\proj001\headers

UNIX:

setenv C196INC /proj001:/proj001/headers

The searchinclude control is specified in the compiler invocation as

follows:

searchinclude (/proj001/test_h,/generic/stubs)

The source text contains the following preprocessor directive:

#include ”t_locate.h”

The source file is in the directory \proj001\src for PC (/proj001/src
for UNIX). The compiler is invoked in the root directory and executed

from /usr/local/c196/bin . The compiler searches for filenames in the

following order (UNIX notation is used):

1. The source directory: /proj001/src/t_locate.h

2. From the searchinclude control: /proj001/test_h/t_locate.h

3. From the searchinclude control: /generic/stubs/t_locate.h

4. From C196INC : /proj001/t_locate.h

5. From C196INC : /proj001/headers/t_locate.h

6. From the relative path: /usr/local/c196/include/t_locate.h

7. The current directory: /t_locate.h

include

Chapter 44–102
C
O
N
T
R
O
L
S

signedchar

Function

Sign-extends or zero-extends promoted chars.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Treat ’char’ variables as
unsigned check box in the Language tab.

signedchar | nosignedchar

Abbreviation

sc | nosc

Class

Primary control

Default

signedchar

Description

Use this control to specify that objects declared to be the char data type

are treated as if declared to be the signed char data type. The compiler

sign-extends these objects when they are converted to a data type that

occupies more memory than the char data type.

Use the nosignedchar control to specify that objects declared as the

char data type are treated as if they were declared as the unsigned
char data type. The compiler zero-extends these objects when they are

converted to a data type that occupies more memory than the char data

type.

The signedchar and nosignedchar controls do not affect the

interpretation of objects specifically declared as either signed char or

unsigned char data types.

The predefined macro _SIGNEDCHAR_ has the value 1 if signedchar is

specified and 0 if nosignedchar is specified.

Compiler Controls 4–103

• • • • • • • •

If notranslate or noobject is in effect, the compiler does not generate

an object module, so signedchar and nosignedchar have no effect.

However, specifying signedchar or nosignedchar with noobject and

code can still affect the pseudo-assembly listing in the print file.

The signedchar and nosignedchar controls affect the entire object

module. You can specify either of these controls in the compiler

invocation or in a #pragma preprocessor directive preceding the first line

of data definition or executable source text. To override a #pragma
signedchar or #pragma nosignedchar preprocessor directive, specify

the opposite control (nosignedchar or signedchar , respectively) in the

compiler invocation.

object
translate

Chapter 44–104
C
O
N
T
R
O
L
S

speed

Function

Choose between faster code and less code size

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Choose a Speed level in the Optimization tab.

speed(level)

where:

level is the value 0, 1, or 2. The values correspond to no fast

code, faster code and fastest code respectively.

Abbreviation

sp

Class

Primary control

Default

speed(0)

Description

Use this control to tell the compiler to choose between faster code and

less code size.

Compiler Controls 4–105

• • • • • • • •

symbols

Function

Generates or suppresses identifier list in print file.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Include identifier list check

box in the Listing tab.

symbols | nosymbols

Abbreviation

sb | nosb

Class

Primary control

Default

nosymbols

Description

Use this control to include in the print file a table of all identifiers and

their attributes from the source text. Use the default nosymbols control

to suppress the table.

The xref control causes the compiler to generate a cross-referenced

symbol table even if the nosymbols control is specified. If noprint or

notranslate is in effect, the compiler does not generate a print file and

symbols has no effect.

The symbols and nosymbols controls affect the entire object module.

You can specify either of these controls in the compiler invocation or in a

#pragma preprocessor directive preceding the first line of data definition

or executable source text. To override a #pragma symbols or #pragma
nosymbols specified in the source text, specify the opposite control

(nosymbols or symbols , respectively) in the compiler invocation.

print , translate , xref

Chapter 44–106
C
O
N
T
R
O
L
S

tabwidth

Function

Specifies the number of characters per tab stop in the print file.

Syntax

tabwidth(width)

where:

width is a value from 1 to 80 . This value is the number of

characters from tab stop to tab stop in the print file.

Abbreviation

tw

Class

Primary control

Default

tabwidth(4)

Description

Use this control to specify the number of characters between tab stops in

the print file.

The noprint and notranslate controls suppress the print file, causing

the tabwidth control to have no effect.

The tabwidth control affects the entire source text. You can specify this

control in the compiler invocation or in a #pragma preprocessor directive

preceding the first line of data definition or executable source text. To

override a #pragma tabwidth(width) specified in the source text,

specify tabwidth with a different width in the compiler invocation.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pagelength

pagewidth

print

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

title

translate

Compiler Controls 4–107

• • • • • • • •

title

Function

Specifies the print file title.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enter the title in the Title of listing file field in the

Listing tab.

title(” string ”)

where:

string is the print file title.

Abbreviation

tt

Class

Primary control

Default

title(” primary_source_filename ”)

Description

Use this control to specify the print file title. A title can be up to 60

characters long. To specify no title, use at least one blank space character

in the title string. Do not use the null string.

The compiler uses the primary source filename, without the filename

extension as the title. For example, if myprog.c is the primary source file,

myprog is the print file title.

The compiler places the title at the top of each page of the print file. A

narrow page width can cause the compiler to truncate a long title.

The noprint and notranslate controls suppress the print file, causing

the title control to have no effect.

Chapter 44–108
C
O
N
T
R
O
L
S

The title control affects the entire print file. You can specify this control

in the compiler invocation or in a #pragma preprocessor directive

preceding the first line of data definition or executable source text. To

override a #pragma title(” string ”) specified in the source text,

specify title with a different string in the compiler invocation.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pagelength

pagewidth

print

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

tabwidth

translate

Compiler Controls 4–109

• • • • • • • •

tmpreg

Function

Locates the temporary registers.

Syntax

tmpreg(addr)

where:

addr is a valid absolute address in decimal or hexadecimal format.

Abbreviation

tr

Class

Locating control

Default

tmpreg(1CH)

Description

Use this control to locate the temporary registers, namely TMPREG0, at a

different address.

See Chapter 6 for more information on TMPREG0 and see Chapter 10 for

more information on the ?FRAME01 variable.

By default, the temporary registers are located at address 1CH. To relocate

these registers, specify an address in the addr parameter using decimal or

hexadecimal format. For example, the address 44 in decimal is equivalent

to 2CH or 0x2C in hexadecimal format. The address you specify must be

on a double-word boundary.

If you specify this control, TMPREG0 appears as TMPRxx and ?FRAME01
appears as ?FRAMExx in the listing file. The placeholder xx stands for the

hexadecimal address where the registers are currently located. For

example, if you locate the temporary registers to 2CH, TMPREG0 appears as

TMPR2C and ?FRAME01 appears as ?FRAME2C.

Chapter 44–110
C
O
N
T
R
O
L
S

To correctly use this feature, you must link to your application, using

RL196, a module containing a declaration that reserves eight bytes of

memory space (sixteen bytes for model(nt)) at the address specified by

addr . You can create this module with ASM196. The compiler uses these

eight bytes as the new temporary registers. Name the variable TMPRxx
where xx is the hexadecimal address specified by addr . For example, if

you want to locate the temporary registers to 2CH, the variable name must

be TMPR2C. See the example section for instructions on how to create this

module.

This control is particularly useful for multi-tasking applications. The

control allows each task to have its own set of temporary registers.

Examples

As mentioned in the discussion, you must reserve an eight-byte (or

sixteen-byte) memory space to be used as the new temporary registers, so

that no other module attempts to use these eight bytes. The following

example shows how to declare this variable in assembly language. This

example also explains how to assemble, compile, and link the module to

your application.

Create an assembly module called tmpreg.a96 , for this example, with the

declaration shown below. This example locates the temporary registers at

location 2CH and allocates a relocatable register for the frame pointer.

public TMPR2C
rseg at 2CH
TMPR2C equ $
dsl 2

rseg
?FRAME2C equ $
dsw 1
end

Assemble this module. See the 80C196 Assembler User's Guide, for the

ASM196 assembly invocation syntax. Compile your C196 programs with

the tmpreg(2CH) or tmpreg(0x2C) control. This control tells the

compiler that the temporary registers are now located at 2CH. During the

link phase, link the ASM196 object module with your C196 object

modules, as follows:

rl196 cprg1.obj, cstart.obj, cprg2.obj, tmpreg.obj, c96.lib

Compiler Controls 4–111

• • • • • • • •

TMPREG0 can be pulled in by using MUL, DIVL etc. If that is not what you

want, use the following example:

TMPR2C equ $
TMPREG0 equ $

?FRAME01
extratmp control
locate control
relocatabletemps control
TMPREG0

Chapter 44–112
C
O
N
T
R
O
L
S

translate

Function

Compiles or suppresses compilation after preprocessing.

Syntax

translate | notranslate

Abbreviation

tl | notl

Class

Invocation control

Default

translate

Description

Use this control to cause compilation to continue after preprocessing. Use

the notranslate control to cause compilation to cease after

preprocessing. Translation includes parsing the input, checking for errors,

generating code, and producing an object module.

The notranslate control suppresses the print and object files, causing

all object controls and all listing controls, except for preprint , to have no

effect. If notranslate is in effect, preprocessing diagnostic messages

appear at the console.

The translate and notranslate controls affect the entire compilation.

You can specify either of these controls in the compiler invocation.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

object

preprint

Compiler Controls 4–113

• • • • • • • •

type

Function

Generates or suppresses type information in the object module.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Generate type information check

box in the Debug tab.

type | notype

Abbreviation

ty | noty

Class

Primary control

Default

type

Description

Use this control to include type information for public and external

symbols in the object module. Type information can be useful to other

tools in the application development process. A linker uses type

information to perform type checking across modules. A debugger or an

emulator uses type information to display symbols according to their

attributes.

To include all possible information for symbolic debugging, use type with

the debug control, as described in the debug entry in this chapter.

Use the notype control to suppress type information, reducing the size of

the object module.

The noobject and notranslate controls suppress the object file,

causing type and notype to have no effect.

Chapter 44–114
C
O
N
T
R
O
L
S

The symbols and xref controls are the print file counterparts to the

type control. The symbols control puts a listing of all identifiers and

their types into the print file. The xref control adds line-number

cross-reference information to the symbol table listing.

The type and notype controls affect the entire object module. You can

specify either of these controls in the compiler invocation or in a #pragma
preprocessor directive preceding the first line of data definition or

executable source text. To override a #pragma type or #pragma
notype specified in the source text, specify the opposite control (notype
or type , respectively) in the compiler invocation.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

debug

object

symbols

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

translate

xref

Compiler Controls 4–115

• • • • • • • •

varparams

Function

Specifies variable-parameter list calling convention.

Syntax

varparams[(function [,...])]

where:

function is the name of a function defined in the source text.

Abbreviation

vp

Class

General control

Default

varparams

Description

Use this control to cause the specified functions to use the variable

parameter list (VPL) calling convention. The VPL calling convention

provides more flexibility than the FPL calling convention. See the

fixedparams control for more information on the FPL calling convention.

Use the VPL calling convention for functions that take a variable number

of parameters.

A function's calling convention dictates the sequence of instructions that

the compiler generates to manipulate the stack and registers during a call

to the function. Code generated for the VPL calling convention performs

the following sequence of operations:

1. The calling function pushes the arguments onto the stack with the

rightmost argument pushed first.

2. The calling function transfers control to the called function.

3. The called function executes.

Chapter 44–116
C
O
N
T
R
O
L
S

4. The called function returns control to the calling function.

5. The calling function removes the arguments from the stack.

The calling convention specification must precede the function declaration.

The first declaration or definition of a function sets the calling convention

for that function based on the fixedparams or varparams control in

effect for the function, or based on the alien keyword or the comma and

ellipsis (,...), if specified for the function. The comma and ellipsis

indicate that the number of parameters to the function has no limit. In this

case, varparams is in effect.

The notranslate and noobject controls suppress the object file,

causing varparams to have no effect. However, if you specify the code
control with the noobject control, the effect of varparams does appear

in the pseudo-assembly code listing.

You can specify varparams in the compiler invocation and in #pragma
preprocessor directives throughout the source text. When specified

without arguments, this control affects all functions in the subsequent

source text and remains in effect until the compiler encounters the

opposite control (fixedparams) or the end of the source text. The

varparams control specified with an argument list affects only the

functions in the argument list.

See the fixedparams control for more information on how the FPL

calling convention differs from the VPL calling convention.

More than one explicit calling convention specification for any one

function causes a warning. A warning occurs if a function in the source

text is explicitly declared with a variable parameter list and is named in the

function list for the fixedparams control.

#pragma fixedparams(x)

int x (int i,...)
{
}

In this example, varparams is in effect.

Compiler Controls 4–117

• • • • • • • •

Examples

1. The following control in the compiler invocation specifies the default

variable parameter list convention (VPL) for all functions in the source text

except the plm_fcn function:

fixedparams(plm_fcn)

2. The following #pragma preprocessor directive has the same effect as the

control in the above example:

#pragma fixedparams(plm_fcn)

3. The following combination of controls in the compiler invocation specifies

the fixed parameter list convention (FPL) for all functions in the source

text except the native function:

fixedparams varparams(native)

4. The following #pragma preprocessor directives have the same effect as

the controls in the above example:

#pragma fixedparams
#pragma varparams(native)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

code

extend

fixedparams

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

object

translate

Chapter 44–118
C
O
N
T
R
O
L
S

warning_true_false

Function

Enables the 'comparison always returns TRUE' and 'comparison always

returns FALSE' warnings.

Syntax

warning_true_false | nowarning_true_false

Abbreviation

wt | nowt

Class

Primary control

Default

warning_true_false

Description

Use this control to generate the 'comparison always returns TRUE' or the

'comparison always returns FALSE' warnings. These warnings appear for

instance when comparing two constants or when comparing a negative

number with an unsigned integer.

Use the nowarning_true_false control to suppress these warnings.

Compiler Controls 4–119

• • • • • • • •

win1_32, win1_64

Function

Combination of a pragma locate and pragma overlay . Only if WSR1 is

present.

Syntax

#pragma win1_32(var1 =addr , regvar1)
#pragma win1_64(var1 =addr , regvar1)

where:

var1 is a valid symbol name.

addr is a valid absolute address.

regvar1 is a valid register symbol name.

Abbreviation

v3 / v6

Class

General control

Description

Use this pragma control to locate one or more register symbols to absolute

addresses, and mark them as overlayable. Use this control only if WSR1 is

present in the selected processor, otherwise use the win32 , win64 or

win128 control. The win1_32 and win1_64 control must follow the

declaration of the symbols. For example, the following pragma control

line locates var1 to address 220H and regvar1 at address 060H:

int var1;
register int regvar1;
#pragma win1_64(var1=0x220,regvar1)

locate
overlay
windows

Chapter 44–120
C
O
N
T
R
O
L
S

win32, win64, win128

Function

Combination of a pragma locate and pragma overlay .

Syntax

#pragma win32(var1 =addr , regvar1)
#pragma win64(var1 =addr , regvar1)
#pragma win128(var1 =addr , regvar1)

where:

var1 is a valid symbol name.

addr is a valid absolute address.

regvar1 is a valid register symbol name.

Abbreviation

w3 / w6 / w1

Class

General control

Description

Use this pragma control to locate one or more register symbols to absolute

addresses, and mark them as overlayable. This control must follow the

declaration of the symbols. For example, the following pragma control

line locates var1 to address 220H and regvar1 at address 0E0H:

int var1;
register int regvar1;
#pragma win64(var1=0x220,regvar1)

locate
overlay
windows

Compiler Controls 4–121

• • • • • • • •

windowram

Function

Specifies the area(s) of memory from which to allocate windowed

variables.

Syntax

Select the EDE | C Compiler Options | Options file ... menu

item. Enter one or more memory areas in the Specify the memory
area(s) of windowed variables for this module field in the

Code tab.

windowram(startaddr – endaddr [, ...])

where:

startaddr is a valid absolute address.

endaddr is a valid absolute address.

Abbreviation

wr

Class

General control

Description

Use this control to specify the area(s) of memory from which to allocate

windowed variables. Any number of ranges can be specified within the

parentheses, and the windowram control and/or pragma may be specified

any number of times. The ranges specified must not overlap, and must be

within the range of mappable memory for the selected model.

When the compiler allocates an object from these ranges, it first tries to

select an area from the beginning of a properly aligned range. If it cannot

find a properly aligned range, it will take an area from within the first

range with enough space remaining.

Example:

#pragma windowram(0x100–0x17F)

Chapter 44–122
C
O
N
T
R
O
L
S

See Section 6.4.3 for more information on vertical windows and the use of

the special keywords _reg , _win and _win1 .

hold
model

Compiler Controls 4–123

• • • • • • • •

windows

Function

Specifies that the whole application uses vertical windows.

Syntax

windows[([no]hold)] | nowindows

Abbreviation

wd | nowd

Class

Primary control

Default

nowindows

Description

Use this control to use the additional registers of the processors that

support vertical windows through the vertical windowing feature of these

microcontrollers. This control causes the compiler to generate instructions

to save and set the wsr register in the prolog and restore the wsr register

in the epilog of all functions, except for static and public functions

which have no local register variables and no calls to other functions. If

you are using the HOLD/HOLDA protocol along with vertical windowing,

specify the hold parameter. This parameter causes the compiler to

generate additional code to preserve the HOLDEN bit of the Window

Select Register (WSR). Specifying windows without any parameter is

equivalent to specifying windows(hold) . If you are not using the

HOLD/HOLDA protocol, specify the nohold parameter to reduce the

amount of overhead code.

The WSR management code allows access to local and static register

variables located in the mapped area of the register file and above (from

80H or 0C0H or 0E0H depending on the window size). Public register

variables allocated in the register segment are restricted to the registers

below the mapped area (below 80H or 0C0H or 0E0H depending on the

window size). This allocation scheme allows access to these variables

without swapping the wsr .

Chapter 44–124
C
O
N
T
R
O
L
S

See Section 6.4.3 for more information on vertical windows.

If you specify the hold parameter, the compiler produces the following

WSR management code in the prolog:

ldbze Tmp0,WSR
push Tmp0
andb WSR,#80H /* to retain hlden in wsr */
orb WSR,?WSR

Otherwise, with the nohold parameter, the following code is produced:

ldbze Tmp0,WSR
push Tmp0
ldb WSR,?WSR

The compiler produces the following code in the epilog, with or without

the hold parameter:

ldb WSR,[SP]
pop R0

Your application must consist of several modules to take advantage of the

vertical windowing feature. You can then determine the register

windowing requirement by adding the sum of the overlayable register

bytes from the end of every print file.

See Section 6.4.2 for more information on how to calculate the number of

register bytes needed by a module.

If your application only consists of one module, your application does not

use the extra register space since a module at most only uses 220 register

bytes.

The windows control can only be used with processors that support

vertical windows. Otherwise the compiler generates a fatal error.

model
reentrant
regconserve
registers
Vertical Windowing in Section 6.4.3

Compiler Controls 4–125

• • • • • • • •

wordalign

Function

Specifies that no longword alignment be done.

Syntax

wordalign | nowordalign

Abbreviation

wa | nowa

Class

Primary control

Default

nowordalign

Description

Use this control to prevent the compiler from aligning objects to longword

boundaries. This control causes the compiler to place all objects requiring

word-alignment or longword-alignment on word boundaries, but not

necessarily on longword boundaries. Using this control will allocate your

data in the same order that it was allocated by C196 version 2.x.

oldobject

Chapter 44–126
C
O
N
T
R
O
L
S

xref

Function

Specifies symbol table cross-reference in listing.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Include identifier
cross–reference check box in the Listing tab.

xref | noxref

Abbreviation

xr | noxr

Class

Primary control

Default

noxref

Description

Use this control to add cross-reference information to the symbol table

listing in the print file. Use the default noxref control to suppress the

cross-reference information.

The print file lists the cross-reference line numbers on the far right with

the data or function type under the ATTRIBUTES column in the symbol

table listing. The cross-reference line numbers refer to the line numbers

in the source text listing in the print file. An asterisk (*) indicates the line

where the object or function is declared.

Specifying noprint or notranslate suppresses the print file, causing

xref to have no effect. If the print file is produced, specifying xref
generates a cross-referenced symbol table even if nosymbols is specified.

Compiler Controls 4–127

• • • • • • • •

The xref and noxref controls affect the entire source text. You can

specify either of these controls in the compiler invocation or in a #pragma
preprocessor directive preceding the first line of data definition or

executable source text. To override a #pragma xref or #pragma
noxref specified in the source text, specify the opposite control (noxref
or xref , respectively) in the compiler invocation.

print
symbols
translate

Chapter 44–128
C
O
N
T
R
O
L
S

zero

Function

Specifies whether the compiler zeroes uninitialized variables in relocatable

data segments.

Syntax

Select the EDE | C Compiler Options | Project Options...
menu item. Enable or disable the Clear unititialized RAM
variables in relocatable segments check box in the Code tab.

zero | nozero

Abbreviation

zr | nozr

Class

Primary control

Default

zero

Description

Use the zero control to allow the compiler to zero uninitialized variables

in relocatable segments. The default setting matches the setting of the

init control. This control is only valid for the (default) OMF version 3.2.

At startup (reset), library module cstart processes the initialization table:

it copies the initial constant data to the corresponding variables, and

zeroes the uninitialized variables.

Use the nozero control/pragma to prevent the generation of zeroing

entries in the initialization tables for relocatable segments (ordinary

variables).

noinit forces nozero .

abszero
init

TASKING
Quality Development Tools Worldwide

5

STARTUP CODE
C

H
A

P
T

E
R

Chapter 55–2
S

T
A

R
T

U
P

 C
O

D
E

5

C
H

A
P

T
E

R

Startup Code 5–3

• • • • • • • •

This chapter describes the startup files (cstart.a96 and _main.c) which

are supplied with your C196 compiler.

5.1 CONTENTS OF CSTART.A96

When you link your program, you need to include the file cstart.obj as

one of your input files. For each model the corresponding cstart.obj is

provided in each subdirectory of the lib directory. If you like, you can

customize the source file, cstart.a96 (nt_start.196 for model NT,

np_start.196 for model NP), which is provided in the src subdirectory

of the lib directory. It looks something like this:

STARTUP MODULE CMAIN

RSEG
SP EQU 018H:WORD

CSEG AT 2080H

EXTRN _main:NULL

cstart:
PUBLIC cstart
LD SP,#STACK

LJMP _main ; _main calls the others

_exit:
PUBLIC _exit
BR _exit
END

The C language treats each routine as an ordinary function, including

main() . For that reason, you can use the startup code as the main module

for your C196 modules. When you link the cstart.obj file with your

modules, the linker creates an absolute code segment, which becomes the

main module segment, containing a long jump to the _main (see 5.2)

routine.

You can tailor the cstart.a96 file according to your specific needs and

the environment under which your application executes. For example, if

you do not need the initializations done in _main() , you can substitute

the long jump to _main with a long jump to main() . This will directly

call your main() routine.

Chapter 55–4
S

T
A

R
T

U
P

 C
O

D
E

The models NT and NP have their own specific startup files, called

nt_start.196 and np_start.a96 respectively. The comments in these

files explain how to create the cstart.obj file.

5.2 CONTENTS OF _MAIN.C

The module _main.c contains the routine _main() . This routine is used

to initialize different variables before their first use. The _main.obj is

included in both c96.lib and c96fp.lib . The module _main.c is

provided in the src subdirectory of the lib directory.

Depending on your application, the routine _main() calls the following

subroutines:

init_serio()

Initialization routine to initialize the serial port. This routine is only

necessary if you use putch() to write to the serial port or getch() to

read from the serial port. If you use any third party vendors which include

their own putch() which do not use the serial port, you will not need

this call.

_imain()

Initialization routine for initialization of global variables. This routine is not

needed if you do not have any initialized global variables.

main()

The main() routine from your application.

exit()

The ANSI-C compatible exit() routine. This includes the support of

atexit() and closes all open streams.

__exit()

This routine is the exit() routine without support of atexit() and

without stream support.

If you cannot use the default omf(2) control, it might be necessary for

you to also call some of the following subroutines. Note that you should

also recompile several library routines for omf(1) .

Startup Code 5–5

• • • • • • • •

fpinit()

Initialization routine for floating point operations. The call is only needed

if you use floating point calculations. This call is only needed in the

_main() routine which is provided in c96fp.lib .

init_stdio()

Initialization routine to set up the streams 'stdin', 'stdout' and 'stderr'.

These streams are used for the printf() routines and the scanf()
routines.

init_atexit()

Initialization routine to set up the atexit() routine. This is only

necessary if you use the ANSI-C compatible exit() routine.

init_malloc()

Initialization routine for dynamic memory allocation. This call is only

needed if you use dynamic memory allocation.

The _main() routine can be tailored to your specific needs by adding

#define statements. The _main() routine as is supplied within the

libraries contains the minimum required calls to execute an application. It

only calls _imain() , main() and __exit() .

5.3 WRITING YOUR OWN STARTUP CODE

You can write your own startup code using the ASM196 assembly

language. You must declare your module to be the main module by using

the cmain attribute. Load the stack pointer with the address of the stack.

Initialize any other registers you need, call any initialization routines you

need, then do a long call (lcall) to your main C function. Your ASM196

main module must contain at least the following lines:

Chapter 55–6
S

T
A

R
T

U
P

 C
O

D
E

cstart module cmain

sp equ 18H:word

cseg at 2080H
extrn main

ld sp,#stack
lcall main
rst ; reset the processor if program returns
 ; to cstart
end

Assemble the file and then link it with your C object files. Note that this

example startup code does not use the _main() routine.

5.4 WRITING YOUR OWN _MAIN ROUTINE

You can also write your own _main() routine. This routine must contain

at least a call to main() and a call to __exit :

extern void main(void)
extern void __exit(int)

void _main(void)
{
 main();

 __exit(0);
}

Compile this file and either link it with your C object files, or use the

lib196 tool to replace the _main.obj in the library files with your own

_main.obj .

TASKING
Quality Development Tools Worldwide

6

PROCESSOR
REGISTERS

C
H

A
P

T
E

R

Chapter 66–2
R
E
G
IS
T
E
R
S

6

C
H

A
P

T
E

R

Processor Registers 6–3

• • • • • • • •

The 80C196 family of microcontrollers contains special function registers

(SFRs) for processor hardware manipulation and a register file for faster

operand access. This chapter describes the variables declared in the

xx _sfrs.h header files (where xx represents the processor as specified

with the model(xx) control) for using the SFRs and explains how to use

the C196 compiler for efficient register allocation.

6.1 REGISTER MEMORY

Figure 6-1 shows the register memory layout of the 80C196KB processor.

This layout is the same as the register memory layout of the 8096-90 and

8096BH. Not shown in the figure is the additional register space of the

80C196KC, the 80C196KR, and the 80C196NT microcontrollers. The

80C196KC, 80C196KR, and 80C196NT have 256 bytes of additional

registers from 100H through 1FFH or higher. The C196 compiler tries to

allocate variables to the register memory as much as possible, if the

registers(all) control is in effect, so that instructions can be more

compact and can execute faster. Some of these locations have dedicated

or default uses, as follows

• Special function registers (SFRs) are defined in xx _sfrs.obj . For

an explanation of the structure and use of the SFRs, see the 80C196
Assembler User's Guide or the Embedded Microcrontrollers and
Processors Handbook, listed in Related Publications.

• The stack pointer (SP), in locations 18H and 19H, indicates the

address of the top of the stack.

• Temporary registers, in locations 1CH through 23H (or 2BH), are

used for intermediate calculations and for returning the value of a

typed function. The compiler treats this section of memory as the

TMPREG0 (and TMPREG8, if needed) register variable. You can use

the tmpreg control to change the location of the temporary

registers.

See Chapter 4 for more information about the tmpreg control.

Chapter 66–4
R
E
G
IS
T
E
R
S

Hexadecimal
Address

OSD1054

Stack Pointer

Register Variables

Special Function Registers
(SFRs)

Frame Pointer

00H

18H

1AH

1CH

24H

0FFH

PLMREG
(Tempory Registers)

Figure 6-1: 80C196KB register memory

The 80C196 processors contain on-chip peripherals, listed in Table 6-1,

controlled by the special function registers (SFRs) located in the first 24

(18H) bytes of the register file. The C196 header files and libraries define

symbols, macros, and functions to read and write the SFRs.

I/O Function Description

high–speed input (HSI) Automatically records events; records the
line that had an event and the time when
the event occurred.

high–speed output (HSO) Automatically triggers events and real–time
interrupts; sends messages to turn on,
turn off, start processing, or .reset devices

pulse width modulation (PWM) Outputs signals to drive motors or analog
circuits; replaces an analog output signal.

A–to–D converter Provides a 10–bit analog–to–digital
converter that can use any one of eight
input channels.

watchdog timer Resets the processor if not written to within
the designated time.

Processor Registers 6–5

• • • • • • • •

DescriptionI/O Function

serial port Provides one synchronous mode with rates
up to 1.5M baud or three asynchronous
modes with rates up to 187.5K baud.

standard I/O lines Provide interfaces to the external world
when other special features are not
needed.

Table 6-1: Major I/O functions

6.2 ACCESSING SPECIAL FUNCTION REGISTERS

The xx _sfrs.h header files declare variables that you can use to access

the SFRs.

To manipulate the program status word (PSW), you must write an

assembly language routine to get the value of the PSW. In this example,

the register variable flags is the destination of the value. Define flags
as a register integer variable.

register int flags;

Using in-line assembly code, the assembly language source text must

include the following instructions:

asm pushf; /* push contents of PSW onto stack */
asm ld flags, [sp]; /* load PSW value from stack into flags */
asm popf; /* and restore all flags */

Six functions in c96.lib in the processor specific lib directory (with

their function prototypes in xx _funcs.h) directly manipulate the

processor hardware, as follows:

enable enables interrupts.

disable disables interrupts.

enable_pts enables PTS interrupts.

disable_pts disables PTS interrupts.

idle puts the processor into idle state (80C196 processor only).

powerdown puts the processor into power-down state (80C196 processor

only).

Chapter 66–6
R
E
G
IS
T
E
R
S

The Embedded Microcontrollers and Processors Handbook, listed in

Related Publications, describes the processor idle and powerdown modes.

6.3 TMPREG0

The TMPREG0 variable, defined as a two long-word variable in the

c96.lib library, is used to hold the following:

• Intermediate results during computation.

• Return values of typed (non-void) functions.

The compiler assigns the name TMPREG0 to the address 1CH in the register

segment, by default, and gives TMPREG0 a null attribute. You can

change the location of TMPREG0 by using the tmpreg control, as

described in Chapter 4. The null attribute allows any function to use

TMPREG0 without having to specify a data type, as described in the

80C196 Assembler User's Guide, listed in Related Publications.

If the compiler needs more than eight bytes of work registers (this can

only happen with 24-bit models), it will use the next eight bytes, normally

at address 24H, and assign the name TMPREG8 to them.

TMPREG0 is declared in assembly language as follows:

public TMPREG0
rseg at 1CH
TMPREG0 EQU $
dsl 2
end

6.4 REGISTER VARIABLES

You can use the register attribute in a variable declaration to allocate a

variable in register memory. The compiler allocates automatic register

variables in the overlayable register segment and allocates register

variables with static duration in the register segment. If the windows

control is in effect, the compiler also allocates static register variables in

the overlayable register segment. A register variable can be any data

type and is read or written using 8-bit addressing instead of 16-bit

addressing.

Processor Registers 6–7

• • • • • • • •

6.4.1 USING THE EXTEND CONTROL

If you specify the extend control, the compiler allows more flexibility in

the operation of the register attribute, as follows:

• You can declare file-scope variables with the register storage

class. That is, you can declare register variables outside of any

block.

• The compiler uses register memory to optimize data access for

variables not explicitly declared with the register keyword,

allocating variables to registers in the following order:

1. All variables explicitly declared with register are allocated first.

If it runs out of register memory before all the explicitly declared

register variables have been allocated, the compiler generates an

error message.

2. If register memory remains after all the explicitly declared

register variables have been allocated, the compiler can allocate

frequently used variables to registers as specified by the

regconserve and registers controls. See Chapter 4 for the

description of each control.

6.4.2 ALLOCATING AND OVERLAYING REGISTERS

The maximum number of registers available for variable allocation for a

module is 220 bytes. You can further limit this number by specifying the

registers control. However, you can declare more register variables in

a program than the number of registers available in the processor

hardware. The C196 compiler can reuse the registers used by the local

register variables of one function for another function, provided the

functions are never simultaneously active. This process of reusing

registers is called overlaying. The C196 compiler overlays registers within

each module. The RL196 relocator and linker can also be used to overlay

registers between modules through the use of the regoverlay control.

Chapter 66–8
R
E
G
IS
T
E
R
S

The compiler generates prolog and epilog code, and it overlays registers

differently for reentrant and nonreentrant functions. The two functions

differ as follows:

• Reentrant functions contain overhead code and use a smaller

number of registers because the functions share the same register

space. The prolog and epilog of a reentrant function contain code

that saves and restores the values of registers used by the function.

The compiler can then overlay (reuse) the preserved registers. For

example, if functions f , a, and b are reentrant, the compiler can

overlay all the registers used by f , a, and b.

• Local variables of a function become undefined once the function

finishes its execution. The C196 compiler allocates a set of registers

specifically for the function's local register variables, so the compiler

does not need to generate the code to preserve the register values

in the prolog and epilog. The compiler attempts overlaying by

using the critical-path analysis call graph to determine which

functions are active simultaneously and which are not. For

example, if function f calls functions a and b, and a and b do not

call each other, the compiler can overlay the registers used by a and

b but f must use its own separate registers.

You can specify a function to be reentrant either by using the reentrant
storage class in the function declaration or by specifying the reentrant
control. Since the reentrant storage class is a non-ANSI Intel extension

to the C language, the reentrant control is recommended for writing

portable programs. Similarly, you can specify a function to be

nonreentrant either by using the non-ANSI nonreentrant attribute in the

function declaration or by specifying the noreentrant control.

Since an interrupt function can be active at any time, simultaneously with

any other function, the compiler treats interrupt functions as reentrant

functions.

Processor Registers 6–9

• • • • • • • •

Hexadecimal
Address

OSD1815

Stack Pointer

Register Variables

Special Function Registers
(SFRs)

Frame Pointer

00H

18H

1AH

1CH

24H
or

2CH

0FFH

TMPREG0
(Tempory Registers)

Figure 6-2: Calculating register memory requirements

You can calculate the number of bytes of register memory needed by a

module as in the following example, illustrated in Figure 6-2:

• The compiler allocates two bytes of register memory for the A
function. These two bytes are locations 24H and 25H.

• The compiler allocates six bytes of register memory for the B
function. Since A and B are never simultaneously active, B can use

the same two bytes that A uses. The B function uses locations 24H
through 29H.

• The compiler allocates six bytes of register memory for the C
function. Since A calls C, C cannot use register locations allocated

for A. However, since C is never active at the same time as function

B, C can reuse locations used by B. The C function uses locations

26H through 2BH.

• The compiler allocates nine bytes of register memory for the D
function. Since both A and B call D, D cannot use register locations

allocated for A or B. The D function uses locations 2AH through

32H.

Chapter 66–10
R
E
G
IS
T
E
R
S

• The compiler allocates three bytes of register memory for the E
function. Since B calls E, E cannot use register locations allocated

for B. Since E is not active at the same time as either C or D, E can

reuse locations used by these functions. The E function uses

locations 2AH through 2CH.

• The compiler allocates four bytes of register memory for the F
function. Since A calls C and C calls F, F cannot use register

locations allocated to either C or A. Also, since A and B call D and D
calls F, F cannot use register locations allocated to either D, B, or

(again) A. The F function uses locations 33H through 36H.

• The compiler allocates three bytes of register memory for the G
function. Since B calls E and E calls G, G cannot use register

locations allocated to B or E. The G function uses locations 2DH
through 2FH.

If the module represented in Figure 6-2 is the only code running in the

processor, the module uses locations 24H through 36H of register memory,

that is, 19 of the maximum 220 bytes allowed by the processor. If a

different module is already located in that part of register memory, the

module in Figure 6-2 occupies the same number of bytes (19) but in

different locations. The registers used by any given module are not

necessarily contiguous.

6.4.3 SUPPORT FOR VERTICAL WINDOWS

Many of the 80C196 processors have 256 bytes of additional registers or

more. Register windowing enables the compiler to access the additional

registers using the 8-bit direct-addressing mode instead of the 16-bit

addressing mode. This 8-bit addressing mode results in faster and tighter

code generation. The available two types of windows are Horizontal

Windows (HWindows) and Vertical Windows (VWindows). This section

focuses on Vertical Windows. See the Embedded Microcontrollers and
Processors Handbook, listed in Related Publications, for more information

on register windowing.

Processor Registers 6–11

• • • • • • • •

The 80C196 processor family provides vertical windowing so that you can

use the additional bytes of RAM as general-purpose registers using the

8-bit direct-addressing mode. VWindows differ from HWindows in that

you can still access these registers through 16-bit addressing using

indexed or indirect-addressing mode since VWindows reside in the same

address space. You can use VWindows to map sections of the register file

as 32-, 64-, or 128-byte windows onto the top 32-, 64-, or 128-byte

portion of the register file. Use the Window Select Register (WSR) to
switch between windows.

The C196 compiler uses the additional registers for the block-scope and

static register variables allocated in overlay segments. Block-scope

variables are variables declared within non-reentrant functions. Figure

6-3 shows the register allocation scheme that the linker uses to locate

register and overlay segments on the 80C196KC processors.

There are two distinct methods provided by the compiler for using vertical

windows: one using the windows control, and one using windowed

parameters.

Mapped Window

1FFH

0FFH

1AH

Register
Segments

Overlay
Segments

80H/C0H/E0H
Window Base

SFRs

OSD1053

Figure 6-3: 80C196KC register allocation scheme

Chapter 66–12
R
E
G
IS
T
E
R
S

6.4.3.1 USING THE WINDOWS CONTROL

To read or write to the local register variables, the C196 compiler

generates the WSR management code in the prolog and epilog of all

public functions compiled with the windows control, except for functions

that do not contain local register variables, do not access static variables,

and do not call another function. The windows control must be in effect

in order for the WSR management code to be generated.

If your application is using the HOLD/HOLDA protocol along with vertical

windowing, specify the windows control with the hold parameter.

Specifying windows without any parameter is equivalent to specifying

windows(hold) . The compiler then generates the WSR management

code, which saves the HLDEN bit in the WSR in the prolog, as follows:

ldbze Tmp0, WSR
push Tmp0
andb WSR, #80h /* to retain HLDEN in WSR */
orb WSR, ?WSR

If you are not using the HOLD/HOLDA protocol, specify the windows
control with the nohold parameter. The compiler then produces a

reduced amount of overhead code as follows:

ldbze Tmp0, WSR
push Tmp0
ldb WSR,?WSR

For the epilog, the compiler produces the following code:

ldb WSR,[SP]
pop R0

For more compact code, declare functions as static when appropriate.

This declaration suppresses the generation of the WSR management code

in the prolog and epilog of these functions.

Processor Registers 6–13

• • • • • • • •

The linker first locates the global variables allocated in register segments

below the window base selected, in the lower 256 registers, during

link-time. This scheme enables access to a global variable without regard

to the WSR. Then, the linker locates the overlay segments after all register

segments are located. If there are gaps between register segments, the

linker attempts to fill the gaps with overlay segments of the right size. The

linker selects the window size based on the last (highest) address space

occupied by the last register segment. The last occupied address must fall

below 80H (the 128-byte window) or 0C0H (the 64-byte window) or

0E0H (the 32-byte window). Otherwise, the linker sets the WSR to zero,

takes no action on the additional registers, and generates a warning stating

that there are too many registers.

When linking modules together, specify the range of the registers available

to the application with the RL196 registers control and the desired

window size through the RL196 windowsize control. See the 80C196
Utilities User's Guide, listed in Related Publications, for more information

on these controls.

To efficiently use VWindows, your program must meet the following

requirements:

• The size of all but one of the overlay segments must be smaller than

or equal to the window size. The one overlay segment can be

bigger than the window size providing the register segment does

not reach the window base address (80H/0C0H/0E0H). The RL196

linker locates this overlay segment below 0FFH.

• Your program must have enough overlay segments to occupy the

additional registers.

• The total number of global registers must fit, at most, below the

32-byte window base (0E0H). Otherwise, the linker issues a

warning and your overlay segment must fit below 0FFH (vertical

windowing is not used). See the 80C196 Utilities User's Guide,
listed in Related Publications, for a complete list of warning

messages the linker generates and explanations of their causes.

• Specify nonreentrant and static storage class to functions

whenever appropriate.

Chapter 66–14
R
E
G
IS
T
E
R
S

If you are linking ASM196 modules together with C196 modules and you

want the overlay segment from your ASM196 module to use the vertical

windowing done in C, declare ?wsr as an external byte variable in your

ASM196 module and add the WSR management code to the prolog (use

the address of ?wsr , which is #?wsr) and to the epilog of local routines

where appropriate. The following example shows how to write your

ASM196 module. This example assumes that the ASM196 module is called

by main() .

Your C196 module contains the following line:

void func(void);

main()
{
 func();
}

Your ASM196 module must contain the following lines:

example module
$include(_SFR_INC_)

oseg
 var1: dsw 1

cseg
 public func
func:
 push wsr
 andb wsr, #80h
 orb wsr,#?wsr
 .
 .
 .
 ld var1, #10
 .
 .
 .
 ldb wsr,[sp]
 add sp,#2
 ret
end

Processor Registers 6–15

• • • • • • • •

If you have a specific use for vertical windows and do not want the C196

compiler to allocate windows for your application, do not compile with

the windows control. Move the desired value to the wsr register to switch

to the desired window inside the desired function. You must restore the

original window before exiting that function. Do not link with the

registers and windowsize controls.

6.4.3.2 USING WINDOWED PARAMETERS

Structures can be placed at locations that can be mapped into one of the

vertical windows, and the window can then be used by a function to

access the fields of the structure using the best possible addressing mode

(direct register access).

You can use this feature by inserting a few new keywords (extensions to

the language) into the declarations of certain structures and into the

function declarations in which a pointer to one of these structures is

passed. The compiler will then handle the setup and restoration of the

vertical windowing register(s).

The storage class keywords used in the structure declarations assure

proper placement of the structures for use with this feature, and the

qualifier keywords used in the formal parameter lists of functions activate

the special handling of these parameters (pointers to these structures).

To specify the area(s) of memory from which to allocate windowed

variables use the windowram control (abbreviation wr). Any number of

ranges can be specified, and the windowram control and/or pragma may

be specified any number of times. The ranges specified must not overlap,

and must be within the range of mappable memory for the selected

model.

When the compiler allocates an object from these ranges, it first tries to

select an area from the beginning of a properly aligned range. If it cannot

find a properly aligned range, it will take an area from within the first

range with enough space remaining.

Use the hold or nohold control to specify whether the windowing code

needs to preserve the HOLD/HOLDA bit in the WSR.

You can use the _reg storage class keyword in variable declarations, to

indicate that the object should be allocated from the memory identified by

a windowram range.

Chapter 66–16
R
E
G
IS
T
E
R
S

There are two type qualifier keywords, _win and _win1 , you can use (for

certain models) in parameter declarations, to indicate that the parameter

being defined should reference a particular window in the register area,

controlled by the WSR special function register (_win) or by the WSR1

special function register (_win1). The parameter must be a pointer. No

more than one parameter in a function may use the same qualifier (both

_win and _win1 may be used together.

Example:

#pragma windowram (0x100–0x17F)

typedef struct _wheel_struct {
 int nflags;
 int oflags;
 /* ... whatever */
} WheelStruct;

_reg WheelStruct Wheel_LF;
_reg WheelStruct Wheel_RF;
_reg WheelStruct Wheel_LR;
_reg WheelStruct Wheel_RR;

void ProcessWheel(WheelStruct * _win Wheel, int f)
{
 Wheel–>oflags = Wheel–>nflags;
 Wheel–>nflags = f;
 /* ... whatever */
}

void main(void)
{
 int flags;

 /* ... whatever */
 ProcessWheel(&Wheel_LF, flags);
 ProcessWheel(&Wheel_RF, flags);
 ProcessWheel(&Wheel_LR, flags);
 ProcessWheel(&Wheel_RR, flags);
 /* ... whatever */
}

Do not use the windows control when using windowed parameters.

TASKING
Quality Development Tools Worldwide

7

ASSEMBLY CODE
INSTRUCTIONS

C
H

A
P

T
E

R

Chapter 77–2
A
S
S
E
M
B
L
Y

7

C
H

A
P

T
E

R

Assembly Code Instructions 7–3

• • • • • • • •

This chapter describes ways to include assembly language instructions

inside your C196 program without requiring a separately written and

translated assembly language routine.

7.1 IN-LINE ASSEMBLY CODE SYNTAX

An additional reserved word, asm, is provided to identify in-line assembly

instructions. To insert an in-line assembly statement, begin the statement

with the asm keyword and terminate the statement with a semicolon. To

indicate a block of statements, insert an open curly brace ({) after the asm
keyword, and a close curly brace (}) after the last statement. The syntax is

as follows:

asm pseudo_asm_inst ; /* Single line */

or

asm { /* In–line assembly block. */
pseudo_asm_inst ;
.
.
.

}

Where:

asm is the keyword indicating an assembly

instruction follows.

pseudo_asm_inst is assembly instruction (followed by a

semicolon).

You can place an in-line assembly statement anywhere a valid C statement

can be placed. C-style comments can be included as desired (enclosed

with a slash-asterisk (/*) and an asterisk-slash (*/)). Assembler-style

comments, beginning with a semicolon, are not allowed.

The extend control must be in effect in order to use the in-line assembly

feature. The control allows the compiler to recognize the asm keyword

and the in-line assembly instruction following it.

Chapter 77–4
A
S
S
E
M
B
L
Y

7.2 PSEUDO-ASSEMBLY INSTRUCTION

INTERPRETATION

The pseudo-assembly instruction statement follows the same format as any

regular ASM196 instruction. The syntax is:

operation [operand [,...]]

Where:

operation contains a machine instruction mnemonic code. It names the

instruction to be executed.

operand specifies a register or value on which the operation is to be

performed.

See the 80C196 Assembler User's Guide, listed in Related Publications, for

more information on assembly source program statement format.

The operand or operands of the operation can reference C variables,

constants, and labels. You can use register variables wherever a register is

a legal operand. The compiler interprets the pseudo-assembly instruction,

replacing the C identifiers, as necessary, with assembly language

equivalents, and translates the instruction into object code. The compiler

also performs dead-code elimination, branch, and peephole optimizations.

Only machine instructions and the dcb , dcw, and dcl code definition

directives are supported. See Section 7.3 for information on defining

constant tables. The following types of instructions are not currently

supported by the compiler:

• Labels.

• Assembly directives:

- Module level directives, such as module and public .

- Location counter control directives, such as cseg and rseg .

- Symbol definition directives, such as set and equ .

- Code definition directives other than dcb , dcw, and dcl , such as

dcr and dcp .

- Storage definition directives, such as dsb , dsw, dsl , and dsr .

- Conditional assembly directives, such as if , else , and endif .

• Macro support directives, such as macro , local , rept , and exitm .

Assembly Code Instructions 7–5

• • • • • • • •

See Section 7.4 for a complete list of supported assembly instructions and

the 80C196 Assembler User's Guide, listed in Related Publications, for more

information on labels and directives.

The following restrictions apply to the interpretation of the in-line

assembly instructions:

• You cannot define new symbols with in-line assembly code.

• You must use C notation for non-decimal numbers. For example, C

notation for the hexadecimal value 10H is 0x10 or 0X10. Assembly

notation equivalents 10H and 10h are invalid.

• You can enter instruction mnemonics in uppercase or lowercase.

• You must specify the model control to allow the use of the processor

specific instruction sets.

• You cannot use numeric expressions. Expressions must consist of

simple numbers.

• For dcb , dcw, and dcl directives: you can only specify one operand

for each instruction.

• For generic conditional branch, unconditional branch, bit branch, and

iterative branch instructions, the code address you specify for the

branch must be a C label.

• For the generic call instruction, the code address you specify for the

call must be a C function name.

• To access a specific element of an array, enclose the constant index in

parentheses. The compiler scales the index to produce the equivalent

offset. For example, the following code shows how to load the fifth

element of an array into a register:

const int a[10] = { 2,3,5,7,11,13,17,19,23,29 };

asm ld wreg, a(5); /* Loads the fifth element of
 a into wreg. */

Chapter 77–6
A
S
S
E
M
B
L
Y

7.3 CONSTANT TABLE DECLARATION

When building word-aligned tables using the dcw directive, you must

ensure that any label to be associated with the start of the table is also

aligned. To do this, precede the label with a dcw directive, as shown

below:

 asm dcw 0; /* force word alignment. */
tbl:
 asm dcw lbl1;
 asm dcw lbl2;
 asm dcw lbl3;

If you omit the dcw directive preceding the tbl label, the compiler assigns

the label to the current location counter value, which might not be

word-aligned. The dcw directive following tbl forces the location

counter to a word boundary, possibly incrementing the location counter.

Thus, a one-byte gap can be placed between the tbl label and the word

constant. Placing the dcw on the same line as the label does not alleviate

this problem because the compiler processes the label separately from any

in-line assembly instructions. See example 2 in Section 7.6 for an

application of this process.

7.4 ASSEMBLY INSTRUCTIONS

The following assembly instructions are supported by the C196 compiler:

Arithmetic, Logical, and Memory Transfer Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

add
addb
addc
addcb
and
andb
cmp
cmpb
div
divb
divu
divub
eld

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

eldb
est
estb
ld
ldb
ldbse
ldbze
mul
mulb
mulu
mulub
or
orb

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

pop
push
st
stb
sub
subb
subc
subcb
xch
xchb
xor
xorb

Assembly Code Instructions 7–7

• • • • • • • •

Special Register Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

clr
clrb
dec
decb
ext

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

extb
inc
incb
neg

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

negb
not
notb
skip

Shift Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

norml
shl
shlb
shll

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

shr
shra
shrab

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

shral
shrb
shrl

Generic Branch Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

bbc
bbs
bc
be
bge
bgt
bh
ble

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

blt
bnc
bne
bnh
bnst
bnv
bnvt

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

br
bst
bv
bvt
call
dbnz
dbnzw
ebr

The C196 compiler supports a pseudo-instruction, call register ,

which implements the indirect call by means of a code sequence

containing a br [indirect] instruction.

Zero-operand Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

clrc
clrvt
di
dpts
ei

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

epts
nop
popa
popf
pusha

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

pushf
ret
rst
setc

Extended Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

bmov
bmovi

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

cmpl
ebmovi

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

idlpd
tijmp

Chapter 77–8
A
S
S
E
M
B
L
Y

7.5 UNSUPPORTED INSTRUCTIONS

The following assembly instructions are not supported:

Non-generic Branch Instructions

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

djnz
djnzw
ecall
ejmp
jbc
jbs
jc
je
jge

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

jgt
jh
jle
jlt
jnc
jne
jnh
jnst
jnv

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

jnvt
jst
jv
jvt
lcall
ljmp
scall
sjmp

Module-level Directives

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

end
extrn

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

module ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

public

Location Counter Control Directives

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

cseg
dseg

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

kseg
org

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

oseg
rseg

Symbol Definition Directives

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

equ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

set

Code Definition Directives

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

dcp
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

dcr

Storage Reservation Directives:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

dsb
dsl

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

dsp
dsr

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

dsw

Conditional Assembly Directives:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

if ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

else ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

endif

Assembly Code Instructions 7–9

• • • • • • • •

Macro Support Directives:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

endm
exitm
irp

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

irpc
local

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

macro
rept

For more information on these instructions and directives, see the 80C196
Assembler User's Guide listed in Related Publications.

7.6 EXAMPLES

1. The following example shows how you can add in-line assembly code to

C196 source text:

#include <stdio.h>

register int ri;

main()
{
 int i;

 init_serio();
 asm
 { ld ri, #10;
 st ri, i;
 add ri, i;
 }
 printf(”ri = %d\r\n”, ri);
}

2. The following is an example of the use of the tijmp instruction.

#pragma model(kc)

int func(unsigned char k)
{
 unsigned char *ip = &k;

 goto around;

 lbl1: return(1);
 lbl2: return(2);

Chapter 77–10
A
S
S
E
M
B
L
Y

 lbl3: return(3);
 lbl4: return(4);

 asm dcw 0; /* force word alignment. */
tbl:
 asm {
 dcw lbl1;
 dcw lbl2;
 dcw lbl3;
 dcw lbl4;
 }

around:
 asm {
 ld 0x22,ip;
 ld 0x20,#tbl;
 tijmp 0x20,[0x22],#3;
 }

 return (0);
}
main()
{
 unsigned char i,j;

 for (i = 0; i < 3; i++)
 j = func(i);
 return;
}

TASKING
Quality Development Tools Worldwide

8

LIBRARIES
C

H
A

P
T

E
R

Chapter 88–2
L
IB
R
A
R
IE
S

8

C
H

A
P

T
E

R

Libraries 8–3

• • • • • • • •

This chapter describes ways to include assembly language instructions

inside your C196 program without requiring a separately written and

translated assembly language routine.

The C196 libraries provide the ANSI standard C library functionality and

some additional functionality specific to 80C196 architecture. This chapter

describes C196 functions and macros that are implementation-specific or

that do not conform to the 1989 ANSI standard for C. Functions and

macros that do conform to ANSI C are described in C: A Reference
Manual, listed in Related Publications.

8.1 LIBRARY FILES

You can link your application with any of the C196 libraries, as well as

with any libraries that you define. This section explains how to select and

use the libraries and header files for your application.

The C196 Compiler includes the following library files:

c96.lib Defines all standard functions and extensions.

One version present in each processor dependent

subdirectory of lib .

c96fp.lib Defines all math functions that require floating point

arithmetic. Examples are: sin , cos , fabs , strtod . Also

contains a version of printf and scanf that recognize the

%f, %g, and %e format

One version present in each processor dependent

subdirectory of lib .

fpal96.lib Defines all floating-point operations.

One version present in each processor dependent

subdirectory of lib .

Special Function Registers (SFRs) are defined in the following object files

in the lib directory:

xx _sfrs.obj Defines the SFRs, where xx represents a processor model.

The C196 product also includes the following object file in each

subdirectory of the lib directory:

cstart.obj Defines the startup code.

Chapter 88–4
L
IB
R
A
R
IE
S

8.1.1 LIBRARY DIFFERENCES AND HEADER FILE

CORRELATIONS

In the subdirectory lib you will find subdirectories with all the libraries

supplied with the C196 compiler. You choose one of the library files to

link library code from, according to the model (and the execution mode, if

the model is 24-bit). The library files are listed in Table 8-1.

Lib
Directories

Library Code
Model

Data/Const
Addressing

Segment Code
Addressing

Remarks

nt_c /
np_c

cstart.obj
c96.lib
c96fp.lib
fpal96.lib

note1 16–bit HighCode 16–bit Compatibility
Mode

nt_e /
np_e

cstart.obj
c96.lib
c96fp.lib
fpal96.lib

note1 16–bit FarCode 24–bit Extended
Mode

nt_cnf /
np_cnf

cstart.obj
c96.lib
c96fp.lib
fpal96.lib

note1 16/24–bit HighCode 16–bit Compatibility
Mode

nt_enf /
np_enf

cstart.obj
c96.lib
c96fp.lib
fpal96.lib

note1 16/24–bit FarCode 24–bit Extended
Mode

nt_cf /
np_cf

cstart.obj
c96.lib
c96fp.lib

note1 24–bit HighCode 16–bit Compatibility
Mode

nt_ef /
np_ef

cstart.obj
c96.lib
c96fp.lib

note1 24–bit FarCode 24–bit Extended
Mode

all other cstart.obj
c96.lib
c96fp.lib
fpal96.lib

Any 16–bit Code 16–bit

1 nt –libraries are used by the models NT, CB, EA and EC;
 np–libraries are used by the models NP and NU.

Table 8-1: Library/Object Files

The objects and libraries in the subdirectories nt_c and np_c of the lib
directory are suitable only for use with the 80C196NT/CB/EA/EC or

80C196NP/NU respecively, running code compiled with the nearcode
control in effect. They use only near code linkage, but all data pointers

are 16 bits wide.

Libraries 8–5

• • • • • • • •

The objects and libraries in the subdirectory nt_e and np_e of the lib
directory are suitable only for use with the 80C196NT/CB/EA/EC or

80C196NP/NU respecively, running code compiled with the farcode
control in effect. They use only far code linkage, and all data pointers are

16 bits wide, and all const pointers are 32 bits wide.

The objects and libraries in the subdirectories nt_cnf and np_cnf of the

lib directory are suitable only for use with the 80C196NT/CB/EA/EC or

80C196NP/NU respecively, running code compiled with the nearcode
control in effect. They use only near code linkage, but all data pointers

are 16 bits wide, and all const pointers are 32 bits wide.

The objects and libraries in the subdirectory nt_enf and np_enf of the

lib directory are suitable only for use with the 80C196NT/CB/EA/EC or

80C196NP/NU respecively, running code compiled with the farcode
control in effect. They use only far code linkage, and all data pointers are

16 bits wide.

The objects and libraries in the subdirectory nt_cf and np_cf of the lib
directory are suitable only for use with the 80C196NT/CB/EA/EC or

80C196NP/NU respecively, running code compiled with the nearcode
control in effect. They use only near code linkage, but all data pointers

are 32 bits wide.

The objects and libraries in the subdirectory nt_ef and np_ef of the lib
directory are suitable only for use with the 80C196NT/CB/EA/EC or

80C196NP/NU respecively, running code compiled with the farcode
control in effect. They use only far code linkage, and all data pointers are

32 bits wide.

The objects and libraries in the other subdirectories of the lib directory

are suitable for use with a processor specific model respectively.

The header files supplied with the C196 compiler are sensitive, where

necessary, to the model and mode you select. Function prototypes

involving pointers declare far pointers when the selected model is 24-bit;

otherwise the prototypes declare near pointers. The resulting function

prototype declarations match the actual functions that you will link from

the appropriate library file.

Chapter 88–6
L
IB
R
A
R
IE
S

8.1.2 LINKING LIBRARY FILES

The RL196 linker searches through the library files to resolve external

references to library functions. It uses the first instance of a function that it

encounters, and skips any function with the same name in any subsequent

library. The linker only makes one pass through each library file and tries

to resolve as many external references as it can. The linker does not

reopen previously searched library files if it encounters more external

references later on in the process. For this reason, you must link all

library files last, to ensure that all external references are known before

the linker searches through each library. RL196 searches through a list of

files to find an input file. The contents of the list depends on the model()
control. Specify the libraries and object files for linking in the following

order:

1. startup code; choose the object file according to the model and the

execution mode: cstart.obj

2. program modules

3. user-defined libraries, if any

4. the floating point C library file, containg math functions and floating-point

versions of printf and scanf , if you are performing floating-point

formatted input and output: c96fp.lib

5. the C library file; choose the library file according to the model and the

execution mode: c96.lib

6. the FPAL96 floating-point library, if you are using floating-point functions;

choose the library files according to the model and the execution mode:

fpal96.lib

If an object file or library is specified with a relative pathname (or without

any path), then RL196 will search through a list of directories to find the

file. See the description of RL196 in the 80C196 Utilities User's Guide.

Libraries 8–7

• • • • • • • •

8.2 HEADER FILES

You can write your own external declaration for any library function or

variable, but doing so does not guarantee an exact match. The supplied

header files contain C196 source text to declare the library function

prototypes and macros. The function declarations in the C196 header files

are prototyped, to ensure an appropriate match between definition and

use of the functions. Use the #include preprocessor directive to include

a header file.

Some functions declared with prototypes in the header files are also

defined as macros in the same header files. To use the library function

rather than the macro, simply use #undef to remove the macro definition

before specifying the function call in your source text.

Table 8-2 lists the names and functionality of the C196 library header files

and the manuals which describe each header file.

Filename Contents Described In

ctype.h character–handling utilities this chapter

float.h floating–point limits C: A Reference Manual

limits.h fixed–point limits C: A Reference Manual

math.h absolute value function prototype C: A Reference Manual

setjmp.h non–local jump function prototypes C: A Reference Manual

stdarg.h variable argument list utilities C: A Reference Manual

stddef.h common definitions C: A Reference Manual

stdio.h input/output (I/O) utilities C: A Reference Manual

stdlib.h general utilities C: A Reference Manual

string.h string handling utilities this chapter

xx_funcs.h processor specific functions this chapter

xx_sfrs.h processor special facilities as they
are described in the processor
specific User’s Manual.

this chapter

Table 8-2: Header files

Chapter 88–8
L
IB
R
A
R
IE
S

xx_funcs.h

Function

Processor-specific functions

non-ANSI

Description

The xx _funcs.h header files contain function prototypes of the functions

enable , disable , enable_pts , disable_pts , power_down , idle and

possible type definitions for the various PTS control blocks. xx represents

a processor as specified to the model(xx) control.

The compiler initializes the predefined macro _FUNCS_H_ with the name

of the processor specific xx _funcs.h .

Example

The following example includes the file nt_funcs.h :

#pragma model(nt_ef)

#include _FUNCS_H_

The same result can be obtained by:

#include <nt_funcs.h>

Libraries 8–9

• • • • • • • •

xx_sfrs.h

Function

Processor-specific facilities

non-ANSI

Description

The xx _sfrs.h header files define variables to access the Special

Function Registers (SFRs) and declare functions to manipulate the

processor hardware. xx represents a processor as specified to the

model(xx) control. See the processor specific User's Manual for details

on SFRs.

The compiler initializes the predefined macro _SFR_H_ with the name of

the processor specific xx _sfrs.h .

Example

The following example includes the file nu_sfrs.h :

#pragma model(nu_ef)

#include _SFR_H_

The same result can be obtained by:

#include <nu_sfrs.h>

Chapter 88–10
L
IB
R
A
R
IE
S

ctype.h

Function

Character handling

ANSI

Description

The ctype.h header file contains macros and function prototypes useful

for testing and mapping characters. These character-handling utilities

operate as described in C: A Reference Manual, listed in Related
Publications.

The ctype.h header file provides both function-like macros and function

prototypes for some ANSI character query and conversion functions.

Include ctype.h if your program calls any of the following functions:

isalnum isdigit isprint isupper
isalpha isgraph ispunct isxdigit
iscntrl islower isspace

The ctype.h header file also provides both function-like macros and

function prototypes for some non-ANSI character query and conversion

functions. Include ctype.h if your program calls any of the following

functions:

isascii _tolower _toupper

If you do not want to use the function-like macros, use the #undef
control to remove the macro definition and the compiler calls the actual

function.

Examples

The ctype.h header file contains a function prototype for toupper and

both a function prototype and a macro definition for isxdigit . The

following examples show the differences in the code generated by the

compiler when you use the function prototype or the macro definition of

isxdigit .

1. The following source text uses the macro definition of isxdigit and is

compiled with the listexpand control:

Libraries 8–11

• • • • • • • •

#pragma listexpand
#include <ctype.h>
int upcx(unsigned char input) /* Use the prototypes*/
{ /* and macros in the */
 if (isxdigit(input)) /* ctype.h header */
 return(toupper (input)); /* file. */
 return input;
}

The compiler generates the source file listing shown in Figure 8-1.

C196 Compiler CYTPE_X 01/29/99 11:29:19 Page 1

80C196 Compiler V x. y Rz SN (C)1993 Tasking BV, Compilation of module CTYPE_X

(C)1980,1990,1992,1993 Intel Corporation

Object module placed in CTYPE_X.obj

Compiler invoked by: c:\c196\bin\C196.EXE CTYPE_X.c code

 Line Level Incl

 1 #pragma listexpand

 2 #include <ctype.h>

 3 int upcx(unsigned char input)

 4 {

 5 1 if (isxdigit(input))

 + if ((((unsigned)(input) < 0x80) ?

 (_ctype_)[input] & 0x40 : 0))

 6 1 return(toupper (input));

 7 1 return input;

 8 1 }

Figure 8-1: Example using the macro definition

2. The following source text undefines the macro definition of isxdigit
and is compiled with the listexpand control:

#pragma listexpand
#include <ctype.h>
#undef isxdigit /* Undefine the */
 /* macro definition. */
 /* Use the function */
 /* definition. */
int upcx(unsigned char input)
{
 if (isxdigit(input))
 return(toupper (input));
 return input;
}

Chapter 88–12
L
IB
R
A
R
IE
S

The compiler generates a source text listing shown in Figure 8-2:

C196 Compiler CTYPE_XU 01/29/99 12:41:49 Page 1

80C196 Compiler V x. y Rz SN (C)1993 Tasking BV, Compilation of module CTYPE_XU

(C)1980,1990,1992,1993 Intel Corporation

Object module placed in CTYPE_XU.obj

Compiler invoked by: c:\c196\bin\C196.EXE CTYPE_XU.c code

 Line Level Incl

 1 #pragma listexpand

 2 #include <ctype.h>

 3 #undef isxdigit

 4

 5

 6

 7 int upcx(unsigned char input)

 8 {

 9 1 if (isxdigit(input))

 10 1 return(toupper (input));

 11 1 return input;

 12 1 }

Figure 8-2: Example using the function prototype

Libraries 8–13

• • • • • • • •

string.h

Function

Character array manipulation

ANSI

Description

The ANSI contents of string.h are described in C: A Reference Manual,
listed in Related Publications. In addition, string.h defines the

following non-ANSI functions:

cstr converts a length-prefixed string to a null-terminated string

udistr converts a null-terminated string to a length-prefixed string

Chapter 88–14
L
IB
R
A
R
IE
S

8.3 FUNCTIONS

This section provides descriptions of the C196 library functions that are not

covered in C: A Reference Manual.

Each entry in this section is organized as follows:

Function contains a short description of the function.

Prototype Declaration

lists the prototype provided in the header file.

Header File indicates which header file contains the prototypes, macros,

and type definitions relevant to the function.

Description explains the operation and use of the function.

Returns describes the values returned by the function on successful

completion or (where relevant) on error.

Libraries 8–15

• • • • • • • •

cstr

Function

Converts a UDI string to a C-type string.

Prototype Declaration

char *cstr (char * c_ptr , const char * udi_ptr);

where:

c_ptr points to a buffer large enough to contain the converted

string.

udi_ptr points to a length-prefixed string.

Header File

string.h

Description

Use this function to convert the length-prefixed string (UDI string) to a

null-terminated string (C-type string).

The c_ptr argument must point to a buffer large enough to contain the

C-type string. The length of a C-type string is one byte more than the

number of characters in the string.

The two pointer arguments normally point to separate string buffers. If the

arguments point to the same location, the cstr function overwrites the

original UDI string with the new C-type string.

Returns

The cstr function returns a pointer to the converted string. This return

value is the same as the value passed in via the c_ptr parameter.

Chapter 88–16
L
IB
R
A
R
IE
S

disable

Function

Disables the processor's interrupts.

Prototype Declaration

void disable (void);

Header File

xx _funcs.h

xx represents a processor model.

Description

Use this function to disable the processor's interrupts.

Returns

The disable function does not return a value.

Libraries 8–17

• • • • • • • •

disable_pts

Function

Disable the peripheral transaction server's interrupts.

Prototype Declaration

void disable_pts (void);

Header File

xx _funcs.h

xx represents a processor model.

Description

Use this function to disable the peripheral transaction server's (PTS)

interrupts. This function is valid only for the 80C196KC and higher

processors.

Returns

The disable_pts function does not return a value.

Chapter 88–18
L
IB
R
A
R
IE
S

enable

Function

Enable the processor's interrupts.

Prototype Declaration

void enable (void);

Header File

xx _funcs.h

xx represents a processor model.

Description

Use this function to enable the processor's interrupts.

Returns

The enable function does not return a value.

Libraries 8–19

• • • • • • • •

enable_pts

Function

Enable the peripheral transaction server's interrupts.

Prototype Declaration

void enable_pts (void);

Header File

xx _funcs.h

xx represents a processor model.

Description

Use this function to enable the peripheral transaction server's (PTS)

interrupts. This function is valid only for the 80C196KC and higher

processors.

Returns

The enable_pts function does not return a value.

Chapter 88–20
L
IB
R
A
R
IE
S

fpinit

Function

Initializes floating-point library.

Prototype Declaration

void fpinit (void);

Header File

fpal96.h

Description

Use this function to perform the following necessary initializations for the

functions in the FPAL96 libraries:

• Set rounding flag in control word to round-to-nearest.

• Mask all exceptions in control word.

• Set floating-point accumulator to indicate signalling Not-a-Number

(sNaN).

• Set stat field to indicate sNaN and clear error byte of status word.

• Attach a dummy error handler.

A program must call the fpinit function before performing any

floating-point operation. See the 80C196 Utilities User's Guide, listed in

Related Publications, for more information on floating-point numbers and

initialization.

Returns

The fpinit function does not return a value.

Libraries 8–21

• • • • • • • •

idle

Function

Enters a power-saving mode.

Prototype Declaration

void idle (void);

Header File

xx _funcs.h

xx represents a processor model.

Description

Use this function to place the 80C196 processor in the power-saving idle

mode. The idle function is available only on the 80C196 processor. See

the Embedded Microcontrollers and Processors Handbook, listed in Related
Publications, for more information on the idle mode of the 80C196

processors.

The processor enters the following state during idle mode:

• The CPU stops executing.

• All internal clocks assume logic state zero.

• Peripheral clocks and the CLKOUT pin remain active.

• All peripherals and the interrupt controller continue to function.

• If the watchdog timer was enabled, after a reset it continues to

operate.

• All RAM is preserved.

You can release the CPU from idle mode with an interrupt or a hardware

reset.

Returns

The idle function does not return a value.

Chapter 88–22
L
IB
R
A
R
IE
S

power_down

Function

Enters a power-saving mode.

Prototype Declaration

void power_down (void);

Header File

xx _funcs.h

xx represents a processor model.

Description

Use this function to place the 80C196 processor in powerdown mode.

The power_down function is available only on the 80C196 processor. See

the Embedded Microcontrollers and Processors Handbook, listed in Related
Publications, for more information on the powerdown mode of the

80C196 processors.

All peripherals must be idle before the program calls the power_down
function. In powerdown mode, the state of the processor has the

following characteristics:

• The CPU stops executing.

• All internal clocks assume logic state zero.

• The oscillator is turned off. The 80C196 processor cannot detect

oscillator failure in powerdown mode.

• The watchdog timer is disabled on reset and becomes enabled on

the first write operation to it. The 80C196 processor cannot time

out the watchdog timer in powerdown mode.

• All internal RAM is preserved.

You can exit out of powerdown mode with an external interrupt on the

pin mapped to INT7 or with a hardware reset.

Returns

The power_down function does not return a value.

Libraries 8–23

• • • • • • • •

printf, sprintf

Function

Formats output.

Prototype Declaration

int printf (const signed char * format_ptr ,...);

int sprintf (signed char * buf_ptr ,
 const signed char * format_ptr ,...);

where:

format_ptr points to the output format specification.

buf_ptr points to a memory output buffer.

,... indicates variables containing values to be written.

Header File

stdio.h

Description

Use these functions to perform formatted output: printf to the output

serial port, and sprintf to a memory buffer. For guidelines on how

these functions operate, see C: A Reference Manual, listed in Related
Publications. The printf and sprintf functions do not support the %p
floating-point conversion operations.

Before using printf for the first time, you must call the init_serio
function once after a reset or exit from the powerdown mode to ensure

correct operation of subsequent calls to putch . The printf function

calls the putch function. The init_serio function initializes a static

variable used to hold the serial-port status. This function sets the TI bit in

the static variable, thereby initializing the mechanism used by the putch
function. The putch function then waits for the TI bit to be set, indicating

that the previous character has been transmitted, before writing the

character argument to the serial port. If you do not call init_serio
before calling putch , the putch function can wait indefinitely for the TI

bit to be set.

Chapter 88–24
L
IB
R
A
R
IE
S

The sp_stat and sbuf variables are defined in the xx _sfrs.h header

files. If you redefine putch to write to a different destination, you can

use printf to write formatted output to locations other than the serial

port. The program must then ensure the new destination is enabled as

appropriate.

Before using printf or sprintf with floating-point numbers, you must

call the fpinit function to initialize floating-point capability. You must

also specify one of the c96fp.lib libraries and one of the FPAL96

libraries when you link your program, to provide floating-point support.

Returns

The printf function returns the number of characters actually

transmitted. If an I/O error occurs, the return value is negative.

The sprintf function returns the number of characters written into the

memory buffer. This return value does not include the terminating null

character.

Libraries 8–25

• • • • • • • •

scanf, sscanf

Function

Formats input.

Prototype Declaration

int scanf (const signed char * format_ptr ,...);

int sscanf (signed char * buf_ptr ,
 const signed char * format_ptr ,...);

where:

format_ptr points to the output format specification.

buf_ptr points to a memory input buffer.

,... indicates any number of pointers to variables to which the

input values are assigned.

Header File

stdio.h

Description

Use these functions to perform formatted input: scanf from standard

input and sscanf from a character string in memory. For guidelines on

how these functions operate, see C: A Reference Manual, listed in Related
Publications. The scanf and sscanf functions do not support the %p
pointer formatting specification.

If conversion terminates because of a conflict between an input character

and the corresponding format specifier, the offending character remains

unread. Trailing white space (including a newline character) in a format

specification can match optional white space in the input field.

Chapter 88–26
L
IB
R
A
R
IE
S

Before using scanff for the first time, you must call the init_ungetc
function once after a reset or exit from the powerdown mode to ensure

correct operation of subsequent calls to ungetc . The scanf function

calls the ungetc function. The init_ungetc function initializes a static

variable used to hold the serial-port status. This function sets the TI bit in

the static variable, thereby initializing the mechanism used by the ungetc
function. The ungetc function then waits for the TI bit to be set,

indicating that the previous character has been transmitted, before reading

the character argument from the serial port. If you do not call

init_ungetc before calling ungetc , the ungetc function can wait

indefinitely for the TI bit to be set.

Before using scanf or sscanf with floating-point numbers, you must call

the fpinit function to initialize floating-point capability. To provide

floating point support, You must also specify one of the c96fp.lib
libraries and one of the FPAL96 libraries when you link your program.

Returns

The scanf and sscanf functions return the number of successfully read

input values.

Libraries 8–27

• • • • • • • •

udistr

Function

Converts a C-type string to UDI form.

Prototype Declaration

char *udistr (char * udi_ptr , const char * c_ptr);

where:

udi_ptr points to a buffer large enough to contain the converted

string.

c_ptr points to a null-terminated string.

Header File

string.h

Description

Use this function to convert a null-terminated string (C-type string) to a

length-prefixed string (UDI-type string).

The udi_ptr argument must point to a buffer large enough to contain the

UDI-type string. You can use the strlen function on the C-type string to

determine the required length of the buffer. C: A Reference Manual, listed

in Related Publications, describes how to use strlen . The length of the

buffer must be one byte longer than the value returned by the strlen
function. The behavior of the udistr function for strings longer than 255

bytes is unpredictable.

The two pointer arguments normally reference separate string buffers. If

the arguments point to the same location, the udistr function overwrites

the original C string with the new UDI string.

Returns

The udistr function returns a pointer to the converted string. This return

value is the same as the value passed in via the udi_ptr parameter.

Chapter 88–28
L
IB
R
A
R
IE
S

8.4 DYNAMIC MEMORY ALLOCATION

In order to use the library routines for dynamic memory allocation

malloc() , realloc() , calloc() and free() it is necessary to reserve

RAM space for the dynamic memory. This RAM space, called HEAP, is

reserved by the linker. See the linker controls heap and ram on how to

specify this HEAP space.

TASKING
Quality Development Tools Worldwide

9

MESSAGES AND
ERROR
RECOVERY

C
H

A
P

T
E

R

Chapter 99–2
M
E
S
S
A
G
E
S

9

C
H

A
P

T
E

R

Messages and Error Recovery 9–3

• • • • • • • •

9.1 INTRODUCTION

The C196 compiler can issue the following types of messages:

• Sign-on and sign-off messages (discussed in Section 9.2)

• Fatal errors (discussed in Section 9.3)

• Errors (discussed in Section 9.4)

• Warnings (discussed in Section 9.5)

• Remarks (discussed in Section 9.6)

All messages, except fatal error messages, are reported in the print file.

Fatal error messages appear on the screen; the compiler aborts compilation

and produces no object module. Other errors do not abort compilation

but no object module is produced. Warnings and remarks usually provide

information and do not necessarily indicate a condition affecting the object

module.

Messages relating to syntax and most messages relating to semantics are

interspersed in the listing at the point of error. Some messages relating to

semantics appear at the end of the source text listing and refer to the

statement number on which the error occurred.

9.2 SIGN-ON AND SIGN-OFF MESSAGES

The compiler writes information to the screen at the beginning and the

end of compilation. On invocation, the compiler displays the following

message:

80C196 C compiler v x. y r z SN00000000–004 (c) years TASKING, Inc.
(C) years Intel Corporation

where:

vx.y identifies the version of the compiler.

r z identifies the revision of the compiler.

years identifies the copyright years.

On normal completion, the compiler displays a message similar to the

following:

C196 Compilation Complete. x Remark[s], y Warning[s], z Error[s]

Chapter 99–4
M
E
S
S
A
G
E
S

where:

x indicates the number of remarks that the compiler generated.

y indicates the number of warning messages that the compiler generated.

z indicates the number of non-fatal errors that the compiler generated.

You can use compiler controls to specify the contents of this message, as

follows:

diagnostic(0) displays the entire message.

diagnostic(1) suppresses the number of remarks.

diagnostic(2) suppresses the numbers of remarks and warnings.

notranslate suppresses the Compilation Complete .

The defaults of these controls are diagnostic(1) and translate .

If the compilation ends because of a fatal error, the compiler displays the

following message:

C196 FATAL ERROR
COMPILATION TERMINATED

The print file lists the error that ended the compilation. If the noprint
control is in effect, all diagnostics (restricted by the diagnostic control)

that the compiler generates appear on the screen.

Messages and Error Recovery 9–5

• • • • • • • •

9.3 FATAL ERROR MESSAGES

Fatal error messages have the following syntax:

C196 FATAL ERROR – message

Following is an alphabetic list of fatal error messages.

argument not allowed for control control

This message indicates an attempt to pass arguments to a control that

accepts none. Improper argument passing is a fatal error if it occurs in the

compiler invocation, but the preprocessor only issues a warning if the

improper argument occurs in a #pragma directive.

argument not allowed for negated control control

Negated controls, except for the noreentrant control, do not accept

arguments. If you specified an argument for a negated control in the

compiler invocation, the compiler generates this error. However, if you

specified the argument for a negated control in a #pragma directive line,

the preprocessor only issues a warning.

argument out of range for control control: arg

This message indicates an attempt to use an argument value that is out of

the valid range. An out-of-range argument is a fatal error if it occurs in

the compiler invocation, but the preprocessor only issues a warning if the

improper argument occurs in a #pragma directive.

argument required for control control

A missing required argument is a fatal error if it occurs in the compiler

invocation, but the preprocessor only issues a warning if the missing

argument occurs in a #pragma directive.

argument too long for control control

The length of the argument to the control exceeds the maximum number

of characters allowed by the compiler.

BMOV only valid for model KB

The bmov control is valid only if you specified the model(kb) control.

Chapter 99–6
M
E
S
S
A
G
E
S

compiler error

This message follows internal compiler error messages. If you receive this

message, you should contact TASKING customer service. See the Service

Information on the inside back cover.

control control cannot be negated

You cannot use the no prefix with this compiler control. Improper

negating is a fatal error if it occurs in the compiler invocation, but the

preprocessor only issues a warning if it occurs in a #pragma directive.

duplicate control control

A primary control that must not be specified more than once was specified

more than once. Only the following controls can be specified more than

once:

define reentrant
fixedparams regconserve
include searchinclude
interrupt varparams

If you specify a compiler control both in the compiler invocation and in a

#pragma preprocessor directive, the compiler invocation specification

takes precedence. A duplicate control is a fatal error if it occurs in the

compiler invocation but the preprocessor only issues a warning if it occurs

in a #pragma directive.

duplicate argument argument for control control

An argument for control was specified more than once; for example:

specifying more than one handler for one interrupt number.

expression too complex

A complex expression exhausted an internal structure in the compiler.

Break the expression down into simpler components.

FARCODE conflicts with NEARCODE

These two controls determine the segment into which all code is

generated. They are mutually exclusive, but both controls were explicitly

specified. Eliminate the one you don't want.

Messages and Error Recovery 9–7

• • • • • • • •

FARCODE control invalid for the component

The farcode control is valid only for 24-bit models. Add a 24-bit

model() control or remove the offending control.

FARDATA conflicts with NEARDATA

These two controls determine the default location of non-constant,

non-register data. They are are mutually exclusive, but both controls were

explicitly specified. Eliminate the one you don't want.

FARDATA control invalid for the component

The fardata control is valid only for 24-bit models. Add a 24-bit

model() control or remove the offending control.

function call nesting limit exceeded

The nesting of function calls within an expression exceeded 32.

HOLD is not effective when WINDOWS is off

The HOLD control can only be used when the compiler saves/restores WSR
in the function prolog/epilog, that is when the WINDOWS control is on.

illegal macro definition: macro_name

An invalid macro was defined on the command line with the define
control.

input pathname is missing

A primary source file pathname was not specified in the compiler

invocation.

insufficient memory for macro expansion

An internal structure was exhausted during macro expansion. Two causes

of this error are: the macro or the actual arguments are too complex, or

the macro's expansion is too deeply nested. Also see the related error

message, macro expansion too nested .

internal limit exceeded - block too large: statement_number

The block being processed exceeds the internal buffer size. To resolve

this error, break the block into two functions or introduce a label.

Chapter 99–8
M
E
S
S
A
G
E
S

internal limit exceeded - call nesting too deep: statement_number

Calls within an expression are nested more than the internal limit of 20.

To resolve the problem, split the expression such that call nesting does not

exceed 20.

internal limit exceeded - expression too complex

The compiler ran out of temporary working registers to allocate to a

computation. Use explicit variables to hold intermediate results.

internal limit exceeded - program too complex

The table of compiler-generated labels was exhausted, usually because the

program flow is too complex. Reduce the complexity or break down the

module.

internal limit exceeded - stack too deep: statement_number

The stack requirement of the function exceeded the internal limit of 128

bytes. This error can be caused by an expression that is too complex or a

large structure or union that appears as an argument to a call.

internal limit exceeded - statement too complex: statement_number

The statement being processed is too complex and exceeded the internal

buffer size. Split the statement into less complex statements.

invalid argument for control control

The argument specified for control is not valid; for example: the

argument specified for model is invalid.

invalid control: control

A control not supported by the compiler was specified. Check the spelling

of the control. An invalid control is a fatal error if it occurs in the compiler

invocation but the preprocessor only issues a warning if the invalid control

occurs in a #pragma directive.

invalid decimal argument: value

Non-decimal characters were found in an argument that must be a

decimal value. An improper argument is a fatal error if it occurs in the

compiler invocation, but the preprocessor only issues a warning if the

improper argument occurs in a #pragma directive line.

Messages and Error Recovery 9–9

• • • • • • • •

invalid identifier: identifier

An identifier does not follow the rules for forming identifiers in C. An

invalid identifier is a fatal error if it occurs in the compiler invocation, but

the preprocessor only issues a warning if the invalid identifier occurs in a

#pragma directive.

invalid syntax for control control

The compiler control contained a syntax error. Invalid control syntax is a

fatal error if it occurs in the compiler invocation, but the preprocessor only

issues a warning if the invalid syntax occurs in a #pragma directive line.

no more free space

The internal structure used to hold macros is exhausted. Use fewer

macros in your program.

null argument for control control

Null arguments for compiler controls are not allowed. For example, the

following is illegal:

varparams(f1,,f2)

A null argument is a fatal error if it occurs in the compiler invocation, but

the preprocessor only issues a warning if the null argument occurs in a

#pragma directive.

out of memory

The internal memory buffer used to hold macros was exhausted. Use

fewer macros in your program.

previous errors prevent further compilation

The compiler was unable to recover from previous errors in the

compilation. Correct the errors reported thus far, then recompile.

Chapter 99–10
M
E
S
S
A
G
E
S

regconserve conflicts with registers(all)

registers(all) conflicts with regconserve

The registers(all) control specifies that the compiler is to allocate all

program variables to registers, including variables declared without the

explicit registers attribute (register variables). The regconserve
control specifies that the compiler is to conserve registers, placing only

register variables (and, optionally, a subset of the non-register
variables) in registers. The compiler cannot resolve these conflicting

directions. This error is fatal if both controls are specified in the compiler

invocation, but the preprocessor only issues a warning if the conflict

occurs in #pragma directives.

switch table overflow

Too many active case s exist in a switch statement that has not yet been

completed.

symbol table overflow

Too many symbols are defined in the module. Remove unused definitions

or break the module into two or more smaller modules.

too many directories are specified for search - pathname

Too many directories are specified in the compiler invocation with the

control searchinclude . The pathname is the directory at which the

error occurred, that is, the first directory over the limit.

too many include files

Too many include files have been specified. Combine include files or

break the module into two or more smaller modules.

syntax error

An unrecoverable syntax error has occurred. Two situations that can

cause this error are:

• The alien , reentrant , or nonreentrant keyword is present

with the noextend control in effect.

• An identifier is present in function context but does not have a

body, for example,

int f1() /* syntax error missing semicolon */
int f2(); /* valid */

Messages and Error Recovery 9–11

• • • • • • • •

type table full

Too many symbols with non-standard data types are defined in the

module. Remove unused definitions, or break down the module.

whiles, fors, etc. too deeply nested

The statement nesting structure of the module exhausted an internal

structure in the compiler. A possible solution is to make a function out of

the more deeply nested control structures, and call that function.

Chapter 99–12
M
E
S
S
A
G
E
S

9.4 ERROR MESSAGES

Error messages have the following syntax:

*** Error at line nn of filename : message

where:

filename is the name of the primary source file or include file in which

the error occurred.

nn is the source line number where the error is detected.

message is the explanation.

Following is an alphabetic list of error messages.

operator missing macro argument operand

The # operator must be followed by a macro argument.

operator occurs at beginning or end of macro body

The ## (token concatenation) operator is used to paste together adjacent

preprocessing tokens, so it cannot be used at the beginning or end of a

macro body.

address out of range

The constant expression used as the absolute address is greater than

0xFFFF (0xFFFFFF for a 24-bit model). This error can only occur if you

are dereferencing a constant expression; for example, the following code

generates the error:

*((char *) 0x10000) = 5; /* 0x10000 is > 0xFFFF. */

anonymous parameter

An argument in a function definition is prototyped but not named.

arguments not allowed

Arguments were passed to a function that does not accept arguments.

array too large

This error occurs when the size of an array exceeds 64 kilobytes.

Messages and Error Recovery 9–13

• • • • • • • •

call not to a function

A call is made to a symbol which is not a function.

cannot initialize

The type or number of initializers does not match the initialized variable or

the variable was not declared with the const qualifier. With omf(0) and

omf(1) the C196 compiler supports static initialization of only const
objects in file scope and only static const objects in block scope. For

example:

const int i = 10; /* supported */
int j = 10; /* not supported */
static int a = 10; /* not supported */

void f(void)
{

int i = 10; /* supported */
static const int b = 10; /* supported */
const int c = 10; /* supported */
static int j = 10; /* not supported */

};

Use omf(2) (or higher).

cannot initialize extern in block scope

An external declaration cannot be initialized in any scope other than file

scope. The following example is an invalid external declaration:

f()
{ extern const int i = 1;
}

cannot take the address of asm register operand

The address of a register variable was accessed using the ampersand (&)

address operator, after the variable was used as a register operand in an

in-line code assembly statement; for example,

register int a;
int *p;

asm ld a,#0A0H;
p = &a; /* This statement generates the error. */

Chapter 99–14
M
E
S
S
A
G
E
S

case not in switch

A case was specified, but not within a switch statement.

code segment too large

The size of the code segment, which includes the program's code and

constant objects, exceeds 64 kilobytes.

conditional compilation directive is too nested

The nesting of conditional compilation directives exceeded 16 levels.

constant expected

A non-constant expression appears when a constant expression is

expected (e.g., a non-constant expression as array bounds or as the width

of a bit field).

constant value must be an int

The constant specified must be representable as the data type int .

data segment too large

The data segment, which includes the program's variables and can include

some constants, exceeds 64 kilobytes.

declaration exceeded 64K

The size of a declared object exceeded 64 kilobytes, thus exceeding the

space available for the data segment.

default not inside switch

A default label was specified outside of a switch statement.

division by 0

Evaluation of an expression resulted in division by a 0 value.

duplicate case in switch, number

The same value, number , was specified in more than one case in the

same switch statement.

duplicate default in switch

More than one default label was specified within the same switch
statement.

Messages and Error Recovery 9–15

• • • • • • • •

duplicate label

A label was defined more than once within the same function.

duplicate parameter name

The same identifier was found more than once in the identifier list of a

function declarator. For example, the following code contains a duplicate

a identifier:

int f(a, a) {}

duplicate parameter name in macro

Two arguments in the definition of a macro are identical. Every argument

must be unique in the macro definition.

duplicate tag

A struct , union , or enum tag was defined more than once within the

same scope.

empty character constant

A character constant should include at least one character or escape

sequence.

expression not within range

A register specified is not in the range of 0 to 255 . An immediate count in

a shift is not in the range of 0 to 15 . A register count in a shift is not in

the range of 16 to 255 . An immediate operand in byte instructions or a

dcb constant is not in the range of –128 to +127 .

FAR qualifier cannot be applied to function

The far qualifier was used in the declaration of a function pointer. Only

the farcode and nearcode controls determine whether a function is

placed in the farcode segment. All functions in all modules must reside in

the same segment. Remove or relocate the far qualifier.

FAR qualifier cannot be applied to function result

The far qualifier was used in the declaration of a function. The result of

a function is a value, and has no address. Remove or relocate the far
qualifier.

Chapter 99–16
M
E
S
S
A
G
E
S

FAR qualifier cannot be applied to member

The far qualifier was used in the declaration of a component of a

structure or union. Only the entire aggregate object may be so qualified.

Remove or relocate the far qualifier.

floating point operand not allowed

An operand is non-integral, but the operator requires integral operands.

That is, ~, &, | , ^ , %, >>, and << all require integral operands.

function body for non-function

A function body was supplied for an identifier that does not have function

type; for example:

int i {}

This error message can also appear when mismatched braces appear in the

source code preceding the identified line.

function declaration in bad context

A function is defined (i.e., appears with a formal argument list), but not at

module-level. Or, a function declarator with an identifier list, which is

legal only for function definitions, was encountered within a function, as

in this example:

int main(void)
{
 int f(a);
}

function level error

This internal error can be caused by an earlier syntax error.

function redefinition

More than one function body has been found for a single function, as in

this example:

int f() {}
int f() {}

Messages and Error Recovery 9–17

• • • • • • • •

illegal array element reference

In-line code assembly statements cannot access stack-based array

variables. These variables are declared as auto variables. You can only

access arrays when they are declared globally or declared as static
within the function block.

illegal assignment to const object

Constants cannot be modified.

illegal break

A break statement appears outside of any switch , for , do , or while
statement.

illegal character in header name: hex_value (hex)

An illegal character was found in the header name of an #include < >
preprocessor directive.

illegal constant expression

The expression within an #if or #elif is not built correctly.

illegal constant suffix

The suffix of a number is not L or U, in either uppercase or lowercase, or

a legal combination of the two.

illegal continue

A continue statement appears, but not within any for , do , or while
statement.

illegal #elif directive

An #elif directive is encountered after an #else directive.

illegal #else directive

An #else directive is encountered after an initial #else directive.

illegal field size

Legal field size is 1 to 16 bits for a named field.

illegal floating point constant in exponent

A floating-point exponent must be an integer.

Chapter 99–18
M
E
S
S
A
G
E
S

illegal function declaration

Internal error; can be caused by an earlier syntax error.

illegal hex constant

A hexadecimal constant contains non-hexadecimal characters or is without

a 0x or 0X prefix.

illegal macro redefinition

A macro can be redefined only if the body of the redefined macro is

exactly the same as the body of the originally defined macro.

illegal syntax - left parenthesis is expected

The name of a macro that accepts arguments is specified with no argument

list, or the argument list is not properly delimited with parentheses.

illegal syntax in a directive line

A syntax error is encountered in a preprocessor directive.

illegal syntax in a directive line - newline expected

A preprocessor directive line is not terminated with a newline.

illegal syntax in an argument list

An argument list in a macro contains misplaced or illegal characters.

illegal use of FAR qualifier

The far qualifier was used in the declaration of an automatic (block

scope) object. Only file scope and static objects may contain the far
qualifier. Remove the qualifier or make the object static.

illegal use of NEAR qualifier

The near qualifier was used in the declaration of an automatic (block

scope) object. Only file scope and static objects may contain the near
qualifier. Remove the qualifier or make the object static.

incompatible types

The two operands of a binary operator have incompatible types, for

example, assigning a non-zero integer to a pointer.

Messages and Error Recovery 9–19

• • • • • • • •

incomplete static object: name

The type of an object with static storage class must be complete by the

end of the module. For example:

static int i[][10][20]; /* is an incomplete static */
 /* object type */
static int i[5][10][20]; /* completes the type */

incomplete type

The compiler detected a variable whose type is incomplete, such as the

following example declaration where the type of s is not complete if the

program contains no previous declaration defining the tag S.

int f(struct S s)
{ ... }

incorrect void usage

The void attribute was specified in conflict with another attribute. For

example:

int f(void, ...);

invalid mnemonic

The assembly mnemonic specified after the asm keyword is not valid. See

Section 7.3 for a list of supported assembler instructions. Also see the

80C196 Assembler User's Guide for a complete list of assembler

instructions.

invalid instruction for model specified

The instruction is not valid for the model specified by the model control.

See the 80C196 Assembler User's Guide for a detailed explanation of each

instruction.

invalid addressing mode

The indexed addressing mode is not valid in the first operand position of a

two- or three-operand instruction or in the second position of a

three-operand instruction. See 80C196 Assembler User's Guide for

descriptions of valid operands for each instruction.

Chapter 99–20
M
E
S
S
A
G
E
S

invalid attribute for: function

The source program attempted to set multiple and conflicting attributes for

a function. For example, a varparams or fixedparams control appears

for a function whose calling convention has already been established by

use, definition, declaration, or a previous calling-convention control. For

another example, a function identifier appears as an argument to an

interrupt control which appeared in a previous varparams ,

fixedparams , or interrupt control, or the function identifier has been

previously used, defined, or declared.

invalid cast

The following are examples of invalid casts:

• casting to or from struct or union

• casting a void expression to any type other than void

invalid dereference

A dereference (the * operator) is applied to an expression other than a

pointer.

invalid field definition

A field definition appears outside a structure definition or is attached to an

invalid type.

invalid function reference, address-of assumed

An expression that evaluates to a function reference was used in any

context other than call. For example, f(*b) , where b is a pointer to a

function, generates this error.

invalid index

The identifier specified with an index register is not a file-scope aggregate

object (array, structure, union).

invalid interrupt handler

Since interrupt handlers take no arguments and return no value, they must

be declared as void irf (void) , where irf is the name of the interrupt

function.

invalid label

The destination code address of the instruction must be a C label.

Messages and Error Recovery 9–21

• • • • • • • •

invalid member name

The member name (that is, the right operand of a . or –> operator) is not

a member of the corresponding structure or union.

invalid number of arguments

The number of arguments passed to a function does not match the

number of parameters defined in the prototype of that function.

invalid number of operands

The number of operands specified in the instruction is incorrect. See the

80C196 Assembler User's Guide, listed in Chapter 2, for the syntax of each

instruction.

invalid object type

A variable declaration specified an invalid data type; for example: a

variable of void type.

invalid operand: operand_number

operand_number is a decimal value stating which operand is invalid in

the instruction. Probable causes are a byte register was specified where a

word register is expected, a constant was not specified where an

immediate value is expected, a word-aligned register variable or register

number was not specified for the base register, or an operand of the call

instruction was not a C function name.

invalid pointer arithmetic

The only arithmetic allowed on pointers is adding an integral value and a

pointer, subtracting an integral value from a pointer, or subtracting two

pointers of the same type. Any other arithmetic operation is illegal.

invalid redeclaration name

An object or function is being redeclared, but not with the same type. For

example, a function reference implicitly declares the function as a function

returning an int . If the actual definition that follows is different, an error

results.

Chapter 99–22
M
E
S
S
A
G
E
S

invalid register operand

The C variable used as a register operand in the instruction is not valid

because it was not declared as a register variable. Declare the C variable

with the register storage class. This error can also occur if you

accessed the address of the register variable with the ampersand (&)

address operator in a C statement, then used the variable as a register

operand in an in-line code assembly statement. For example, the

following in-line assembly code statement generates the error:

register int a;
int *p;

p = &a;
asm ld a,#0AH /* This statement generates the error. */

invalid recursive call to nonreentrant function

You cannot recall a nonreentrant function within itself or call it again

through a call loop so that the function is activated more than once

simultaneously. Make sure that the reentrant control is in effect or

precede the function name with the reentrant keyword.

invalid storage class

The storage class is invalid for the object declared; for example: a

module-level object cannot be auto or register , however, the

register storage class is valid if the extend compiler control is in effect.

invalid storage class combination

You cannot have more than one storage class specifier in a declaration

with noextend in effect. With extend in effect, you can specify extern
register , static register , and (in block scope) auto register
storage classes.

invalid structure reference

The left operand of a . operator is not a structure or a union; or the left

operand of a –> operator is not a pointer to a structure or a pointer to a

union. This error message also occurs if an assignment is made from one

structure to another of a different type.

invalid type

An invalid combination of type modifiers was specified.

Messages and Error Recovery 9–23

• • • • • • • •

invalid type combination

An invalid type was specified, for example, a function returning an array.

invalid use of void expression

An expression of data type void was used in an expression.

left operand must be lval

The left operand of an assignment, or the operand of a ++ or –– operator

must be an lvalue; that is, it must have an address.

macro expansion buffer overflow

Insufficient memory exists for expansion of a macro; the macro is not

expanded.

macro expansion too nested

The maximum nesting level of macro expansion has been exceeded.

Macro recursion, direct or indirect, can also cause this error.

NEAR qualifier cannot be applied to function

The near qualifier was used in the declaration of a function pointer. Only

the farcode and nearcode controls determine whether a function is

placed in the farcode segment. All functions in all modules must reside in

the same segment. Remove or relocate the near qualifier.

NEAR qualifier cannot be applied to function result

The near qualifier was used in the declaration of a function. The result of

a function is a value, and has no address. Remove or relocate the near
qualifier.

NEAR qualifier cannot be applied to member

The near qualifier was used in the declaration of a component of a

structure or union. Only the entire aggregate object may be so qualified.

Remove or relocate the near qualifier.

nesting too deep

One of the nesting limits described in Chapter 10 has been exceeded.

Chapter 99–24
M
E
S
S
A
G
E
S

newline in string or char constant

The new-line character can appear in a string or character constant only

when it is preceded by a backslash (\). For example, the following line

generates this error:

printf(”Hello

no body for static function = function_name

The function_name function is declared as a static function and is called

but is not defined in the module.

no more room for macro body

Argument substitution in the macro has increased the number of characters

to more than maximum allowed.

non addressable operand

The & operator is used illegally, such as, to take the address of a register

or of an expression.

non-constant case expression

The expression in a case is not a constant.

nothing declared

A data type without an associated object or function name is specified.

number of arguments does not match number of parameters

The number of arguments specified for the macro expansion does not

match the number of arguments specified in the macro definition.

operand stack overflow

operand stack underflow

An illegal constant expression exists in a preprocessor directive line.

operand too large

Constant specified in shift count, dcb operand, bit count, etc. is too large.

operator not allowed on pointer

An operand is a pointer, and the operator requires non-pointer operands;

for example: &, | , ^ , * , / , %, >>, <<).

Messages and Error Recovery 9–25

• • • • • • • •

operator stack overflow

operator stack underflow

An illegal constant expression appears in a preprocessor directive line.

parameter list cannot be inherited from typedef

A function body was supplied for an identifier that has function type, but

whose type was specified with a typedef identifier, as in the following

example:

typedef void func(void);

func f {}

parameters can't be initialized

An attempt was made to initialize the arguments in a function definition.

respecified storage class

A storage class specifier is duplicated in a declaration.

respecified type

A type specifier is duplicated in a declaration.

respecified type qualifier

A type qualifier is duplicated in a declaration.

sizeof invalid object

An implicit or explicit sizeof operation references an object with an

unknown size. Examples of invalid implicit sizeof operations are

* fp ++, where fp is a pointer to a function, or struct sigtype siga ,

when sigtype is not yet completely defined.

stack segment too large

The estimated or requested stack size is greater than 64 kilobytes.

string too long

A string of over 1024 characters is being defined.

syntax error

An error is discovered in the syntax of an assembly instruction.

Chapter 99–26
M
E
S
S
A
G
E
S

syntax error near 'string'

A syntax error occurred in the program. The string information attempts

to identify the error more precisely.

too many parameters for one function

The number of arguments specified for one function has exceeded the

compiler limit.

too many parameters for one macro

The number of arguments specified for one macro has exceeded the

compiler limit.

too many characters in a character constant

A character constant can include one to two characters. The effect of this

error on the object code is that the character constant value remains

undefined.

too many functions

The number of functions declared has exceeded the compiler limit.

too many initializers

An array is initialized with more items than the number of elements

specified in the array definition.

too many macro arguments

The number of arguments specified for a macro has exceeded the

compiler limit.

too many nested struct/unions

The lexical nesting of struct and union member lists has exceeded the

compiler limit.

too many public register variables

The number of public variables explicitly declared as register variables

is greater than the number of register locations available to the module.

too many register variables

The number of variables explicitly declared as register variables is

greater than the number of register locations available to the module.

Messages and Error Recovery 9–27

• • • • • • • •

unable to recover from syntax error

An unrecoverable syntax error has occurred. Check the list file to see

where the compiler found the error.

unbalanced conditional compilation directive

Conditional compilation directives are improperly formed. For example,

the program contains too many #endif preprocessor directives, or an

#else preprocessor directive without a matching #if preprocessor

directive.

undefined identifier: name

The program contains a reference to an identifier that has not been

previously declared.

undefined label: label

A label has been referenced in the function, but has never been defined.

undefined or not a label

An identifier following a goto must be a label; the identifier was declared

otherwise, or the label was not defined.

undefined parameter

The argument being defined did not appear in the formal parameter list of

the function.

unexpected EOF

The input source file or files ended in the middle of a token, such as a

character constant, string literal, or comment.

unit string literal too long; truncated

The maximum length of a string is 1024 characters.

variable reinitialization

An initializer for this variable was already processed.

void function cannot return value

A return with an expression is encountered in a function that is declared

as type void . In void functions, all returns must be without a value.

Chapter 99–28
M
E
S
S
A
G
E
S

9.5 WARNINGS

Warnings have the following syntax:

*** Warning at line nn of filename : message

where:

filename is the name of the file in which the error occurred.

nn is the source line number where the error is detected.

message is the explanation.

Following is an alphabetic list of warnings.

a #endif directive is missing

At least one #endif preprocessor directive is missing at the end of an

input source file. The #if and #endif preprocessor directives are not

balanced.

argument not allowed for control control

This message indicates an attempt to pass arguments to a control that

accepts none. Improper argument passing is a fatal error if it occurs in the

compiler invocation, but the preprocessor only issues a warning if the

improper argument occurs in a #pragma directive.

argument not allowed for negated control control

Negated controls, except for the noreentrant control, do not accept

arguments. An improper argument for a negated control is a fatal error if

it occurs in the compiler invocation, but the preprocessor only issues a

warning if the improper argument occurs in a #pragma directive line.

argument out of range for control control: arg

This message indicates an attempt to use an argument value that is out of

the valid range. An out-of-range argument is a fatal error if it occurs in

the compiler invocation, but the preprocessor only issues a warning if the

improper argument occurs in a #pragma directive.

Messages and Error Recovery 9–29

• • • • • • • •

argument required for control control

A missing required argument is a fatal error if it occurs in the compiler

invocation, but the preprocessor only issues a warning if the missing

argument occurs in a #pragma directive.

argument too long for control control

The length of the argument to the control exceeds the maximum number

of characters allowed by the compiler.

bad octal digit: hex_value (hex)

An octal number contains a non-octal character. The hex_value is the

ASCII value of the illegal character.

comment extends across the end of a file

A comment started in a file is not closed before the end of the file.

comparison of signed and unsigned value

This warning is generated when one of the operands in an <, >, <=, or >=
operation has a signed type, and the other operand has an unsigned type,

but only if the unsigned value is at least as wide as the signed value. The

usual conversions are done before the comparison, if needed.

const declaration made non-register

The const qualifier was specified in an initialized data declaration in file

scope that otherwise would have placed the declared object in the register

segment. The constant object will instead be placed in the constant

segment.

control control cannot be negated

You cannot use the no prefix with this compiler control. Improper

negating is a fatal error if it occurs in the compiler invocation, but the

preprocessor only issues a warning if it occurs in a #pragma directive.

control control not allowed in pragma

The compiler encountered either a define or an include control in a

#pragma preprocessor directive.

different enum types

An attempt was made to assign one enum type to a different enum type.

Chapter 99–30
M
E
S
S
A
G
E
S

directive line too long

The line length limit for #pragma preprocessor directives was exceeded.

division by 0

Evaluation of an expression resulted in division by a 0 value.

duplicate control control

A primary control that must not be specified more than once was specified

more than once. Only the following controls can be specified more than

once:

define reentrant
fixedparams regconserve
include searchinclude
interrupt varparams

If you specify a compiler control both in the compiler invocation and in a

#pragma preprocessor directive, the compiler invocation specification

takes precedence. A duplicate control is a fatal error if it occurs in the

compiler invocation but the preprocessor only issues a warning if it occurs

in a #pragma directive.

duplicate argument argument for control control

An argument for control was specified more than once; for example:

specifying more than one handler for one interrupt number.

escape sequence value overflow

The value of an octal or hexadecimal escape sequence does not fit in one

byte.

extra characters in pragma ignored: string

The string represents characters that the compiler cannot process as part

of the current #pragma .

FAR qualifier requires 24-bit model

The far qualifier was used in a declaration, but a 24-bit model() control

was not specified. The far qualifier is valid only for 24-bit models. Add

a 24-bit model() control or remove the offending qualifier.

Messages and Error Recovery 9–31

• • • • • • • •

FARCODE conflicts with NEARCODE

These two controls determine the segment into which all code is

generated. They are mutually exclusive, but both controls were explicitly

specified. Eliminate the one you don't want.

FARCODE control invalid for the component

The farcode control is valid only for 24-bit models. Add a 24-bit

model() control or remove the offending control.

FARDATA conflicts with NEARDATA

These two controls determine the default location of non-constant,

non-register data. They are are mutually exclusive, but both controls were

explicitly specified. Eliminate the one you don't want.

FARDATA control invalid for the component

The fardata control is valid only for 24-bit models. Add a 24-bit

model() control or remove the offending control.

filename too long; truncated

The filename length exceeded the limit of the operating system.

fixedparams attribute ignored for function

The fixedparams control was specified for the function, or the function

was declared with the alien keyword, but the prototype contained the

,... construct. The compiler has changed the calling convention to

varparams , on the assumption that the variable parameter list will be

used. Specify the function in a varparams control or don't use the ,...
construct.

fixedparams attribute ignored for: function

This function has been specified in a fixedparams control or in a

#pragma directive line, but its parameter list ends with comma and ellipsis

(,...), for example, func(a,b,c,...) . The function uses the

varparams calling convention.

function exits without returning a value

Be sure to use a return statement when a function requires one.

Chapter 99–32
M
E
S
S
A
G
E
S

illegal character: hex_value (hex)

The character with the ASCII value hex_value is not part of the C196

character set.

illegal escape sequence

The sequence following the backslash is not a legal escape sequence. The

compiler ignores the backslash and prints the sequence.

illegal macro definition: macro_name

An invalid macro was defined on the command line with the define
control.

illegal syntax in a directive line - newline expected

A preprocessor directive line is not terminated with a new-line character.

incomplete definition of name, one element assumed

No completing definition of name was found in the module. For example,

somewhere in the program, the following declaration exists:

int xyz[]; /* No size was declared
 inside the []’s. */

or

void (*xyz[]) (void) /* Same. */

The compiler issues the warning, at the end of the file, when it does not

find another declaration of the array declaring its true size.

indirection to different types

A pointer to one data type was used to reference a different data type.

invalid argument for control control

The argument specified for control is not valid. For example, the

argument specified for model is invalid.

invalid control: control

A control not supported by the compiler was specified. Check the spelling

of the control. An invalid control is a fatal error if it occurs in the compiler

invocation but the preprocessor only issues a warning if the invalid control

occurs in a #pragma directive.

Messages and Error Recovery 9–33

• • • • • • • •

invalid decimal argument: value

Non-decimal characters were found in an argument that must be a

decimal value. An improper argument is a fatal error if it occurs in the

compiler invocation, but the preprocessor only issues a warning if the

improper argument occurs in a #pragma directive.

invalid identifier: identifier

An identifier does not follow the rules for forming identifiers in C. An

invalid identifier is a fatal error if it occurs in the compiler invocation, but

the preprocessor only issues a warning if the invalid identifier occurs in a

#pragma directive.

invalid syntax for control control

The compiler control contained a syntax error. Invalid control syntax is a

fatal error if it occurs in the compiler invocation, but the preprocessor only

issues a warning if the invalid syntax occurs in a #pragma directive.

null argument for control control

Null arguments for compiler controls are not allowed. For example, the

following argument is illegal:

varparams(f1,,f2)

A null argument is a fatal error if it occurs in the compiler invocation, but

the preprocessor only issues a warning if the null argument occurs in a

#pragma directive.

missing left brace

An aggregate initializer list must be enclosed in braces; for example:

const int i[] = {1,2,3};

no body for static function = function_name

The function_name function is declared as a static function but is

neither defined nor called in the module.

pragma ignored

An entire #pragma preprocessor directive was ignored as a result of an

error. Whenever an error is found in a #pragma preprocessor directive,

the diagnostic is followed by either this message or remainder of
pragma ignored , whichever is appropriate.

Chapter 99–34
M
E
S
S
A
G
E
S

predefined macros cannot be deleted/redefined

The predefined macros (e.g., __LINE__ or __FILE__) cannot be deleted

or redefined by the preprocessor directives #define or #undefine .

qualifier ignored for bit fields

You cannot use a type qualifier with bit field members of a structure or

union.

redefined attribute ignored for: function

Calling convention (varparams or fixedparams) or reentrancy for the

function name has already been established with a declaration, definition,

or compiler control.

regconserve conflicts with registers(all)

registers(all) conflicts with regconserve

The registers(all) control specifies that the compiler is to allocate all

program variables to registers, including variables declared without the

explicit registers attribute (register variables). The regconserve
control specifies that the compiler is to conserve registers, placing only

register variables (and, optionally, a subset of the non-register
variables) in registers. The compiler cannot resolve these conflicting

directions. This error is fatal if both controls are specified in the compiler

invocation, but the preprocessor only issues a warning if the conflict

occurs in #pragma directives.

register declaration too large

The number of register variables declared with block scope is greater

than the number of registers available to the module. The register
storage class is ignored for some variables.

remainder of pragma ignored

This message indicates that a #pragma preprocessor directive is partially

ignored as a result of an error. Whenever an error is found in a #pragma
preprocessor directive, the message is followed by either this message or

pragma ignored , whichever is appropriate.

shift count out of range

The number of shifts you specified exceeds the number of bits in the

register operand, for example, asm shl wreg, #17 . This example

issues a warning because a word operand only contains 16 bits.

Messages and Error Recovery 9–35

• • • • • • • •

token too long; ignored from character: hex_value (hex)

The length of a character sequence, such as an identifier or a macro

argument, has exceeded the compiler limit.

too many register variables

The number of variables explicitly declared as register variables has

exceeded the compiler limit. This limit is either the processor limit or is

imposed by the registers control. Use a different argument for the

registers control or declare fewer variables as register variables.

undefined tag

A tag was used before its definition was completed.

zero or negative subscript

The value of an array subscript must be a positive integer.

Chapter 99–36
M
E
S
S
A
G
E
S

9.6 REMARKS

Remarks have the following syntax:

*** Remark at line nn of filename : message

Following is an alphabetic list of remark messages.

a constant in a selection statement

A constant is encountered in the expression of a selection statement such

as an if , else , or switch statement.

comparison of signed and unsigned value

This remark is generated when one of the operands in an == or !=
operation has a signed type, and the other operand has an unsigned type,

but only if the unsigned value is at least as wide as the signed value. The

usual conversions are done before the comparison, if needed.

interrupt pragma should precede the function definition of: name

In the source module the compiler expects to find the interrupt

designation before the actual function definition.

invalid number of parameters

The actual number of arguments in a function call do not agree with the

number of parameters in a function definition that is not a prototype.

Name hides usage of variable with same name

This remark is generated when a variable at an inner block has the same

name as a variable at an outer block. In this case the inner block variable

hides the other variable.

NEAR qualifier requires 24-bit model

The near qualifier was used in a declaration, but a 24-bit model()
control was not specified.

Precision lost in cast

A cast expression long to pointer (non 24-bit) or pointer to int loses

precision.

Messages and Error Recovery 9–37

• • • • • • • •

return statement has no expression

A return statement with no return expression is encountered in a function

definition which returns an expression other than void .

reuse of interrupt function: func_name for interrupt: dec_value

The same interrupt handler had been assigned to handle another interrupt,

represented by dec_value .

tag scope ends in current block

A tag is defined either in a formal parameter list or at block scope and will

go out of scope at the end of the block containing the definition.

the characters /* are found in a comment

A comment-start delimiter (/*) occurs within a comment.

value overflows field

The specified initial value is too large to be contained in the

corresponding bit field. One or more high order bits of the value have

been truncated.

Chapter 99–38
M
E
S
S
A
G
E
S

TASKING
Quality Development Tools Worldwide

10

LANGUAGE
IMPLEMENTATION

C
H

A
P

T
E

R

Chapter 1010–2
L
A
N
G
U
A
G
E

10

C
H

A
P

T
E

R

Language Implementation 10–3

• • • • • • • •

This chapter describes compatibility issues regarding data types and calling

conventions when linking modules written in other languages for the

80C196 processor with C196 modules. It also describes C196 conformance

to ANSI C and explains how C196 implements some characteristics of the

C language.

10.1 DATA REPRESENTATION

A large application can consist of many separate modules. Linking

combines the modules before execution to satisfy references to external

symbols. Although other modules can be written in PL/M-96, ASM196, or

an older version of Intel C Compiler for the MCS -96 processor, variables

referenced by external symbols must be represented in memory in a

format compatible with C196 data type representations, as described in this

chapter.

10.1.1 DATA TYPES

The C196 compiler supports all ANSI data types except wide characters.

C: A Reference Manual, listed in Related Publications, describes the ANSI

data types. Floating-point data types in C196 are always 32 bits.

Table 10-1 shows the scalar data types for the 80C196 processor, the

amount of memory occupied by the data type, the arithmetic format, and

the range of accepted values.

Data Type Size in
Bytes

Format Range

char1 1 integer or two’s–
complement integer

0 to 255 (unsigned char) or
–128 to 127 (signed char)

unsigned char 1 integer 0 to 255

signed char 1 two’s–complement integer –128 to 127

unsigned int 2 integer 0 to 65,535

int 2 two’s–complement integer –32,768 to 32,767

unsigned short same as unsigned int

short same as signed int

unsigned long 4 integer 0 to 4,294,967,295

long 4 two’s–complement integer –2,147,483,648 to
2,147,483,647

Chapter 1010–4
L
A
N
G
U
A
G
E

RangeFormatSize in
Bytes

Data Type

float 4 single–precision
floating–point

8.43 x 10–37 to 3.37 x 1038

(approximate absolute value)

double same as float

long double same as float

bit field2 1 to 16
bits

integer or two’s
complement integer

depends on number of bits

near pointer 2 address 64 kilobytes

far pointer 4 address 16 megabytes

enum 2 two’s complement –32768 to 32,767

1 unsigned char if the nosigned char control is in effect, or signed char if the signedchar control
 is in effect
2 occurs only as a member of a structure or union aggregate data type

Table 10-1: 80C196 processor scalar data types

A character constant can contain up to two characters and is stored in

character format, one byte per character. The rightmost character in the

constant occupies the low-order byte. A character constant operates as an

unsigned char data type.

10.1.2 CONTIGUITY

Variables reside in memory from low-order to high-order bytes within a

word and from low address to high address across multiple bytes. The

address of a variable is the location of the low-order byte of the variable.

Scalar variables longer than one byte and aggregate variables that contain

word-aligned members are word-aligned, starting on even byte addresses

and occupying consecutive words in memory. Scalar variables shorter

than one word (char , signed char , and unsigned char variables) and

aggregate variables that contain only unaligned members are byte-aligned,

starting on any byte address and occupying consecutive bytes in memory.

Register variables that are a multiple of four bytes in length are

longword-aligned, unless the wordalign control is in effect.

Language Implementation 10–5

• • • • • • • •

The alignment of variables affects the amount of memory space occupied

by the program's data. The compiler attempts to realign data items to

optimize the memory space used. This realignment can result in an

arrangement of the declared items in memory different from the

arrangement of the declarations in the source text. Figure 10-1 shows an

example of the memory allocation corresponding to a set of declarations.

The variables occupy the low-order byte first, starting from bit 0.

078

OSD245

15

first_word

second_word

second_byte first_byte

byte_ary[1] byte_ary[0]

signed int first_word;
char first_byte, second_byte;
unsigned int second_word;
char byte_ary[2];

Figure 10-1: Contiguity of variables

10.1.3 ALIGNMENT

Members of an aggregate variable occupy contiguous storage in the order

specified in the declaration. Byte gaps are introduced as needed for

alignment. Figure 10-2 shows the memory allocation of a structure. The

compiler places the structure at a word-aligned location since the structure

contains members that must be aligned. A gap appears between the last

byte of byte_array and the following integer variable (second_word)

because second_word must start on an even byte address.

Chapter 1010–6
L
A
N
G
U
A
G
E

OSD246

078

first_word

first_bytebits1gap

bits2bits3bits6gap

byte_array [1] byte_array [0]

byte_array [2]

second_word

15

 struct gaps
 {
 int first_word;
 char first_byte;
 unsigned bits1 : 5;
 unsigned bits2 : 4;
 unsigned bits3 : 4;
 unsigned bits6 : 6;
 char byte_array [3];
 int second_word;
 };gap

Figure 10-2: Alignment of structure members

Bit fields (members of structures or unions) are not necessarily aligned on

byte or word boundaries. A bit field cannot span a word boundary, but it

can span a byte boundary. The compiler allocates two or more adjacent

bit fields to a single word whenever possible.

You can use bit fields for padding to force a structure to conform to an

externally imposed format. If no field name precedes the field-width

expression, the compiler allocates an unnamed field of the specified

number of bits. An unnamed field with a length of zero creates a gap

until the next word boundary. Figure 10-3 shows a structure allocation

using bit fields for padding.

078

first_bytegap

gap second_byte

bits1gapbits2gap

15

 struct pad
 {
 char first_byte;
 unsigned :0;
 char second_byte;
 unsigned : 0;
 unsigned bits1 : 4;
 unsigned : 4;
 unsigned bits2 : 3;
 };

OSD247

Figure 10-3: Alignment of Structure Members With Padding

Language Implementation 10–7

• • • • • • • •

The overlay segment the compiler generates is word-aligned. The

compiler adds one byte to the size of an odd-size overlay segment. This

additional byte can cause the compiler to use one more byte of registers

than what you have specified in the registers control, if any.

10.2 CALLING CONVENTIONS

This section describes the four sections of object code (shown in Figure

10-4 that the compiler generates to handle a function call, as follows:

setup is code in the calling function that the processor executes just

before control transfers to the called function.

cleanup is code in the calling function that the processor executes just

after control returns from the called function.

prolog is code in the called function that the processor executes first

when control has transferred from the calling function.

epilog is code in the called function that the processor executes just

before control returns to the calling function.

The calling convention determines the contents of each of these four

sections of code.

Setup

(Call)

Cleanup

.

..

.

..
...

.

.. Prolog

(Body)

Epilog

Calling Function:

Control Transfer

Called Function:

OSD1074

Figure 10-4: The four sections of code for a function call

Chapter 1010–8
L
A
N
G
U
A
G
E

The C196 compiler supports two calling conventions: fixed-parameter list

(FPL) and variable-parameter list (VPL). The object code for the calling

function and for the called function must use the same convention;

otherwise, incorrect execution can occur. The C196 compiler uses VPL as

its default calling convention. To specify FPL for a function, you can use

either the fixedparams control or the alien keyword. Use FPL for

external functions defined in a PL/M-96 module.

10.2.1 PASSING ARGUMENTS

The calling convention determines the order in which arguments occupy

the stack. In both VPL and FPL, the setup code of the calling function

pushes all arguments onto the stack using pass-by-value. Each argument

on the processor stack occupies a multiple of two bytes and is pushed

from the higher address to the lower address. If the size of the argument

is less than two bytes, the compiler zero-extends or sign-extends to two

bytes depending on the data type of the argument.The compiler allocates

space on the stack as follows:

• A floating-point value occupies two words (32 bits).

• A non-floating-point, 32-bit, scalar value occupies two words.

• A 16-bit scalar value occupies one word.

• An aggregate value occupies the same number and sequence of

words on the stack that it does in memory, extended to the next

higher whole word if necessary.

In the VPL convention, the calling function pushes the rightmost argument

in the function call first and the leftmost argument last. Therefore, the first

argument in the function call occupies the lowest memory location of all

the arguments on the stack. The cleanup code of the calling function

pops all the arguments off the processor stack after the called function

returns control.

In the FPL (PL/M-96) convention, the calling function pushes the leftmost

argument in the function call first and the rightmost argument last.

Therefore, the first argument in the list occupies the highest memory

location of all the arguments on the stack for this function call. The epilog

of the called function pops all the arguments off the processor stack

before returning control to the calling function.

Language Implementation 10–9

• • • • • • • •

10.2.2 RETURNING A VALUE

In both the VPL and FPL calling conventions, the epilog of the called

function returns a scalar value in the global double-word register,

TMPREG0. For aggregate return values, TMPREG0 contains a pointer to a

temporary aggregate variable.

10.2.3 LOCAL VARIABLES

The prolog allocates space on the stack for local variables. This space is

commonly called a frame. The ?FRAME01 variable is a relocatable word

register that points to the beginning of the frame and is commonly called

the frame pointer. A module named FRAM01, in the c96.lib library,

defines ?FRAME01 and allocates a word register for it. The

pseudo-assembly language listing in the print file, produced by the

compiler, shows how the compiler uses ?FRAME01. To find the address of

the ?FRAME01 variable, examine the map file produced by RL196.

If your C196 function calls or is called by an ASM196, you must know the

possible differences in stack usage for local variables. For example, since

the C196 compiler does not support nested function definitions, it uses

only one frame pointer.

The following example demonstrates the pseudo-assembly listing

generated by compiling a function that has three local variables declared

as integers. Since each integer occupies a word, the frame size is 3 words

or 6 bytes long. The prolog of the called function uses a frame and frame

pointer as follows:

sub SP,#6 ;Allocates space for local variables of
 ;the called function.
push ?FRAME01 ;Saves the frame pointer of the calling
 ;function, to allow for reentrancy.
ld ?FRAME01,SP ;Loads the stack pointer of the called
 ;function into the frame pointer.

Figure 10-5 contains the print file of a compiled program (named exfrm
in this example) that uses a frame and frame pointer. In this program, the

variables a, b, and c are represented as follows:

[?FRAME01] ; The old frame pointer saved on the stack
2[?FRAME01] ; The local variable ’a’
4[?FRAME01] ; The local variable ’b’
6[?FRAME01] ; The local variable ’c’

Chapter 1010–10
L
A
N
G
U
A
G
E

The compiled program uses the frame pointer as follows:

sub SP,#6H ;These first three instructions set up the
push ?FRAME01 ;stack frame. ?FRAME01 is set up as
ld ?FRAME01,SP ;a pointer to local variables a, b, and c.

ld Tmp0,4[?FRAME01] ;Load the contents of the variable
 ;’b’ into a temporary register.

add Tmp0,6[?FRAME01] ;Add the variable ’c’ to the variable
 ;’b’ which was stored in TMP0,
 ;then store the sum in TMP0.

st Tmp0,2[?FRAME01] ;Store the result of the
 ;addition into the variable ’a’.

pop ?FRAME01 ;Restore the old frame pointer.
add SP,#6H ;Free the local variable space on
 ;the stack.
ret ;Return to the calling procedure.

The epilog restores the previous value of the frame pointer and

deallocates the space allocated for the frame on the stack. Control then

returns to the calling function with the stack as it was when the called

function began execution.

The map file, produced by RL196, lists the address of ?FRAME01. For

example, linking the exfrm.obj object file with the following RL196

invocation produces the exfrm.m96 map file:

rl196 cstart.obj,exfrm.obj,c96.lib to exfrm.abs print(exfrm.m96)

Figure 10-6 contains a section of the exfrm.m96 map file. The address of

?FRAME01, 1AH in this example, appears in the VALUE column, beside the

?FRAME01 entry in the NAME column. The local variables reside on the

stack immediately following the top of the frame.

Language Implementation 10–11

• • • • • • • •

C196 Compiler EXFRM 01/29/99 17:56:19 Page 1

80C196 Compiler V x. y Rz SN (C)1993 Tasking BV, Compilation of module EXFRM

(C)1980,1990,1992,1993 Intel Corporation

Object module placed in EXFRM.obj

Compiler invoked by: c:\c196\bin\C196.EXE EXFRM.c code xref

 Line Level Incl

1 main()

2 {

3 1 int a,b,c;

4 1 a = b + c;

5 1 }

 Symbol Table

 Name Size Class Address Attributes

 a 2 Auto 2 int in function(main)

*3, 4

 b 2 Auto 4 int in function(main)

*3, 4

 c 2 Auto 6 int in function(main)

*3, 4

 main Public reentrant VPL function

returning int

Assembly Listing of Object Code

; Statement 2

0000 main:

0000 69060018 sub SP,#6H

0004 C800 E push ?FRAME01

0006 A01800 E ld ?FRAME01,SP

; Statement 4

0009 A300041C E ld Tmp0,b[?FRAME01]

000D 6700061C E add Tmp0,c[?FRAME01]

0011 C300021C E st Tmp0,a[?FRAME01]

; Statement 5

0015 CC00 E pop ?FRAME01

0017 65060018 add SP,#6H

001B F0 ret

Figure 10-5: Print file

Chapter 1010–12
L
A
N
G
U
A
G
E

ATTRIBUTES VALUE NAME
–––––––––– ––––– ––––

 PUBLICS:
CODE ENTRY 2083H MAIN
REG WORD 001AH ?FRAME01
REG NULL 001CH TMPREG0
NULL NULL 002EH MEMORY
NULL NULL 1FD2H ?MEMORY_SIZE

Figure 10-6: Map file illustrating frame pointer

10.2.4 REENTRANT FUNCTIONS

The prolog of a reentrant function includes code, if necessary, to save all

registers that are to be used by the function. The epilog includes code to

restore the saved registers to the values used by the calling function.

The prolog of each reentrant public function contains a statement or

statements pushing a term. The number of push statements depends

upon the number of overlayable registers (local register variables) defined

inside the function. The compiler uses the symbol ?OVRBASE to keep

track of the offset into the relocatable overlay segment created during

compilation. The RL196 linker locates this overlay segment during linkage.

The compiler pushes the ?OVRBASE values onto the stack to preserve the

overlayable registers so the function can use the same locations in the

register memory even if the functions are active simultaneously. The

compiler includes the ?OVRBASE variable in your output object file, for

example, for the following code:

foo1()
{
 register char a, b, c;
 a = b = c;
}

The compiler produces the following code:

foo1:
push ?OVRBASE
push ?OVRBASE+2H
ldb b,c
ldb a,b
pop ?OVRBASE+2H
pop ?OVRBASE
ret

Language Implementation 10–13

• • • • • • • •

10.2.5 INTERRUPT FUNCTIONS

A call to an interrupt function always results in more object code than a

call to an equivalent non-interrupt function. First, the compiler generates

code to preserve the Program Status Word (PSW). Since all interrupt

functions are assumed to be reentrant, the compiler also generates code to

save and restore registers used by the interrupt function.

In the prolog of the interrupt function, the first instruction pushes the PSW

onto the stack and clears the PSW. This action sets the interrupt mask to

zero and disables interrupts. Code for the 8096 processor uses a pushf
instruction; code for the 80C196 processors use a pusha instruction.

In the epilog of the interrupt function, the last instruction pops the saved

PSW off the stack. This action restores the processor state to what it was

before the interrupt. Code for the 8096 processor uses a popf instruction;

code for the 80C196 processors use a popa instruction.

The compiler pushes/pops all temporary registers when an interrupt

function calls any other function. This has been done for savety reasons. If

possible it will be more efficient not to call any function at all. In that case

only the used registers will be saved/restored.

10.3 STACK SIZE CALCULATION

For each function the C196 compiler calculates its stack size requirements.

The results of these calculations can be seen in the 'Function Statistics' as

they are printed for each function in the pseudo-assembly listing (see

section 3.4.2.7).

The C196 compiler also calculates the total stack size required by each

module. This result can be found in the 'Module Information' in the list file

(see section 3.4.2.8). The stack size calculated is correct as long as there

are no recursive function calls in the source. If there are any recursive

function calls, the compiler will generate a warning and the user should

reserve additional room for the stack while linking. This can be done with

the ss control (see the linker documentation for that).

Chapter 1010–14
L
A
N
G
U
A
G
E

10.4 IMPLEMENTATION-DEPENDENT C196 FEATURES

This section provides information about how C196 implements some

characteristics of the C language as specified by the ANSI C standard. The

__STDC__ macro, defined as 0, indicates that the compiler does not

conform strictly to the ANSI C standard.

10.4.1 CHARACTERS

The C196 source character set is 7-bit ASCII, except in comments and

strings, where it is 8-bit ASCII. The execution character set is 8-bit ASCII.

The compiler maps characters one-to-one from the source to the

execution character set. You can represent all character constants in the

execution character set.

10.4.2 IDENTIFIERS

The C196 compiler supports 40-character significance in external and

internal names. The compiler forces external names to uppercase. Case is

significant in internal names.

10.4.3 EXTENDED SEMANTICS AND SYNTAX

The C196 compiler supports the alien , reentrant , and nonreentrant
keywords, and allows file-level register variables when the extend
control is in effect. These C196 storage-class specifiers operate as follows:

alien has the same effect as specifying the fixedparams
control for the function.

reentrant has the same effect as specifying the reentrant control.

nonreentrant has the same effect as specifying the noreentrant
control.

The C196 compiler allows an extended syntax for type qualifiers that does

not conflict with ANSI C.

Language Implementation 10–15

• • • • • • • •

In C196, a qualifier can follow a left parenthesis or comma. For example,

the following line is not valid in ANSI C:

int (const i), volatile j;

However, the C196 compiler recognizes this line as equivalent to the

following:

int const i;
int volatile j;

This extension does not affect the semantics of any source text that follows

the rules of ANSI C but does cause an asymmetry. For example, the first

of the following two declarations causes x , y , and z all to be read-only

variables. The second declaration causes only y to be read-only; x and z
are both modifiable:

int const x, y, z; /* valid for ANSI C */
int x, const y, z; /* C196 extended syntax */

10.4.4 INITIALIZATION

The C196 compiler supports initialization of object at both file and block

scope with the new OMF version 3.2. If you specify either omf(0) or

omf(1) on the invocation line, initialization of non-constant file scope

objects is not allowed.

Examples of constant file-scope (global) initializations are:

const int i = 1;

long l;
long *const lp = &l;

const struct { int i, j; } s1 = { 1, 2 };

These examples can be used with both the omf(1) and the omf(2)
control.

The C196 compiler also supports initialized variable data in RAM. This

feature affects only non-constant data. Constant data, of course, has

always been initialized. This feature is only available with OMF level 2 or

above.

Chapter 1010–16
L
A
N
G
U
A
G
E

The following examples of file-scope initializations are only valid with the

default OMF version 3.2. If you use omf(0) or omf(1) the following

examples are invalid:

int si = 1;

struct { const int i;
 int j;
} s2 = {3};

static register int sri = 1;

const register int cri = 1;

The following code is an example of block-scope initialization:

void foo(void)
{
 int ai = 0; /* automatic object */
 int * aip = &ai;
 char ach[2] = {”ab”};

 const long al = 1;

 const struct {
 int i1, i2;
 } as1 = {1 ,2};

struct { const int ai;
 int aj;
} as2 = {2, 3};

static const register int cri = 1; /* valid, constant
 object */

static int si = 2; /* invalid, non–const
 object with static
 storage duration */
static register int sri = 1; /* cannot be
 initialized. */
}

Language Implementation 10–17

• • • • • • • •

Character string initializers within a character array are null-terminated

unless the array is shorter than the initializing string. For example:

str1[]=”test”; /* value is ”test\0” (null–terminated) */
str2[5]=”test”; /* value is ”test\0” (null–terminated) */
str3[4]=”test”; /* value is ”test” (not null–terminated) */

The compiler produces additional register, overlay, data and far data

segments for the initialized variables, along with corresponding const

segments which provide the initial values.

In addition to the new segments, the compiler also produces table entries

that the linker then combines to build an initialization table in the final

absolute module.

At startup (reset), library module _main processes the initialization table:

it copies the initial constant data to the corresponding variables, and

zeroes the uninitialized variables. You may modify the _main module if

you do not need the initialization and wish to save space in ROM by

eliminating the initialization routine.

There are up to five data segments with initial values, one for each of the

register, overlay, data and far data segments, and one for all the absolute

segments (produced by the locate pragma and the _reg storage class

modifier).

The initialization segments corresponding to the four relocatable segments

are congruent to those segments, and need only one table entry each. The

single initializaton segment for all the absolute segments requires one table

entry for each such variable, since they can be scattered all over the place.

The following pragmas/controls can be used for data initialization:

init | noinit

allows the compiler to produce the initialization segments and tables. The

default setting is init . init can be abbreviated it .

Use the noinit control/pragma to prevent the generation of initializing

data and tables, even though you have used initializers in your source

code (noinit also prevents zeroing of uninitialized variables).

zero | nozero

allows the compiler to zero uninitialized variables in relocatable data

segments. The default setting matches the setting of the init control.

noinit forces nozero . zero can be abbreviated zr .

Chapter 1010–18
L
A
N
G
U
A
G
E

Use the nozero control/pragma to prevent the generation of zeroing

entries in the initialization tables for relocatable segments (ordinary

variables).

abszero | noabszero

tells the compiler to zero uninitialized variables in absolute segments. The

default setting is noabszero . noinit forces noabszero . abszero can

be abbreviated az .

Use the abszero control/pragma to enable the generation of zeroing

entries in the initialization tables for absolute segments (variables

positioned by either #pragma locate or the _reg storage class

modifier).

10.4.5 DATA TYPE CONVERSION

An unsigned integer is sufficient to hold the maximum size of an array and

can hold the difference between two pointers to members of the same

array.

The result of casting a pointer to an integer data type is as follows:

• Casting a near pointer to an int or short preserves the bit

representation. If cast to a signed integer, the result can be

negative.

• Casting a near pointer to a long or char is not supported.

• Casting a far pointer (24-bit model) to a long preserves the bit

representation.

• Casting a far pointer (24-bit model) to an int or char is not

supported.

The result of casting an integer data type to a pointer is as follows:

• Casting a signed char to a pointer sign-extends.

• Casting an unsigned char to a pointer zero-extends.

• Casting a char to a pointer sign-extends or zero-extends,

depending on whether signedchar or nosignedchar is in effect.

• Casting an int or short to a near pointer preserves the bit

representation.

• Casting a long to a near pointer is not supported.

• Casting a signed int or short to a far pointer (24-bit model)

sign-extends.

Language Implementation 10–19

• • • • • • • •

• Casting an unsigned int or short to a far pointer (24-bit model)

zero-extends.

• Casting a long to a far pointer (24-bit model) preserves the bit

representation.

The result of casting one size pointer to the other size pointer (24-bit

model) is as follows:

• Casting a near pointer to a far pointer zero-extends.

• Casting a far pointer to a near pointer is not supported.

The compiler represents enumeration types as int .

The [no]signedchar control determines whether the compiler considers

a char that is declared without the signed or unsigned keywords to be

signed or unsigned.

10.4.6 BIT FIELDS

You must declare bit fields as signed int , unsigned int , or just int ;

otherwise, the compiler issues an error.

The allocation of bit fields in a word is from low address to high address.

Bit fields are not necessarily allocated on word boundaries; if a bit field is

short enough, it occupies the space between the end of the previous bit

field and the beginning of the next word.

10.4.7 DIVISION/REMAINDER OPERATORS

The binary operator / indicates division. Operands may be of any

arithmetic type. The type of the result is that of the converted operands.

For integral operands, if the mathematical quotient is not an exact integer,

then the result will be one of the two integers closest to the mathematical

quotient of the operands. Of those integers, the one closer to 0 is chosen if

both operands are positive. If either operand is negative, the C196

implementation also choses the one closer to 0.

The binary operator % computes the remainder when the first operand is

divided by the second. Operands may be of any integral type. The type of

the result is that of the converted operands.

Chapter 1010–20
L
A
N
G
U
A
G
E

It is always true that (a/b)*b + a%b is equal to a if b is not 0. When

both operands are positive, the remainder operation will always be

equivalent to the mathematical �mod" operation. If either operand is

negative, the C196 implementation is defined in a manner corresponding

to the integer division. The sign of the remainder will be the same as the

sign of the first operand.

Examples

int a,b,d,r;

a = 14;
b = 4

d = a/b; /* Division is 3 */
r = a%b; /* Remainder is 2 */
d = a/–b; /* Division is –3 */
r = a%–b; /* Remainder is 2 */
d = –a/b; /* Division is –3 */
r = –a%b; /* Remainder is –2 */
d = –a/–b; /* Division is 3 */
r = –a%–b; /* Remainder is –2 */

10.4.8 VOLATILE OBJECTS

Access to a volatile object constitutes a load and a store reference

when the object is one of the following:

• An operand of a prefix or postfix increment or decrement; for

example, counter++ .

• A left operand of a compound assignment operator; for example,

counter += 100 .

The compiler does not perform any optimization on objects declared as

volatile .

10.4.9 EXTENDED ADDRESSING

The compiler treats alike all processor models that provide more than 16

address bits. This family of processors is known as 24-bit models. Code

compiled for 24-bit model processors allows for the extra address bits by

means of a 32-bit pointer.

Language Implementation 10–21

• • • • • • • •

When both the extend control and a 24-bit model() control (for example,

model(nt)) are in effect, the language is extended by the far and near
type qualifier keywords. You use far and near just like the const and

volatile type qualifiers.

10.4.9.1 FAR AND NEAR DATA

Far data can be located anywhere within the entire extended address

space of the processor. Near data must reside in the lower 64K, because it

is accessed with 16-bit addressing. You may use a fardata or a

neardata control to set the default for non-constant, non-register data.

You can override the default by using the far or near type qualifiers in

your declarations.

Any pointer that points to a far data object will be 32 bits wide. An

example of a declaration for such a pointer is:

far int *near_ptr_to_far_int;

The pointer itself can be a far object. It can even point to a near object.

Assuming the neardata control (the default) is in effect, here are some

other ways you could declare a pointer:

int *far far_ptr_to_near_int;
far int *far far_ptr_to_far_int;
int *near_ptr_to_near_int;

10.4.9.2 FAR AND NEAR CODE

Far code can be located anywhere within the entire extended address

space of the processor. Near code must reside in the upper 64K, because

it is accessed with 16-bit addressing. You choose between far or near

code solely by the farcode and nearcode controls. The far and near
keywords may not be used to qualify functions.

Chapter 1010–22
L
A
N
G
U
A
G
E

All separately compiled modules must use the same choice of far or near

code, since the selected mode is determined by the processor upon reset,

and is not changeable by software. The processor's Configuration Control

Register (CCR) controls whether the processor will use the extended

addressing mode, and you must set it to match your choice of far or near

code (see the ccb compiler control). Using only near code is more

efficient than using far code.

When the farcode control is in effect:

• Extended call instructions are used to invoke external functions, but

ordinary call instructions are used to invoke functions defined in the

same module.

• All function pointers are 32 bits wide.

• Return addresses on the stack are 32 bits wide.

• Any jump tables generated for switch statements are built with

32-bit table entries.

10.5 COMPILER LIMITS

The values listed in Table 10-2 represent the maximum size or number of

each item that the compiler can process. Exceeding any of these can

produce a diagnostic message or result in incorrect execution.

Item Maximum

number of conditional compilation directives 16

nesting level of macro invocations 64

number of arguments in a macro invocation 31

length (in characters) of a #pragma preprocessor directive 1024

number of search–path prefixes, including prefixes for the
searchinclude control and prefixes defined in the C196INC
environment variable

19

number of filenames in the include control if c96init.h is present 18

number of filenames in the include control if c96init.h is not
present

19

length of a pathname (in characters) 128

number of case values in a switch statement 255

nesting level of functions specified in function argument lists 20

Language Implementation 10–23

• • • • • • • •

MaximumItem

number of functions defined in a module 255

number of external references in a module 65536

statement nesting level 32

number of arguments in a function call 31

nesting level of structures/unions 32

maximum size of structure returned from a function (in bytes) 127

Table 10-2: Compiler limits

Chapter 1010–24
L
A
N
G
U
A
G
E

TASKING
Quality Development Tools Worldwide

A

FLEXIBLE
LICENSE
MANAGER
(FLEXLM)

A
P

P
E

N
D

IX

Appendix AA–2
F
L
E
X
L
M

A

A
P

P
E

N
D

IX

Flexible License Manager (FLEXlm) A–3

• • • • • • • •

1 INTRODUCTION

This appendix discusses Highland Software's Flexible License Manager and

how it is integrated into the TASKING toolchain. It also contains

descriptions of the Flexible License Manager license administration tools

that are included with the package, the daemon log file and its contents,

and the use of daemon options files to customize your use of the

TASKING toolchain.

2 LICENSE ADMINISTRATION

2.1 OVERVIEW

The Flexible License Manager (FLEXlm) is a set of utilities that, when

incorporated into software such as the TASKING toolchain, provides for

managing access to the software.

The following terms are used to describe FLEXlm concepts and software

components:

feature A feature could be any of the following:

• A TASKING software product.

• A software product from another vendor.

license The right to use a feature. FLEXlm restricts licenses for

features by counting the number of licenses for features in

use when new requests are made by the application

software.

client A TASKING application program.

daemon A process that "serves" clients. Sometimes referred to as a

server.

vendor daemon

The daemon that dispenses licenses for the requested

features. This daemon is built by an application's vendor, and

contains the vendor's personal encryption code. Tasking is

the vendor daemon for the TASKING software.

Appendix AA–4
F
L
E
X
L
M

license daemon

The daemon process that sends client processes to the

correct vendor daemon on the correct machine. The same

license daemon is used by all applications from all vendors,

as this daemon neither performs encryption nor dispenses

licenses. The license daemon processes no user requests on

its own, but forwards these requests to other daemons (the

vendor daemons).

server node A computer system that is running both the license and

vendor daemon software. The server node will contain all the

dynamic information regarding the usage of all the features.

license file An end-user specific file that contains descriptions of the

server nodes that can run the license daemons, the various

vendor daemons, and the restrictions for all the licensed

features.

The TASKING software is granted permission to run by FLEXlm daemons;

the daemons are started when the TASKING toolchain is installed and run

continuously thereafter. Information needed by the FLEXlm daemons to

perform access management is contained in a license data file that is

created during the toolchain installation process. As part of their normal

operation, the daemons log their actions in a daemon log file, which can

be used to monitor usage of the TASKING toolchain.

The following sections discuss:

• Installation of the FLEXlm daemons to provide for access to the

TASKING toolchain.

• Customizing your use of the toolchain through the use of a daemon

options file.

• Utilities that are provided to assist you in performing license

administration functions.

• The daemon log file and its contents.

For additional information regarding the use of FLEXlm, refer to the

chapter Software Installation.

Flexible License Manager (FLEXlm) A–5

• • • • • • • •

2.2 PROVIDING FOR UNINTERRUPTED FLEXLM

OPERATION

TASKING products licensed through FLEXlm contain a number of utilities

for managing licenses. These utilities are bundled in the form of an extra

product under the name SW000098. TASKING products themselves contain

two additional files for FLEXlm in a flexlm subdirectory:

Tasking The Tasking daemon (vendor daemon).

license.dat A template license file.

If you have already installed FLEXlm (e.g. as part of another product) then

it is not needed to install the bundled SW000098. After installing SW000098

the directory /usr/local/flexlm will contain two subdirectories, bin
and licenses . The exact location may differ if FLEXlm has already been

installed as part of a non-TASKING product but in general there will be a

directory for executables such as bin . That directory must contain a copy

of the Tasking daemon shipped with every TASKING product. It also

contains the files:

lmgrd The FLEXlm daemon (license daemon).

lm* A group of FLEXlm license administration utilities.

Next to it, a licenses directory must contain a file with all licenses. If

you did install SW000098 then the licenses directory will be empty. In

that case the license.dat file from the product should be copied to the

licenses directory after filling in the data from your license data sheet.

Be very careful not to overwrite an existing license.dat file because it

contains valuable data.

Example license.dat :

SERVER HOSTNAME HOSTID PORT
DAEMON Tasking /usr/local/flexlm/bin/Tasking
FEATURE SW008002–32 Tasking 3.000 EXPDATE NUSERS PASSWORD SERIAL

After modifications from a license data sheet (example):

SERVER elliot 5100520c 7594

DAEMON Tasking /usr/local/flexlm/bin/Tasking

FEATURE SW008002–32 Tasking 3.000 1–jan–00 4 0B1810310210A6894 ”123456”

Appendix AA–6
F
L
E
X
L
M

If the license.dat file already exists then you should make sure that it

contains the DAEMON and FEATURE lines from your license data sheet.

An appropriate SERVER line should already be present in that case. You

should only add a new SERVER line if no SERVER line is present. The third

field of the DAEMON line is the pathname to the Tasking daemon and

you may change it if necessary.

If the pathname of the resulting license file differs from:

/usr/local/flexlm/licenses/license.dat

then you must set the environment variable LM_LICENSE_FILE to the

correct pathname. If you have more than one product using the FLEXlm

license manager you can specify multiple license files by separating each

pathname (lfpath) with a ':' :

setenv LM_LICENSE_FILE lfpath[:lfpath]...

When the main license daemon lmgrd already runs it is sufficient to type

the command:

lmreread

for notifying the daemon that the license.dat file has been changed.

Otherwise, you must type the command:

lmgrd >/usr/tmp/lmgrd.log &

Both commands reside in the flexlm bin directory mentioned before.

2.3 DAEMON OPTIONS FILE

It is possible to customize the use of TASKING software using a daemon

options file. This options file allows you to reserve licenses for specified

users or groups of users, to restrict access to the TASKING toolchain, and

to set software timeouts. The following table lists the keywords that are

recognized at the start of a line of a daemon options file.

Flexible License Manager (FLEXlm) A–7

• • • • • • • •

Keywords Function

RESERVE Ensures that TASKING software will always be available to one
or more users or on one or more host computer systems.

INCLUDE Allows you to specify a list of users who are allowed exclusive
access to the TASKING software.

EXCLUDE Allows you to disallow certain people use of the TASKING
software.

GROUP Allows the specification of a group of users for use in the other
commands.

TIMEOUT Allows licenses that are idle to be returned to the free pool, for
use by someone else.

NOLOG Causes messages of the specified type to be filtered out of the
daemon’s log output.

Table A-1: Daemon options file keywords

In order to use the daemon options capability, you must create a daemon

options file and list its pathname as the fourth field on the DAEMON line for

the Tasking daemon in the license file. For example, if the daemon

options were in file /usr/local/license.opt , then you would modify

the license file DAEMON line as follows:

DAEMON Tasking /usr/local/Tasking /usr/local/license.opt

A daemon options file consists of lines in the following format:

RESERVE number feature{USER | HOST | DISPLAY | GROUP} name
INCLUDE feature{USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature{USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
TIMEOUT feature timeout_in_seconds
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file

Appendix AA–8
F
L
E
X
L
M

Lines beginning with the sharp character (#) are ignored, and can be used

as comments. For example, the following options file would reserve one

copy of feature SWxxxxxx–xx for user �pat", three copies for user �lee",

and one copy for anyone on a computer with the hostname of �terry"; and

would cause QUEUED messages to be omitted from the log file. In addition,

user �joe" and group �pinheads" would not be allowed to use the feature

SWxxxxxx–xx :

GROUP pinheads moe larry curley
RESERVE 1 SWxxxxxx–xx USER pat
RESERVE 3 SWxxxxxx–xx USER lee
RESERVE 1 SWxxxxxx–xx HOST terry
EXCLUDE SWxxxxxx–xx USER joe
EXCLUDE SWxxxxxx–xx GROUP pinheads
NOLOG QUEUED

2.4 LICENSE ADMINISTRATION TOOLS

The following utilities are provided to facilitate license management by

your system administrator. In certain cases, execution access to a utility is

restricted to users with root privileges. Complete descriptions of these

utilities are provided at the end of this section.

lmstat

License administration is simplified by the lmstat utility. lmstat allows

you to instantly monitor the status of all network licensing activities.

lmstat allows a system administrator to monitor license management

operations including:

• Which daemons are running

• Users of individual features

• Users of features served by a specific DAEMON

Flexible License Manager (FLEXlm) A–9

• • • • • • • •

The usage of lmstat is as follows:

lmstat [–a] [–S [DAEMON]] [–f [feature]]
[–s [server]] [–t value] [–c license_file]
[–A] [–l [regular expression]]

–a — Display everything
–A — List all active licenses
–c license_file — Use “license_file”
–S [DAEMON] — List all users of DAEMON’s features
–f [feature_name] — List users of feature(s)
–l [regular expression] — List users of matching license(s)
–s [server_name] — Display status of server node(s)
–t value — Set lmstat timeout to “value”

lmdown

The lmdown utility allows for the graceful shutdown of all license

daemons (both lmgrd and all vendor daemons, such as Tasking) on all

nodes. To use lmdown, simply type �lmdown " with the correct license file

in either /usr/local/license.dat , or the license file pathname in the

environment variable LM_LICENSE_FILE . In addition, lmdown takes the

�–c license_file_path " argument to specify the license file location.

Since shutting down the servers will cause loss of licenses, execution of

lmdown is restricted to users with root privileges.

lmremove

The lmremove utility allows the system administrator to remove a single

user's license for a specified feature. This could be required in the case

where the licensed user was running the software on a node that

subsequently crashed. This situation will sometimes cause the license to

remain unusable. lmremove will allow the license to return to the pool of

available licenses.

lmremove is used as follows:

lmremove [-c file] feature user host display

lmremove will remove all instances of �user" on node �host" on display

�display" from usage of �feature". If the optional –c file is specified, the

indicated file will be used as the license file. Since removing a user's

license can be disruptive, execution of lmremove is restricted to users

with root privileges.

Appendix AA–10
F
L
E
X
L
M

lmreread

The lmreread utility will cause the license daemon to reread the license

file and start any new vendor daemons that have been added. In addition,

all pre-existing daemons will be signaled to re-read the license file for

changes in feature licensing information. Usage is:

lmreread [-c license_file]

If the -c option is used, the license file specified will be read by

lmreread, NOT by lmgrd; lmgrd re-reads the file it read originally. Also,

lmreread cannot be used to change server node names or port numbers.

Vendor daemons will not re-read their option files as a result of

lmreread.

Flexible License Manager (FLEXlm) A–11

• • • • • • • •

3 FLEXLM USER COMMANDS

lmdown(1)

Name

lmdown - graceful shutdown of all license daemons

Synopsis

lmdown [-c license_file] [-q]

Description

lmdown allows the system administrator to send a message to every

license daemon asking it to shut down. The license daemons write out

their last messages to the log file, close the file, and exit. All licenses

which have been given out by those daemons will be revoked, so that the

next time a client program goes to verify his license, it will not be valid.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmdown looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmdown looks for the

file /usr/local/flexlm/licenses/license.dat .

-q Quiet mode. If this switch is not specified, lmdown asks for

confirmation before asking the license daemons to shut

down. If this switch is specified, lmdown will not ask for

confirmation.

lmgrd(1), lmstat(1), lmreread(1)

Appendix AA–12
F
L
E
X
L
M

lmgrd(1)

Name

lmgrd - flexible license manager daemon

Synopsis

lmgrd [-c license_file] [-l logfile] [-t timeout] [-s interval]

Description

lmgrd is the main daemon program for the FLEXlm distributed license

management system. When invoked, it looks for a license file containing

all required information about vendors and features.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmgrd looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmgrd looks for the file

/usr/local/flexlm/licenses/license.dat .

-l logfile Specifies the output log file to use. Instead of using the -l

option you can use output redirection (> or >>) to specify

the name of the output log file.

-t timeout Specifies the timeout interval, in seconds, during which the

license daemon must complete its connection to other

daemons if operating in multi-server mode. The default value

is 10 seconds. A larger value may be desirable if the daemons

are being run on busy systems or a very heavily loaded

network.

-s interval Specifies the log file timestamp interval, in minutes. The

default is 360 minutes. This means that every six hours

lmgrd logs the time in the log file.

lmdown(1), lmstat(1)

Flexible License Manager (FLEXlm) A–13

• • • • • • • •

lmhostid(1)

Name

lmhostid - report the hostid of a system

Synopsis

lmhostid

Description

lmhostid calls the FLEXlm version of gethostid and displays the results.

The output of lmhostid looks like this:

lmhostid – Copyright (C) 1989, 1990 Highland Software, Inc.
The FLEXlm host ID of this machine is ”1200abcd”

Options

lmhostid has no command line options.

Appendix AA–14
F
L
E
X
L
M

lmremove(1)

Name

lmremove - remove specific licenses and return them to license pool

Synopsis

lmremove [-c license_file] feature user host [display]

Description

lmremove allows the system administrator to remove a single user's

license for a specified feature. This could be required in the case where

the licensed user was running the software on a node that subsequently

crashed. This situation will sometimes cause the license to remain

unusable. lmremove will allow the license to return to the pool of

available licenses.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmremove looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmremove looks for the

file /usr/local/flexlm/licenses/license.dat .

lmstat(1)

Flexible License Manager (FLEXlm) A–15

• • • • • • • •

lmreread(1)

Name

lmreread - tells the license daemon to reread the license file

Synopsis

lmreread [-c license_file]

Description

lmreread allows the system administrator to tell the license daemon to

reread the license file. This can be useful if the data in the license file has

changed; the new data can be loaded into the license daemon without

shutting down and restarting it.

lmreread uses the license file from the command line (or the default file,

if none specified) only to find the license daemon to send it the command

to reread the license file. The license daemon will always reread the file

that it loaded from the original path. If you need to change the path to the

license file read by the license daemon, then you must shut down the

daemon and restart it with that new license file path.

You can not use lmreread if the SERVER node names or port numbers

have been changed in the license file. In this case, you must shut down

the daemon and restart it in order for those changes to take effect.

lmreread does not change any option information specified in an options

file. If the new license file specifies a different options file, that

information is ignored. If you need to reread the options file, you must

shut down the daemon and restart it.

Options

-c license_file
Use the specified license_file. If no -c option is specified,

lmreread looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmreread looks for the

file /usr/local/flexlm/licenses/license.dat .

lmdown(1)

Appendix AA–16
F
L
E
X
L
M

lmstat(1)

Name

lmstat - report status on license manager daemons and feature usage

Synopsis

lmstat [-a] [-A] [-c license_file] [-f [feature]]
[-l [regular_expression]] [-s [server]] [-S [daemon]] [-t timeout]

Description

lmstat provides information about the status of the server nodes, vendor

daemons, vendor features, and users of each feature. Information can be

qualified optionally by specific server nodes, vendor daemons, or features.

Options

-a Display everything.

-A List all active licenses.

-c license_file
Use the specified license_file. If no -c option is specified,

lmstat looks for the environment variable

LM_LICENSE_FILE in order to find the license file to use. If

that environment variable is not set, lmstat looks for the file

/usr/local/flexlm/licenses/license.dat .

-f [feature] List all users of the specified feature(s).

-l [regular_expression]

List all users of the features matching the given

regular_expression.

-s [server] Display the status of the specified server node(s).

-S [daemon] List all users of the specified daemon's features.

-t timeout Specifies the amount of time, in seconds, lmstat waits to

establish contact with the servers. The default value is 10

seconds. A larger value may be desirable if the daemons are

being run on busy systems or a very heavily loaded network.

lmgrd(1)

Flexible License Manager (FLEXlm) A–17

• • • • • • • •

4 THE DAEMON LOG FILE

The FLEXlm daemons all generate log files containing messages in the

following format:

mm/dd hh:mm (DAEMON name) message

Where:

mm/dd hh:mm Is the month/day hour:minute that the message was

logged.

DAEMON name Either �license daemon" or the string from the DAEMON
line that describes your daemon.

In the case where a single copy of the daemon cannot

handle all of the requested licenses, an optional �_"

followed by a number indicates that this message comes

from a forked daemon.

message The text of the message.

The log files can be used to:

• Inform you when it may be necessary to update your application

software licensing arrangement.

• Diagnose configuration problems.

• Diagnose daemon software errors.

The messages are grouped below into the above three categories, with

each message followed by a brief description of its meaning.

Appendix AA–18
F
L
E
X
L
M

4.1 INFORMATIONAL MESSAGES

Connected to node

This daemon is connected to its peer on node node.

CONNECTED, master is name

The license daemons log this message when a quorum is up and everyone

has selected a master.

DEMO mode supports only one SERVER host!

An attempt was made to configure a demo version of the software for

more than one server host.

DENIED: N feature to user (mm/dd/yy hh:mm)

user was denied access to N licenses of feature. This message may indicate

a need to purchase more licenses.

EXITING DUE TO SIGNAL nnn

EXITING with code nnn

All daemons list the reason that the daemon has exited.

EXPIRED: feature

feature has passed its expiration date.

IN: feature by user (N licenses) (used: d:hh:mm:ss)

(mm/dd/yy hh:mm)

user has checked back in N licenses of feature at mm/dd/yy hh:mm.

IN server died: feature by user (number licenses)

(used: d:hh:mm:ss) (mm/dd/yy hh:mm)

user has checked in N licenses by virtue of the fact that his server died.

License Manager server started

The license daemon was started.

Flexible License Manager (FLEXlm) A–19

• • • • • • • •

Lost connection to host

A daemon can no longer communicate with its peer on node host, which

can cause the clients to have to reconnect, or cause the number of

daemons to go below the minimum number, in which case clients may

start exiting. If the license daemons lose the connection to the master, they

will kill all the vendor daemons; vendor daemons will shut themselves

down.

Lost quorum

The daemon lost quorum, so will process only connection requests from

other daemons.

MASTER SERVER died due to signal nnn

The license daemon received fatal signal nnn.

MULTIPLE xxx servers running. Please kill, and restart license

daemon

The license daemon has detected that multiple copies of vendor daemon

xxx are running. The user should kill all xxx daemon processes and

re-start the license daemon.

OUT: feature by user (N licenses) (mm/dd/yy hh:mm)

user has checked out N licenses of feature at mm/dd/yy hh:mm

Removing clients of children

The top-level daemon logs this message when one of the child daemons

dies.

RESERVE feature for HOST name

RESERVE feature for USER name

A license of feature is reserved for either user name or host name.

REStarted xxx (internet port nnn)

Vendor daemon xxx was restarted at internet port nnn.

Retrying socket bind (address in use)

The license servers try to bind their sockets for approximately 6 minutes if

they detect address in use errors.

Appendix AA–20
F
L
E
X
L
M

Selected (EXISTING) master node

This license daemon has selected an existing master (node) as the master.

SERVER shutdown requested

A daemon was requested to shut down via a user-generated kill

command.

[NEW] Server started for: feature-list

A (possibly new) server was started for the features listed.

Shutting down xxx

The license daemon is shutting down the vendor daemon xxx.

SIGCHLD received. Killing child servers

A vendor daemon logs this message when a shutdown was requested by

the license daemon.

Started name

The license daemon logs this message whenever it starts a new vendor

daemon.

Trying connection to node

The daemon is attempting a connection to node.

Flexible License Manager (FLEXlm) A–21

• • • • • • • •

4.2 CONFIGURATION PROBLEM MESSAGES

hostname: Not a valid server host, exiting

This daemon was run on an invalid hostname.

hostname: Wrong hostid, exiting

The hostid is wrong for hostname.

BAD CODE for feature-name

The specified feature name has a bad encryption code.

CANNOT OPEN options file �file"

The options file specified in the license file could not be opened.

Couldn't find a master

The daemons could not agree on a master.

license daemon: lost all connections

This message is logged when all the connections to a server are lost,

which often indicates a network problem.

lost lock, exiting

Error closing lock file

Unable to re-open lock file

The vendor daemon has a problem with its lock file, usually because of an

attempt to run more than one copy of the daemon on a single node.

Locate the other daemon that is running via a ps command, and kill it

with kill -9.

NO DAEMON line for daemon

The license file does not contain a DAEMON line for daemon.

No �license" service found

The TCP license service did not exist in /etc/services .

No license data for �feat", feature unsupported

There is no feature line for feat in the license file.

Appendix AA–22
F
L
E
X
L
M

No features to serve!

A vendor daemon found no features to serve. This could be caused by bad

data in the license file.

UNSUPPORTED FEATURE request: feature by user

The user has requested a feature that this vendor daemon does not

support. This can happen for a number of reasons: the license file is bad,

the feature has expired, or the daemon is accessing the wrong license file.

Unknown host: hostname

The hostname specified on a SERVER line in the license file does not exist

in the network database (probably /etc/hosts).

lm_server: lost all connections

This message is logged when all the connections to a server are lost. This

probably indicates a network problem.

NO DAEMON lines, exiting

The license daemon logs this message if there are no DAEMON lines in the

license file. Since there are no vendor daemons to start, there is nothing to

do.

NO DAEMON line for name

A vendor daemon logs this error if it cannot find its own DAEMON name in

the license file.

Flexible License Manager (FLEXlm) A–23

• • • • • • • •

4.3 DAEMON SOFTWARE ERROR MESSAGES

accept: message

An error was detected in the accept system call.

ATTEMPT TO START VENDOR DAEMON xxx with NO MASTER

A vendor daemon was started with no master selected. This is an internal

consistency error in the daemons.

BAD PID message from nnn: pid: xxx (msg)

A top-level vendor daemon received an invalid PID message from one of

its children (daemon number xxx).

BAD SCONNECT message: (message)

An invalid �server connect" message was received.

Cannot create pipes for server communication

The pipe call failed.

Can't allocate server table space

A malloc error. Check swap space.

Connection to node TIMED OUT

The daemon could not connect to node.

Error sending PID to master server

The vendor server could not send its PID to the top-level server in the

hierarchy.

Illegal connection request to DAEMON

A connection request was made to DAEMON, but this vendor daemon is not

DAEMON.

Illegal server connection request

A connection request came in from another server without a DAEMON
name.

KILL of child failed, errno = nnn

A daemon could not kill its child.

Appendix AA–24
F
L
E
X
L
M

No internet port number specified

A vendor daemon was started without an internet port.

Not enough descriptors to re-create pipes

The �top-level" daemon detected one of its sub-daemon's death. In trying

to restart the chain of sub-daemons, it was unable to get the file

descriptors to set up the pipes to communicate. This is a fatal error, and

the daemons must be re-started.

read: error message

An error in a read system call was detected.

recycle_control BUT WE DIDN'T HAVE CONTROL

The hierarchy of vendor daemons has become confused over who holds

the control token. This is an internal error.

return_reserved: can't find feature listhead

When a daemon is returning a reservation to the �free reservation" list, it

could not find the listhead of features.

select: message

An error in a select system call was detected.

Server exiting

The server is exiting. This is normally due to an error.

SHELLO for wrong DAEMON

This vendor daemon was sent a �server hello" message that was destined

for a different DAEMON.

Unsolicited msg from parent!

Normally, the top-level vendor daemon sends no unsolicited messages. If

one arrives, this message is logged. This is a bug.

WARNING: CORRUPTED options list (o->next == 0)

Options list TERMINATED at bad entry

An internal inconsistency was detected in the daemon's option list.

Flexible License Manager (FLEXlm) A–25

• • • • • • • •

5 FLEXLM LICENSE ERRORS

FLEXlm license error, encryption code in license file is inconsistent

Check the contents of the license file using the license data sheet for the

product. Correct the license file and run the lmreread command.

However, do not change the last (fourth) field of a SERVER line in the

license file. This cannot have any effect on the error message but changing

it will cause other problems.

license file does not support this version

If this is a first time install then follow the procedure for the error message:

FLEXlm license error, encryption code in license file is
inconsistent

because there may be a typo in the fourth field of a FEATURE line of your

license file. In all other cases you need a new license because the current

license is for an older version of the product.

Replace the FEATURE line for the old version of the product with a

FEATURE line for the new version (it can be found on the new license

data sheet). Run the lmreread command afterwards. You can have only

one version of a feature (previous versions of the product will continue to

work).

FLEXlm license error, cannot find license file

Make sure the license file exists. If the pathname printed on the line after

the error message is incorrect, correct this by setting the

LM_LICENSE_FILE environment variable to the full pathname of the

license file.

FLEXlm license error, cannot read license file

Every user needs to have read access on the license file and at least

execute access on every directory component in the pathname of the

license file. Write access is never needed. Read access on directories is

recommended.

FLEXlm license error, no such feature exists

Check the license file. There should be a line starting with:

FEATURE SWiiiiii–jj

Appendix AA–26
F
L
E
X
L
M

where "iiiiii" is a six digit software code and "jj" is a two digit host code

for identifying a compatible host architecture. During product installations

the product code is shown, e.g. SW008002, SW019002. The number in the

software code is the same as the number in the product code except that

the first number may contain an extra leading zero (it must be six digits

long).

The line after the license error message describes the expected feature

format and includes the host code.

Correct the license file using the license data sheet for the product and run

the lmreread command. There is one catch: do not add extra SERVER

lines or change existing SERVER lines in the license file.

FLEXlm license error, license server does not support this feature

If the LM_LICENSE_FILE variable has been set to the format

number@host then see first the solution for the message:

FLEXlm license error, no such feature exists

Run the lmreread program to inform the license server about a changed

license data file. If lmreread succeeds informing the license server but the

error message persists, there are basically three possibilities:

1. The license password is incorrect. If this is the case then there must be an

error message in the log file of lmgrd. Correct the password using the

license data sheet for the product. Finally rerun lmreread. The log file of

lmgrd is usually specified to lmgrd at startup with the -l option or with

>.

2. Your network has more than one FLEXlm license server daemon and the

default license file location for lmreread differs from the default assumed

by the program. Also, there must be more than one license file. Try one of

the following solutions on the same host which produced the error

message:

- type:

 lmreread –c /usr/local/flexlm/licenses/license.dat

- set LM_LICENSE_FILE to the license file location and retry the

lmreread command.

- use the lmreread program supplied with the product SW000098,

Flexible License Manager. SW000098 is bundled with all TASKING

products.

Flexible License Manager (FLEXlm) A–27

• • • • • • • •

3. There is a protocol version mismatch between lmgrd and the daemon

with the name "Tasking" (the vendor daemon according to FLEXlm

terminology) or there is some other internal error. These errors are always

written to the log file of lmgrd. The solution is to upgrade the lmgrd

daemon to the one supplied in SW000098, the bundled Flexible License

Manager product.

On the other hand, if lmreread complains about not being able to

connect to the license server then follow the procedure described in the

next section for the error message "Cannot read license file data from

server". The only difference with the current situation is that not the

product but a license management utility shows a connect problem.

FLEXlm license error, Cannot read license file data from server

This indicates that the program could not connect to the license server

daemon. This can have a number of causes. If the program did not

immediately print the error message but waited for about 30 seconds (this

can vary) then probably the license server host is down or unreachable. If

the program responded immediately with the error message then check

the following if the LM_LICENSE_FILE variable has been set to the format

number@host:

- is the number correct? It should match the fourth field of a SERVER

line in the license file on the license server host. Also, the host

name on that SERVER line should be the same as the host name set

in the LM_LICENSE_FILE variable. Correct LM_LICENSE_FILE if

necessary.

In any case one should verify if the license server daemon is running.

Type the following command on the host where the license server

daemon (lmgrd) is supposed to run.

On SunOS 4.x:

ps wwax | grep lmgrd | grep –v grep

On HP-UX or SunOS 5.x (Solaris 2.x):

ps –ef | grep lmgrd | grep –v grep

If the command does not produce any output then the license server

daemon is not running. See below for an example how to start lmgrd.

Appendix AA–28
F
L
E
X
L
M

Make sure that both license server daemon (lmgrd) and the program are

using the same license data. All TASKING products use the license file

/usr/local/flexlm/licenses/license.dat unless overruled by the

environment variable LM_LICENSE_FILE . However, not all existing

lmgrd daemons may use the same default. In case of doubt, specify the

license file pathname with the -c option when starting the license server

daemon. For example:

lmgrd –c /usr/local/flexlm/licenses/license.dat \

–l /usr/local/flexlm/licenses/license.log &

and set the LM_LICENSE_FILE environment variable to the

license.dat pathname mentioned with the -c option of lmgrd before

running any license based program (including lmreread, lmstat,

lmdown). If lmgrd and the program run on different hosts, transparent

access to the license file is assumed in the situation described above (e.g.

NFS). If this is not the case, make a local copy of the license file (not

recommended) or set LM_LICENSE_FILE to the form number@host, as

described earlier.

If none of the above seems to apply (i.e. lmgrd was already running and

LM_LICENSE_FILE has been set correctly) then it is very likely that there

is a TCP port mismatch. The fourth field of a SERVER line in the license

file specifies a TCP port number. That number can be changed without

affecting any license. However, it must never be changed while the license

server daemon is running. If it has been changed, change it back to the

original value. If you do not know the original number anymore, restart

the license server daemon after typing the following command on the

license server host:

kill PID

where PID is the process id of lmgrd.

TASKING
Quality Development Tools Worldwide

B

GLOSSARY
A
P
P
E
N
D
IX

Appendix BB–2
G
L
O
S
S
A
R
Y

B

A
P
P
E
N
D
IX

Glossary B–3

• • • • • • • •

A

aggregate data type. Block of memory containing a group of values.

ANSI. American National Standards Institute.

application. The entire system designed by the user.

application program. Software for the user's application.

argument. Value or location passed to a function or macro.

asm196. 80C196 assembler.

B

branch optimization. Compiler process to combine consecutive or

multiple branches into a single branch.

buffer. Contiguous block of memory treated as a simple array or

character string.

byte. 8 bits.

C

calling convention. Object code inserted by the compiler to handle

function calls.

cleanup. Code in the calling function that the processor executes just

after control returns from the called function.

console. The user's workstation.

C-type string. Null-terminated string.

c196. 80C196 C compiler.

D

dead-code optimization. Compile process that eliminates code that can

never be executed.

Appendix BB–4
G
L
O
S
S
A
R
Y

E

environment variable. A variable set by the user to configure the host

operating system.

epilog. Code in the called function that the processor executes just before

control returns to the calling function.

F

file-level variable. A variable defined outside of any function.

FPAL96. Floating-point arithmetic library.

FPL. Fixed-parameter list calling convention.

frame. A space in the stack allocated for a local variable.

frame pointer. A relocatable word register that points to the beginning

of the frame.

G

gap. In memory, one or more bits located between aligned variables and

containing undefined values.

global variable. Variable that exists independently of any block or

function.

H

header file. Source text file containing variable declarations, function

prototypes, in-line assembly language functions, and macro definitions.

I

idle mode. Power-saving processor mode in which all peripherals and

the watchdog timer can continue to operate but all other features are

disabled or turned off.

Glossary B–5

• • • • • • • •

include file. Source text files named in an include compiler control or

in a #include preprocessor directive.

in-line assembly code. Source text, embedded in a c196 program, that

is assembled as ASM196 source text rather than compiled as C196 source

text.

instruction set. The set of machine codes recognized by the 80C196

processor.

integral types. Types that include all forms of integers, characters, and

enumerations.

L

length-prefixed string. Character string beginning with a value that

indicates how many characters long it is.

lib196. 80C196 library utility.

local variable. Variable that exists only while the block or function in

which it is defined is executing, and that is redefined every time the block

or function is re-executed.

longword. 32 bits; 4 bytes.

M

MCS

-96. 8096 microcontroller system: 8096-90, 8096-BH, 80C196CA,

80C196CB, 80C196EA, 80C196KB, 80C196KC, 80C196KD, 80C196KR,

80C196NP, 80C196NT, 80C196NU, 80C196MC, 80C196MD and more.

multiply-aliased. Having more than one name.

N

Not-a-Number. Value in floating-point format that does not represent

any real number.

null-terminated string. Character string ending with a null (0) value.

Appendix BB–6
G
L
O
S
S
A
R
Y

O

OH196. 80C196 object code to hexadecimal conversion utility.

old-style. Function declaration format that is not a prototype, that is,

with the parameter data types not specified in the function declaration's

parameter list.

overlaying registers. Allocating the same registers to more than one

function.

P

padding. User-defined gaps.

parameter. Variable defined in a function or macro to receive an

argument.

peephole optimization. Compiler process that examines generated code

and attempts to combine or eliminate instruction sequences to reduce

overall code size.

portable. Not dependent on the target environment.

powerdown mode. Power-saving processor mode in which RAM is

preserved but all other features are disabled or turned off.

primary source file. Source text file named in the compiler invocation,

outside of any control, as the file to be compiled.

program modules. Separately compiled sections of an application

program.

prolog. Code in the called function that the processor executes first when

control has transferred from the calling function.

PROM. Programmable read-only memory.

promoting. Casting a data type to a longer data type.

pseudo-assembly. A language similar to assembly language used to

represent object code in a humanly readable format.

Glossary B–7

• • • • • • • •

R

RAM. Random access memory.

reentrant. A function that calls itself or gets called again in a call loop.

register file. 80C196 on-chip memory used for high-speed data access

and for hardware control; also called register memory.

registers. Bytes in the register file.

rl196. 80C196 relocation and linking utility.

ROM. Read-only memory.

run-time. During execution.

S

scalar data type. Block of memory containing a single value.

search path. The list of directories that the compiler or the host system

can search to find a filename.

setup. Code in the calling function that the processor executes just before

control transfers to the called function.

SFRs. Special function registers: part of the register file used for hardware

control.

sign-extend. In promoting a data type, filling the bits of the unused

high-order part of the longer data type with the value of the shorter data

type's sign bit.

startup code. Instructions that initialize the processor.

T

target. System on which the application program executes.

Appendix BB–8
G
L
O
S
S
A
R
Y

U

UDI string. Length-prefixed string.

V

vector table. table containing addresses pointing to code.

VPL. variable-parameter list calling convention.

W

word. 16 bits; 2 bytes.

Z

zero-extend. In promoting a data type, filling the bits of the unused

high-order part of the longer data type with zeroes.

TASKING
Quality Development Tools Worldwide

INDEX
IN

D
E
X

IndexIndex–2
IN
D
E
X

IN
D
E
X

Index Index–3

• • • • • • • •

Symbols
.bat files, 3-24

.i extension, 3-13

.obj extension, 3-23

?FRAME01 variable, 4-109, 10-9, 10-10

?OVRBASE symbol, 10-12

?wsr variable, 4-36, 4-123, 6-14

[] Square brackets, 3-3

#define preprocessor directive, 3-13

#elif conditional directive, 3-15

#else conditional directive, 3-15

#endif conditional directive, 3-15

#error directive, 3-16

#if conditional directive, 3-15

#ifdef conditional directive, 3-15

#ifndef conditional directive, 3-15

#include directive, 3-15

#include preprocessor directive, 3-18

#line directive, 3-16

#pragma directive, 3-4, 3-16

__DATE__, 3-13

__FILE__, 3-13

__LINE__, 3-13

__STDC__, 3-13

__TIME__, 3-13

_16_BITS_, 3-13

_24_BITS_, 3-13

ARCHITECTURE, 3-14

C196, 3-14

DEBUG, 3-14

DIAGNOSTIC, 3-14

_FAR_CODE_, 3-14

_FAR_CONST_, 3-14

_FAR_DATA_, 3-14

_FUNCS_H_, 3-14, 8-8

_HAS_PTS_, 3-14

_main, 5-4

Writing your own, 5-6
_main.c, Subroutines, 5-4

_OMF96_VERSION_, 3-14

OPTIMIZE, 3-14

_reg storage class, 6-15

REGISTERS, 3-14

_SFR_H_, 3-15, 8-9

SIGNEDCHAR, 3-15

_tolower function, 8-10

_toupper function, 8-10

_win type qualifier, 6-16

_win1 type qualifier, 6-16

Numbers
80C196 processor, Registers, 6-10

80C196 utilities

LIB196 library manager, 2-5
OH196 converter, 2-5
RL196 linker, 2-5

A
Absolute addresses, Assigning, 4-57

abszero control, 4-4

adding files to a project, 2-13

Aggregate variables

Alignment, 10-5, 10-6
Argument, 10-8
Bit fields, 10-6
Examples, 10-6
Gaps, 10-6
Initialization, 10-15
Return values, 10-9

Aliasing, 4-75

alien keyword, 4-23, 4-24, 4-32, 10-8

Alignment, 10-5

Alignment of variables, 10-4

ANSI conformance, 2-5

__STDC__ macro, 3-13
Data types, 10-3
Libraries, 8-3
TASKING extensions, 4-23, 4-24,

4-90
Type checking, 4-24

Application development, 2-3

IndexIndex–4
IN
D
E
X

Application techniques, 2-3

Arguments

Limits, 10-22
Representation, 10-8
Stack allocation, 10-8
Stack use, 10-8

asm keyword, 7-3

ASM196 assembler, 10-3, 10-9

ASM196 instruction set, 7-1

Supported, 7-6
Unsupported, 7-8

Assigning absolute addresses, 4-57

Assigning interrupt handlers, 4-31,

4-43, 4-48, 4-49

Attributes

Examples, 3-20
Print file, 3-20

B
batch files, 3-24

Bit fields, 10-19

Alignment, 10-6
Block nesting, 3-18

bmov control, 4-5

bmov instruction, 4-5

bmovi instruction, 4-5

Branch optimization, 4-74

Byte gaps, 10-6

C
C196 features,

Implementation-dependent, 10-14

C196 invocation syntax, 3-3

C196 startup code, 5-1

C196INC environment variable, 1-4,

1-9, 4-100, 10-22

c96.lib library, 8-3

c96fp.lib library, 8-3

C96INIT environment variable, 1-4,

1-9

c96init.h include file, 1-4, 1-9, 3-5,

10-22

Calling convention, 2-5

alien keyword, 2-5
Code, 10-7
Compatibility, 10-7
Controls, 4-32, 4-33, 4-115
Default, 4-33, 4-115, 10-7
Examples, 4-33, 4-115, 4-117
Fixed-parameter list, 4-32, 4-33
fixedparams control, 2-5, 4-32
FPL, 4-32
Function names, 10-14
Interrupt function, 4-31, 4-32, 4-43,

4-44, 4-49, 10-13
Keywords, 4-32
PL/M-96, 4-32
Processor differences, 4-43, 4-44
Reentrancy, 4-32, 4-90, 4-115, 6-8
Registers, 4-90, 6-8
Variable-parameter list, 4-32, 4-33,

4-115
VPL, 4-115

case control, 4-6

Case sensitivity, 4-6

ccb control, 4-8

char data type

See also Character handling
SIGNEDCHAR macro, 4-102
signedchar control, 4-102

Character handling

SIGNEDCHAR macro, 3-15
Constants, 9-15, 9-26, 10-4
Header file, 8-10

Characters, 10-14

Chip Configuration Byte, 4-8

Initializing, 4-8
Cleanup, 10-7, 10-8

code control, 3-21, 4-10

Index Index–5

• • • • • • • •

Code listing, 3-17, 3-21, 4-10

Controls, 4-10
Code optimization, 3-43

Comment lines, 7-3

Common subexpression optimization,

4-74

Compatibility

ANSI, 10-3
ASM196, 10-9
C196 language implementation,

10-3
Calling convention, 10-7
Data types, 10-3
Implementation-dependent features,

10-14
PL/M-96, 4-32, 10-8
Processors, 4-43, 4-60, 10-12, 10-13
Stack size calculation, 10-13
Stack use, 10-9
Versions of C196, 4-24, 4-60, 4-90,

4-91, 4-92
Compiler limitation, 10-22

Completion message, 9-3

Controls, 4-19
Diagnostics, 4-19

cond control, 4-12

Conditional compilation, 3-15

Controls, 4-12
Limits, 10-22
Preprint file, 3-13
Print file, 4-51
Print file content, 4-12

Console, Diagnostics, 4-20

Constant folding optimization, 4-72

Constants

Character, 10-4
Optimization, 4-72

Contiguity, 10-4

Continuation lines, Source text, 3-18

Control word, 8-20

Controls, 4-1

abszero, 4-4
Affecting the print file, 3-17, 3-19

bmov, 4-5
case, 4-6
ccb, 4-8
code, 4-10
cond, 4-12
debug, 4-14
define, 4-16
diagnostic, 4-19
divmodopt, 4-21
eject, 4-22
extend, 4-23
extratmp, 4-26
farcode, 4-27
farconst, 4-29
fardata, 4-30
fastinterrupt, 4-31
fixedparams, 4-32
generatevectors, 4-35
hold, 4-36
include, 4-38
init, 4-40
inst, 4-41
interrupt, 4-43
interrupt_piha, 4-48
interrupt_pihb, 4-48
interruptpage, 4-49
list, 4-51
listexpand, 4-53
listinclude, 4-55
Listing, 3-4
locate, 4-57
mixedsource, 4-59
model, 4-60
nearcode, 4-64
nearconst, 4-65
neardata, 4-66
norelocatabletemps, 4-97
object, 4-67
Object file content, 3-4
oldobject, 4-69
omf, 4-70, 4-104
optimize, 4-71
pagelength, 4-79

IndexIndex–6
IN
D
E
X

pagewidth, 4-81
preprint, 4-83
print, 4-85
pts, 4-87
pts_piha, 4-89
pts_pihb, 4-89
reentrant, 4-90
regconserve, 4-92
registers, 4-94
relocatabletemps, 4-97
searchinclude, 4-99
signedchar, 4-102
Source processing, 3-3
Suppressing the object file, 3-23
symbols, 4-105
tabwidth, 4-106
title, 4-107
tmpreg, 4-109
translate, 4-112
type, 4-113
Types, 3-4
varparams, 4-115
warning_true_false, 4-118
windowram, 4-121
windows, 4-123
xref, 4-126
zero, 4-128

creating a makefile, 2-13

Creating libraries, 2-5

Cross-reference, 3-20

cstart.a96, 5-3

cstr function, 8-13, 8-15

ctype.h header file, 8-10

Customer comments, 2-5

Customer service hotline, 2-5

D
Data type conversion, 10-18

Date, 3-17

debug control, 4-14

debugger, starting, 2-12

Debugging

DEBUG macro, 3-14, 4-15
Controls, 4-14, 4-15, 4-113
Object file, 4-14
Optimization, 4-15, 4-71
Print file, 4-105, 4-126
RL196, 4-14
Symbolic information, 4-14, 4-15,

4-113
with In-circuit emulator, 4-14

Debugging code, 3-39, 4-10

define control, 4-16

diagnostic control, 3-20, 4-19, 9-4

Diagnostic levels, 4-19

Diagnostic messages, 9-1

Diagnostics

DIAGNOSTIC macro, 3-14, 4-20
Completion message, 4-19, 9-3
Console, 4-20, 4-112
Controls, 3-20, 4-19, 4-20, 9-3
Examples, 3-20
Exit status, 4-20
Include files, 4-55
Preprocessing, 4-112
Print file, 3-20, 4-20

disable function, 6-5, 8-16

disable_pts function, 6-5, 8-17

Disabling interrupts, 8-16

Disabling the PTS interrupts, 8-17

Division, 4-21

Division operator, 10-19

divmodopt control, 4-21

Duplicate code optimization, 4-74

Dynamic memory allocation, 5-5, 8-28

E
EDE, 2-7

build an application, 2-9
load files, 2-9
open a project, 2-8
select a toolchain, 2-8

Index Index–7

• • • • • • • •

start a new project, 2-12
starting, 2-7

eject control, 4-22

Ellipsis(...), 4-3

embedded development environment.

See EDE

enable function, 6-5, 8-18

enable_pts function, 6-5, 8-19

Enabling interrupts, 8-18

Enabling the peripheral transaction

server's interrupts, 8-19

environment variable, 1-4, 1-9, B-4

C196INC, 1-4, 1-9
C96INIT, 1-4, 1-9
LM_LICENSE_FILE, 1-8, A-6
PATH, 1-4, 1-9
TMPDIR, 1-5, 1-10

Epilog, 10-7, 10-8, 10-9, 10-10, 10-13,

B-4

Error messages, 4-19, 9-12

Fatal, 9-5
errors, FLEXlm license, A-25

example, starting EDE, 2-7

examples, 2-7

using EDE, 2-7
using the makefile, 2-13

Exit status, 4-20

extend control, 4-23, 6-7, 7-3

Extended addressing, 10-20

Extended semantics, 10-14

Extensions, 3-10

extern storage class, 4-23

extratmp control, 4-26

F
far, 10-20

farcode, 4-27, 10-21

farconst, 4-29

fardata, 4-30, 10-21

fastinterrupt control, 4-31

Fatal error messages, 9-3, 9-5

Filename conventions, 3-10

Fixed-parameter list, 4-32

fixedparams control, 4-32

Flexible License Manager, A-1

FLEXlm, A-1

daemon log file, A-17
daemon options file, A-6
license administration tools, A-8
license errors, A-25
user commands, A-11

Floating-point

Argument, 10-8
Data types, 10-4
Initialization, 5-4, 8-20
Input formatting, 8-25
Library, 8-3, 8-7
Linking, 3-25
Output formatting, 8-23

Floating-point support

c96fp.lib library, 8-3
fpal96.lib library, 8-3

fpal96.lib library, 8-3

fpinit function, 8-20

FPL calling convention, 4-32

Frame, 10-9, 10-10

frame, 4-109

Frame pointer, 6-3, 10-9, 10-10

frame pointer, 4-109

Function redeclaration, 4-24

G
Gaps, 10-5, 10-6

General controls, 3-4

General registers, 6-3

generatevectors control, 4-35

Global register variables, 6-13

glossary, B-1

IndexIndex–8
IN
D
E
X

H
Header files, 8-7

Special function registers, 6-5
Table of, 8-7

Heap space, 8-28

hold control, 4-36, 6-12, 6-15

Host system, 9-3

I
Identifiers, 10-14

idle function, 6-5, 8-21

idle mode, 8-21

Implementation-dependent features,

10-14

Bit Fields, 10-19
Characters, 10-14
Data type conversion, 10-18
Division/Remainder operators, 10-19
Extended semantics, 10-14
Identifiers, 10-14
Initialization, 10-15
Syntax, 10-14
Volatile objects, 10-20

In-line assembly code, 7-3

Accessing array elements, 7-5
Constant table declaration, 7-6
Restrictions, 7-4, 7-5
Syntax, 7-3

include control, 4-38

Include files, 4-99

C196INC, 10-22
c96init.h, 10-22
Compiling, 4-38
Controls, 3-15
ctype.h header file, 8-10
Default, 1-4, 1-9
Diagnostics, 4-55
Environment variables, 1-4, 1-9
Examples, 3-18, 4-100

Header files, 8-7
Nesting, 3-18
Preprint file, 3-13
Preprocessor directives, 3-15, 4-38,

4-39, 4-55
Print file, 3-18, 4-51, 4-55
Scope, 4-38
Search path, 1-4, 1-9, 4-99, 4-100,

10-22
Source text, 4-38
string.h header file, 8-13
xx_funcs.h header file, 8-8
xx_sfrs.h header file, 8-9

Indeterminate storage operation

optimization, 4-75

init control, 4-40

init_serio function, 5-4, 8-23

Initialization, 4-40

Zero absolute, 4-4
Zero relocatable, 4-128

Initialization table, 10-17

Initializing the CCB, 4-8

inst control, 4-41

Installation

UNIX, 1-6
Windows 95, 1-3
Windows 98, 1-3
Windows NT, 1-3

Installation procedure, 1-1

Instruction set

Compatibility, 4-60
Selection, 4-60

Intel extensions

Character handling, 8-10
Floating-point, 8-20, 8-23, 8-25
Input formatting, 8-25
Interrupts, 8-16, 8-17, 8-19
Keywords, 6-8
Output formatting, 8-23
Processor state, 8-9, 8-21, 8-22
Register variables, 6-7
Registers, 8-9

Index Index–9

• • • • • • • •

Storage classes, 6-7
Strings, 8-13, 8-15, 8-27

Intermediate results, 6-6

Interrupt

Address, 4-44
Base address, 4-49
Calling convention, 4-31, 4-32,

4-43, 4-44, 4-48, 4-49, 10-12,
10-13

Control, 4-43, 4-44, 4-48
Disabling, 6-5, 8-16, 8-17
Enabling, 6-5, 8-18, 8-19
Fast, 4-31
Function, 4-31, 4-43, 4-44, 4-48,

4-49, 9-20
Functions, 10-13
Header files, 8-9
interruptpage control, 4-49
Mask, 10-12
Numbers, 4-43, 4-44, 4-48, 4-49
Page number, 4-49
Priority, 4-44
Processor differences, 4-43, 4-44,

4-49
Processor state, 10-13
Reentrancy, 6-8
Registers, 10-12
Vector, 4-35, 4-43, 4-44, 4-48, 4-49
Vector table, 4-44

interrupt control, 4-43

Interrupt handlers, Assigning, 4-43,

4-48, 4-49

interrupt_piha control, 4-48

interrupt_pihb control, 4-48

Interrupting compilation, 4-112

interruptpage control, 4-49

Invocation, 3-3

Elements, 3-3
Syntax, 3-3

Invocation-only controls, 3-5

isascii function, 8-10

J
Jump optimization, 4-74

L
Language implementation, 10-1

LIB196 library manager, 2-5, 3-25

Libraries

Creating, 2-5
Selection, 3-25, 3-29
User-defined, 3-25

Library files, 8-1, 8-3

c96.lib library, 8-3
c96fp.lib library, 8-3
fpal96.lib floating-point library, 8-3
Order of linkage, 8-6

Library function, idle, 8-21

Library functions, 8-14

cstr, 8-15
disable, 8-16
disable_pts, 8-17
enable, 8-18
enable_pts, 8-19
fpinit, 8-20
power_down, 8-22
printf, 8-23
scanf, 8-25
sprintf, 8-23
sscanf, 8-25
udistr, 8-27

Line number, __LINE__ macro, 3-13

Linking

Header files, 8-7
Register use, 6-7
Sequence, 8-3

list control, 4-51

listexpand control, 4-53

listinclude control, 4-55

IndexIndex–10
IN
D
E
X

Listing. See Preprint file; Print file

Listing controls, 3-4

LM_LICENSE_FILE, 1-8, A-6

lmdown, A-11

lmgrd, A-12

lmhostid, A-13

lmremove, A-14

lmreread, A-15

lmstat, A-16

Local register variables, 6-12

Local variables, 10-9, 10-10

locate control, 4-57, 4-87, 4-89

Locating the temporary registers, 4-109

Locating variables, 4-57

M
Macro definition

Controls, 3-13, 4-16, 4-17
Examples, 4-17
Function-like, 4-16
Limits, 10-22
Object-like, 4-16
Preprocessor directives, 3-13, 4-16,

4-17
Redefinition, 9-18, 9-34
Scope, 4-16

Macro expansion

Preprint file, 3-13
Print file, 4-51, 4-53

Macro expansion control, 4-53

Macros

__DATE__, 3-13
__FILE__, 3-13
__LINE__, 3-13
__STDC__, 3-13
__TIME__, 3-13
_16_BITS_, 3-13
_24_BITS_, 3-13
ARCHITECTURE, 3-14, 4-63
C196, 3-14
DEBUG, 3-14, 4-15

DIAGNOSTIC, 3-14, 4-20
_FAR_CODE_, 3-14
_FAR_CONST_, 3-14
_FAR_DATA_, 3-14
_FUNCS_H_, 3-14, 4-63, 8-8
_HAS_PTS_, 3-14
_OMF96_VERSION_, 3-14
OPTIMIZE, 3-14, 4-71
REGISTERS, 3-14, 4-94
_SFR_H_, 3-15, 4-63, 8-9
SIGNEDCHAR, 3-15, 4-102
Examples, 8-10, 8-11
Function-like, 8-11
Header files, 8-11
Library functions, 8-7, 8-10, 8-11
Scope, 4-38

Make Utility mk196, 3-24

makefile

automatic creation of, 2-13
updating, 2-13

Messages, 9-1

Diagnostics, 9-1
Error, 9-12
Fatal error, 9-5
Remarks, 9-36
Sign-off, 9-3
Signon, 9-3
Warning, 9-28

mixedsource control, 4-59

model (24-bit), 10-20

model control, 4-5, 4-60

Move optimization, 4-74

N
near, 10-20

nearcode, 4-64, 10-21

nearconst, 4-65

neardata, 4-66, 10-21

noabszero control, 4-4

nocase control, 4-6

nocode control, 4-10

Index Index–11

• • • • • • • •

nocond control, 4-12

nodebug control, 4-14

noextend control, 4-23

noextratmp control, 4-26

nofastinterrupt control, 4-31

nogeneratevectors control, 4-35

nohold, 4-36

nohold control, 6-12, 6-15

noinit control, 4-40

noinst control, 4-41

nolist control, 4-51

nolistexpand control, 4-53

nolistinclude control, 4-55

nomixedsource control, 4-59

Non-register variables, 4-92

nonreentrant keyword, 4-23, 4-24,

4-90, 4-91, 6-8

noobject control, 3-23, 4-67

noprint control, 3-16, 4-85

noreentrant control, 4-90

noregconserve control, 4-92

norelocatabletemps control, 4-97

nosearchinclude control, 4-99

nosignedchar control, 4-102

nosymbols control, 4-105

notranslate control, 3-13, 3-23, 4-112

notype control, 4-113

nowarning_true_false control, 4-118

nowindows, 4-123

noxref control, 4-126

nozero control, 4-128

np_start.a96, 5-4

nt_start.a96, 5-4

null attribute, 6-6

O
Object code

Controls, 4-71
Optimization, 4-71

object control, 4-67

Object file, 3-11

Content controls, 3-4
Controls, 4-67
Creation, 4-67
Filename, 4-67

Object module

Compilation summary, 3-22
Size, 3-22

OH196 converter, 2-5

oldobject control, 4-69

omf, _OMF96_VERSION_ macro, 3-14

omf control, 3-28, 4-70, 4-104

OMF96

combining formats, 3-28
global initialization, 3-28
version 3.0 limitations, 3-29

Operator strength optimization, 4-74

Optimization

OPTIMIZE macro, 3-14, 4-71
Aliasing, 4-75
Alignment, 10-6
Branch conditions, 4-74
Calling convention, 6-8
Common subexpressions, 4-74
Constant expressions, 4-72
Controls, 4-71
Debugging, 4-15, 4-71
Duplicate code, 4-74
Examples, 4-74, 4-75, 10-6
Memory, 10-6
Operator strength, 4-74
Reentrancy, 6-8
Registers, 6-3, 6-7
Short jumps and moves, 4-74
Summary, 4-72
Superfluous branches, 4-74
Unreachable code, 4-74
Variables, 4-75

optimize control, 3-43, 4-71

Overlapping ROM and RAM memory,

4-41

overlay, 4-77

IndexIndex–12
IN
D
E
X

Overlay segments, 4-96, 6-13, 10-7

Alignment, 4-96, 10-7
Size, 10-7

Overlaying registers, 6-7

Reentrancy, 6-8
Overriding controls, 3-4, 3-5

overview, 2-1

P
Page break, Inserting, 4-22

Page header, 3-17

Page number, 3-17

pagelength control, 4-79

pagewidth control, 4-81

Parameter passing, 10-8

PATH, 1-4, 1-9

Path prefixes, 4-99

Peephole optimization, B-6

Peripheral transaction server (PTS),

8-17, 8-19

PL/M-96, Calling convention, 4-32,

10-8

PLMREG

Definition, 6-6
Examples, 6-6

PLMREG variable, 4-109, 6-3

power_down function, 8-22

powerdown function, 6-5

powerdown mode, 8-22

preprint control, 3-13, 4-83

Preprint file, 3-11, 3-12, 4-112

Contents, 4-83
Filename, 4-83

Preprocessor directives

Conditional compilation, 3-13, 4-12
Include files, 4-38, 4-39, 4-55
Limits, 10-22
Macro definition, 3-13, 4-16, 4-17
Preprint file, 3-13

Primary control, 9-6

Primary controls, 3-4

Primary source file, 4-38

print control, 4-85

Print file, 3-11, 3-16

Code listing, 4-10
Compilation heading, 3-16
Compilation summary, 3-22, 3-23
Conditional compilation, 4-12
Cross-reference table, 3-17, 3-20
Diagnostic messages, 3-20
Diagnostics, 4-20, 4-55
Filename, 4-85
Generation, 4-85
Include files, 4-38, 4-55
Macros expanded, 4-53
Mixed assembly source, 4-59
Page header, 3-16, 3-17
Page length, 4-79
Page width, 4-81
Pseudo-assembly listing, 3-17, 3-21
Source text, 4-12, 4-53, 4-55
Source text listing, 3-18, 4-51
Symbol table, 3-17, 4-113, 4-126
Symbolic information, 4-105, 4-126
Symbols table, 3-20
Tab width, 4-106
Title, 4-107

printf function, 8-23

Processor

ARCHITECTURE macro, 3-14
Compatibility, 4-60
Header files, 6-5, 8-8, 8-9
Instruction set, 4-44, 4-60, 10-12,

10-13
Interrupt numbers, 4-44
Registers, 6-1, 8-9
Selection, 4-36, 4-60, 4-123
State, 6-5, 8-8, 8-21, 8-22, 10-13

Processor models

8096-90, 4-60
8096-BH, 4-61
80C196CA, 4-61

Index Index–13

• • • • • • • •

80C196CB, 4-61
80C196EA, 4-61
80C196EC, 4-61
80C196JQ, 4-61
80C196JR, 4-61
80C196JS, 4-61
80C196JT, 4-61
80C196JV, 4-61
80C196KB, 4-61
80C196KC, 4-61
80C196KD, 4-61
80C196KL, 4-61
80C196KQ, 4-61
80C196KR, 4-62
80C196KS, 4-62
80C196KT, 4-62
80C196LB, 4-62
80C196MC, 4-62
80C196MD, 4-62
80C196MH, 4-62
80C196NP, 4-62
80C196NT, 4-62
80C196NU, 4-62

Program Status Word, 10-13

Program status word, 10-12

Program status word (PSW), 6-5

Manipulation, 6-5
project files, adding files, 2-13

Prolog, 10-7, 10-9

Propagated directive, 3-16

Pseudo-assembly instructions, 7-4

Syntax, 7-4
pts control, 4-87

PTS interrupts, 4-87, 4-89

PTS vectors, 4-87, 4-89

Loading a PTS control block, 4-87,
4-89

pts_piha control, 4-89

pts_pihb control, 4-89

R
Reentrancy

Allocation, 4-90
Calling convention, 4-32, 4-90,

4-115, 6-8, 10-12
Controls, 4-90, 4-91, 6-8
Examples, 6-8
Keywords, 4-90, 6-8
Registers, 4-90, 6-8, 10-12
Specifying, 4-91
TASKING extensions, 4-90

reentrant control, 4-90

reentrant keyword, 4-23, 4-24, 4-90,

6-8

regconserve control, 4-92, 6-7

Register

REGISTERS macro, 3-14, 4-94
16-bit direct-addressing mode, 6-10
8-bit direct-addressing mode, 6-10
Allocation, 4-23, 4-92, 4-93, 4-94,

4-96, 6-6, 6-7, 6-10
Budget, 4-93, 4-96
Calling convention, 4-90, 6-8, 10-12
Compilation summary, 3-22
Conservation, 4-92
Control, 4-93, 4-94, 4-96
Controls, 9-10, 9-34
Data types, 6-6
Examples, 6-7, 6-9
Header files, 8-9
Interrupt, 10-12
Keyword, 6-3
Locations, 6-3
Memory, 4-94
Optimization, 6-7
Overlaying, 3-22, 4-90, 6-7
PLMREG, 6-3, 6-6

IndexIndex–14
IN
D
E
X

Reentrancy, 4-90, 6-8, 10-12
Scope, 4-95
Special function registers, 6-5
Variables, 4-23, 4-92, 6-3, 6-5, 6-6,

6-7, 8-9
Register allocation, 4-36, 4-123

Overlay segment, 4-36, 4-123, 6-11
Register segment, 4-36, 4-123, 6-11

Register memory, 6-3

Register segments, 6-13

register storage class, 4-23

registers control, 4-94, 6-7, 6-13, 10-7

relocatabletemps control, 4-97

Remainder operator, 10-19

Remarks, 4-19, 9-36

Return values, 10-9

Returning values, 6-6

Reverse branch optimization, 4-75

RL196

Example, 10-10, 10-12
Examples, 3-25
Link maps, 4-14
Map file, 10-9, 10-10, 10-12
Type checking, 4-14

RL196 linker and locator, 2-5, 3-25

S
sample session, 2-7

Scalars

Alignment, 10-5, 10-6
Argument, 10-8
Data types, 10-3, 10-4
Examples, 10-6
Return values, 10-9

scanf function, 8-25

Scope

Include files, 4-38
Initialization, 9-13
Macros, 4-16, 4-38
Register variables, 4-23, 4-92

Variables, 6-7
scripts, 3-25

Search path, 4-99

searchinclude control, 4-99

Setting the environment

UNIX, 1-9
Windows, 1-4

Setup, 10-7

signedchar control, 4-102

Software development

Compiling source file, 2-4
Creating source text, 2-4
Debugging code, 2-4

Software development process, 2-3

ASM196 assembler, 2-3
C196 compiler, 2-3
LIB196 library manager, 2-3
OH196 converter, 2-3
PL/M-96 compiler, 2-3
RL196 linker, 2-3

Source processing controls, 3-3

Source text

__FILE__ macro, 3-13
Conditional compilation, 3-15, 4-12,

4-51
Diagnostics, 4-55
Include files, 3-15, 4-38, 4-55
Macro definition, 4-16
Macros expanded, 4-53
Preprint file, 3-13, 3-15
Preprocessor directives, 3-13
Primary source file, 4-38
Print file, 3-16, 4-12, 4-38, 4-51,

4-53, 4-55, 4-59
Scope, 4-38

Source text listing, Line numbers, 3-18

Special function registers (SFRs), 6-3

_SFR_H_ macro, 3-15
Accessing, 6-5
Header files, 6-5, 8-9

sprintf function, 8-23

Square brackets([]), 4-3

Index Index–15

• • • • • • • •

sscanf function, 8-25

Stack

Allocation, 10-8
Arguments, 10-8
Calling convention, 10-8
Example, 10-10
Local variables, 10-9, 10-10
Variable allocation, 4-93

Stack allocation, 10-8

Stack frame, 10-9

Stack pointer, 6-3

Stack size, 10-13

Startup code, 5-1, 5-3, 8-3

Writing your own, 5-5
static storage class, 4-23

Status word, 8-20

Storage classes, 6-7

_reg, 6-15
string.h header file, 8-13

Strings

Conversion, 8-13, 8-15, 8-27
Floating-point, 8-23, 8-25
Initialization, 10-15
Representation, 8-15, 8-27

strlen function, 8-27

Structures, 6-15

Suffix rules, 3-10

Suppressing keywords, 4-17

switch statement, 10-22

switch statements, 4-41

Symbol table, 3-17, 3-20, 4-113, 4-126

Examples, 3-20
Generation, 4-105

Symbolic information, 3-17

Controls, 3-20
Cross-reference, 4-105, 4-126
Examples, 3-20
Object file, 4-14, 4-113
Print file, 3-20, 4-105, 4-113, 4-126

symbols control, 4-105

T
Table of compiler controls, 3-5

tabwidth control, 4-106

TASKING extensions

Keywords, 4-23, 4-24, 4-90, 4-91
Prototype declarations, 4-24
Type checking, 4-24

Temporary files, 1-5, 1-10, 3-11

Temporary registers, 4-109, 6-3, 6-6

Locating, 4-109
Termination message. See Completion

message

Time, 3-17

title control, 4-107

TMPDIR, 1-5, 1-10

tmpreg, 4-26, 4-97

tmpreg control, 4-109, 6-6

TMPREG0, 10-9

translate control, 4-112

Translation, 4-112

Type checking, 4-24

Object file, 4-14, 4-113
Print file, 4-113

type control, 4-113

Type qualifier

_win, 6-16
_win1, 6-16

U
UDI, 8-15

UDI format, 8-27

udistr function, 8-13, 8-27

UNIX, scripts, 3-25

Unreachable code optimization, 4-74

updating makefile, 2-13

IndexIndex–16
IN
D
E
X

V
Variable-parameter list calling

convention, 4-115

Variables

Alignment, 10-4
Contiguity, 10-4
Initialization, 10-15

varparams control, 4-115

Vector table, 4-41, 4-44

Version, 9-3

Vertical windowing, 4-121

Vertical windows

C196 interfacing with ASM196, 6-14
hold control, 4-36
Register allocation scheme, 6-11
Windowed parameters, 6-15
windows control, 4-123, 6-12

Vertical windows (VWindows), 6-10

volatile keyword, 10-20

VPL calling convention, 4-115

W
Warning messages, 4-19, 9-28

warning_true_false control, 4-118

Warnings, 4-118

win1_32, 4-119

win1_64, 4-119

win128, 4-120

win32, 4-120

win64, 4-120

Windowed variables, 4-121

windowram control, 4-121, 6-15

Windows

Horizontal, 6-11
Mapping, 6-11
Vertical, 6-11

windows control, 4-123, 6-12

windowsize control, 6-13

wordalign, 4-125

Work files, 1-5, 1-10, 3-11

WSR, 4-78

WSR management code, 4-36, 4-123,

6-12

X
xref control, 4-126

xx_funcs.h header file, 4-87, 4-89,

6-5, 8-8

xx_sfrs.h header file, 6-5, 8-9

Z
zero control, 4-128

TASKING
Quality Development Tools Worldwide

RELEASE NOTE

INDICATOR : Customer Information Software

INDICATOR NR. : CIS9927

CONCERNS : TK006022-00

80C196 C Compiler

Release 6.1

ISSUE DATE : May '99

SUPERSEDES : CIS9828

TO BE FILED IN : 80C196 C Compiler User's Guide

SUMMARY

A new release of the 80C196 C Compiler has been made: Release 6.1.

The main reasons for this update are:

• Solving of reported problems

• New style manuals

• PDF and HTML versions of on-line manuals

ON-LINE MANUALS

For Windows 95/98 and Windows NT the complete set of manuals is

available as Windows on-line help files (in the etc directory). The

manuals are also available as HTML files for Web browsers (in the html
directory) and in PDF format (in the subdirectory pdf) for viewing with

Adobe's Acrobat Reader.

Release NoteRel–2
R

E
L

E
A

S
E

 N
O

T
E

SOLVED / KNOWN PROBLEMS

The distribution contains the file readme_c.txt with information about

solved problems, known problems and additional notes. For Windows

95/98 and Windows NT the readme is available as on-line help

(readme_c.hlp). The information is also available as HTML

(readme_c.html). And there are other read*.* files with information

about previous releases. They could be of interest to you if you have been

using iC-96 before.

	TABLE OF CONTENTS
	SOFTWARE INSTALLATION
	Introduction
	Installation for Windows
	Setting the Environment

	Installation for UNIX Hosts
	Setting the Environment

	OVERVIEW
	C196 and the Software Development Process
	Customer Support
	If You Have a Problem Using the Software

	Sample Session
	Using EDE
	Using the Makefile

	COMPILING AND LINKING
	Introduction
	Compiler Invocation Syntax
	How Controls Affect the Compilation
	Where to Specify Controls

	Filename Conventions
	Output Files
	Preprint File
	Macros
	Include Files
	Conditional Compilation
	Propagated Directives

	Print File
	Print File Contents
	Page Header
	Compilation Heading
	Source Text Listing
	Remarks, Warnings, and Errors
	Symbol Table and Cross-reference
	Pseudo-assembly Listing
	Compilation Summary

	Object File

	Automatically Invoking the C196 Compiler
	Using Make Utility mk196
	Using Batch Files
	Using UNIX Scripts

	Developing a C196 Application Program
	Combining Different OMF96 Formats
	Global Initialization
	OMF96 Version 3.0 Limitations

	Examples
	Source Text
	Setting the Windows Environment
	Preprocessing
	Checking Syntax and Semantics
	Symbolic Debugging
	Optimizing

	COMPILER CONTROLS
	STARTUP CODE
	Contents of cstart.a96
	Contents of _main.c
	Writing Your Own Startup Code
	Writing Your Own _main Routine

	PROCESSOR REGISTERS
	Register Memory
	Accessing Special Function Registers
	TMPREG0
	Register Variables
	Using the extend Control
	Allocating and Overlaying Registers
	Support for Vertical Windows
	Using The windows Control
	Using Windowed Parameters

	ASSEMBLY CODE INSTRUCTIONS
	In-line Assembly Code Syntax
	Pseudo-assembly Instruction Interpretation
	Constant Table Declaration
	Assembly Instructions
	Unsupported Instructions
	Examples

	LIBRARIES
	Library Files
	Library Differences and Header File Correlations
	Linking Library Files

	Header Files
	Functions
	Dynamic Memory Allocation

	MESSAGES AND ERROR RECOVERY
	Introduction
	Sign-on and Sign-off Messages
	Fatal Error Messages
	Error Messages
	Warnings
	Remarks

	LANGUAGE IMPLEMENTATION
	Data Representation
	Data Types
	Contiguity
	Alignment

	Calling Conventions
	Passing Arguments
	Returning a Value
	Local Variables
	Reentrant Functions
	Interrupt Functions

	Stack Size Calculation
	Implementation-dependent C196 Features
	Characters
	Identifiers
	Extended Semantics and Syntax
	Initialization
	Data Type Conversion
	Bit Fields
	Division/Remainder Operators
	Volatile Objects
	Extended Addressing
	Far and Near Data
	Far and Near Code

	Compiler Limits

	FLEXIBLE LICENSE MANAGER (FLEXLM)
	Introduction
	License Administration
	Overview
	Providing For Uninterrupted FLEXlm Operation
	Daemon Options File
	License Administration Tools

	FLEXlm User Commands
	The Daemon Log File
	Informational Messages
	Configuration Problem Messages
	Daemon Software Error Messages

	FLEXlm License Errors

	GLOSSARY
	INDEX
	RELEASE NOTE

